Transformers and sequence-to-sequence learning

CS 685, Fall 2021

Mohit lyyer

College of Information and Computer Sciences
University of Massachusetts Amherst

From last time

- Project proposals now due 10/1!
- Quiz 2 due Friday
- Can TAs record zoom office hours? Maybe
- How did we get this grid in the previous lecture? Will explain in today's class.
- Final proj. reports due Dec. 16th

cture?	$\stackrel{\infty}{\perp}$		+	
\rightarrow The				
poor				
don't				
have				
any				

iPad

sequence-to-sequence learning

Used when inputs and outputs are both sequences of words (e.g., machine translation, summarization)

- we'll use French (f) to English (e) as a running example
- goal: given French sentence f with tokens f_{1}, f_{2}, $\ldots f_{n}$ produce English translation e with tokens $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots \mathrm{e}_{\mathrm{m}}$
- real goal: compute $\arg \max p(e \mid f)$

This is an instance of conditional language modeling

$$
\begin{aligned}
p(e \mid f) & =p\left(e_{1}, e_{2}, \ldots, e_{m} \mid f\right) \\
& =p\left(e_{1} \mid f\right) \cdot p\left(e_{2} \mid e_{1}, f\right) \cdot p\left(e_{3} \mid e_{2}, e_{1}, f\right) \cdot \ldots \\
& =\prod_{i=1}^{m} p\left(e_{i} \mid e_{1}, \ldots, e_{i-1}, f\right)
\end{aligned}
$$

Just like we've seen before, except we additionally condition our prediction of the next word on some other input (here, the French sentence)

seq2seq models

- use two different neural networks to model

$$
\prod_{i=1}^{L} p\left(e_{i} \mid e_{1}, \ldots, e_{i-1}, f\right)
$$

- first we have the encoder, which encodes the French sentence f
- then, we have the decoder, which produces the English sentence e

Neural Machine Translation (NMT)

The sequence-to-sequence model
Encoding of the source sentence. Provides initial hidden state
for Decoder RNN.

NNy дəроэиヨ

les pauvres sont démunis

Source sentence (input)

Encoder RNN produces an encoding of the source sentence.

Neural Machine Translation (NMT)

The sequence-to-sequence model
Target sentence (output)

Training a Neural Machine Translation system

We'll talk much more about machine translation / other seq2seq problems later... but for now, let's go back to the Transformer

So far we've just talked about self-attention... what is all this other stuff?
encoder

[Vaswani et al. 2017]

Self-attention (in encoder)

Nobel committee awards Strickland who advanced optics

Self-attention (in encoder)

Nobel committee awards Strickland who advanced optics

Self-attention (in encoder)

Nobel committee awards Strickland who advanced optics

Self-attention (in encoder)

Nobel committee awards Strickland who advanced optics Self-attention (in encoder)

Nobel committee awards Strickland who advanced optics

Self-attention (in encoder)

Nobel committee awards Strickland who advanced optics

Self-attention (in encoder)

Nobel committee awards Strickland who advanced optics

Self-attention (in encoder)

Nobel committee awards Strickland who advanced optics

Multi-head self-attention

Nobel committee awards Strickland who advanced optics

Multi-head self-attention

Nobel committee awards Strickland who advanced optics

Slides by Emma Strubell!

Multi-head self-attention

 $p+1$

Nobel committee awards Strickland who advanced optics

Slides by Emma Strubell!

Multi-head self-attention

Nobel committee awards Strickland who advanced optics

Multi-head self-attention

Position embeddings are added to each word embedding. Otherwise, since we have no recurrence, our model is unaware of the position of a word in the sequence!

Output
Probabilities

Softmax
Residual connections, which mean that we add the input to a particular block to its
output, help improve gradient flow

Output
Probabilities

Output
Now, we have cross attention, which connects the decoder to the encoder by enabling it to attend over the encoder's final hidden states.

After stacking a bunch of these decoder blocks, we finally have our familiar Softmax layer to predict the next English word

Positional encoding

Creating positional encodings?

- We could just concatenate a fixed value to each time step (e.g., 1, 2, 3, .. 1000) that corresponds to its position, but then what happens if we get a sequence with 5000 words at test time?
- We want something that can generalize to arbitrary sequence lengths. We also may want to make attending to relative positions (e.g., tokens in a local window to the current token) easier.
- Distance between two positions should be consistent with variable-length inputs

Intuitive example

$0:$	0	0	0	0		$8:$	1	0	0	0
$1:$	0	0	0	1		$9:$	1	0	0	1
$2:$	0	0	1	0		$10:$	1	0	1	0
$3:$	0	0	1	1		$11:$	1	0	1	1
$4:$	0	1	0	0		$12:$	1	1	0	0
$5:$	0	1	0	1		$13:$	1	1	0	1
$6:$	0	1	1	0		$14:$	1	1	1	0
$7:$	0	1	1	1		$15:$	1	1	1	1

Transformer positional encoding

$$
\begin{gathered}
P E_{(p o s, 2 i)}=\sin \left(\frac{p o s}{10000^{2 i / d_{\text {model }}}}\right) \\
P E_{(p o s, 2 i+1)}=\cos \left(\frac{p o s}{10000^{2 i / d_{\text {model }}}}\right)
\end{gathered}
$$

Positional encoding is a 512d vector
$i=$ a particular dimension of this vector
pos = dimension of the word
d_model = 512

What does this look like?

 (each row is the pos. emb. of a 50-word sentence)

Despite the intuitive flaws, many models these days use learned positional embeddings (i.e., they cannot generalize to longer sequences, but this isn't a big deal for their use cases)

Hacks to make

Transformers work

Optimizer

We used the Adam optimizer (cite) with $\beta_{1}=0.9, \beta_{2}=0.98$ and $\epsilon=10^{-9}$. We varied the learning rate over the course of training, according to the formula: lrate $=d_{\text {model }}^{-0.5} \cdot \min \left(\right.$ step_num $^{-0.5}$, step_num \cdot warmup_steps $\left.^{-1.5}\right)$ This corresponds to increasing the learning rate linearly for the first warmup teps $^{\text {training steps, and decreasing it thereafter proportionally to }}$ the inverse square root of the step number. We used warmup seps $^{\text {te }}=4000$.

Note: This part is very important. Need to train with this setup of the model.

Label Smoothing

During training, we employed label smoothing of value $\epsilon_{l s}=0.1$ (cite). This hurts perplexity, as the model learns to be more unsure, but improves accuracy and BLEU score.

We implement label smoothing using the KL div loss. Instead of using a one-hot target distribution, we create a distribution that has confidence of the correct word and the rest of the smoothing mass distributed throughout the vocabulary.

I went to class and took

cats

notes
took
sofa

$\begin{array}{lllll}0.025 & 0.025 & 0.9 & 0.025 & 0.025\end{array}$
with label smoothing

Get penalized for overconfidence!

Why these decisions?

Unsatisfying answer: they empirically worked well. Neural architecture search finds even better Transformer variants:

Squared ReLU in Feed Forward Block

Primer: Searching for efficient Transformer architectures... So et al., Sep. 2021

OpenAl's Transformer LMs

- GPT (Jun 2018): 117 million parameters, trained on 13GB of data (~ 1 billion tokens)
- GPT2 (Feb 2019): 1.5 billion parameters, trained on 40GB of data
- GPT3 (July 2020): 175 billion parameters, ~500GB data (300 billion tokens)

Coming up!

- Transfer learning via Transformer models like BERT
- Tokenization (word vs subword vs character/byte)
- Prompt-based learning
- Efficient / long-range Transformers
- Downstream tasks

