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Attention is great

• Attention significantly improves NMT performance
• It’s very useful to allow decoder to focus on certain parts of the source

• Attention solves the bottleneck problem
• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with vanishing gradient problem
• Provides shortcut to faraway states

• Attention provides some interpretability
• By inspecting attention distribution, we can see 

what the decoder was focusing on
• We get alignment for free!
• This is cool because we never explicitly trained

an alignment system
• The network just learned alignment by itself
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aj=i 
•  used in all IBM models 
•  a is vector of length J 
•  maps indexes j to indexes i 
•  each aj 
 {0, 1 … I} 
•  aj = 0 	 fj is �spurious� 
•  no one-to-many alignments 
•  no many-to-many alignments 
•  but provides foundation for 

phrase-based alignment 

IBM Model 1 generative story 
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Choose length J for French sentence 

For each j in 1 to J: 

–  Choose aj uniformly from 0, 1, … I 

–  Choose fj by translating eaj 

Given English sentence e1, e2, … eI 

We want to learn 
how to do this 

Want: P(f|e) 

IBM Model 1 parameters 
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Applying Model 1* 

As translation model 

As alignment model 

P(f, a | e) can be used as a translation model or an alignment model 

* Actually, any P(f, a | e), e.g., any IBM model 

From last time
• Project proposals now due 10/1! 

• Quiz 2 due Friday 

• Can TAs record zoom office hours? Maybe 

• How did we get this grid in the previous lecture?           
Will explain in today’s class. 

• Final proj. reports due Dec. 16th



iPad



sequence-to-sequence learning

• we’ll use French (f) to English (e) as a running 
example 

• goal: given French sentence f with tokens f1, f2, 
… fn  produce English translation e with tokens 
e1, e2, … em

arg max
e

p(e | f )• real goal: compute 

Used when inputs and outputs are 
both sequences of words (e.g., 

machine translation, summarization)



This is an instance of 
conditional language modeling

p(e | f ) = p(e1, e2, …, em | f )

= p(e1 | f ) ⋅ p(e2 |e1, f ) ⋅ p(e3 |e2, e1, f ) ⋅ …

=
m

∏
i=1

p(ei |e1, …, ei−1, f )

Just like we’ve seen before, except we 
additionally condition our prediction of 

the next word on some other input 
(here, the French sentence)



seq2seq models
• use two different neural networks to model  

• first we have the encoder, which encodes the 
French sentence f 

• then, we have the decoder, which produces 
the English sentence e
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an encoding of the 
source sentence.

Encoding of the source sentence.
Provides initial hidden state 

for Decoder RNN.

Decoder RNN is a Language Model that generates 
target sentence conditioned on encoding.
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Training a Neural Machine Translation system
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Source sentence (from corpus)

<START>   the      poor    don’t    have      any    moneyles    pauvres sont démunis

Target sentence (from corpus)

Seq2seq is optimized as a single system.
Backpropagation operates “end to end”.

Decoder RNN
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We’ll talk much more about 
machine translation / other seq2seq 
problems later… but for now, let’s 

go back to the Transformer
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encoder

decoder



encoder

decoder
So far we’ve just talked 

about self-attention… what 
is all this other stuff?



Self-attention (in encoder)
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Multi-head self-attention
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Multi-head self-attention + feed forward

Multi-head self-attention + feed forward
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Position embeddings are added to each 
word embedding. Otherwise, since we 

have no recurrence, our model is unaware 
of the position of a word in the sequence!



Residual connections, which mean that we 
add the input to a particular block to its 

output, help improve gradient flow



A feed-forward layer on top of the attention-
weighted averaged value vectors allows us 

to add more parameters / nonlinearity



We stack as many of these 
Transformer blocks on top of each 
other as we can (bigger models are 
generally better given enough data!)



Moving onto the decoder, which 
takes in English sequences that 
have been shifted to the right 

(e.g., <START> schools opened 
their)



We first have an instance of 
masked self attention. Since 
the decoder is responsible 
for predicting the English 
words, we need to apply 

masking as we saw before.



We first have an instance of 
masked self attention. Since 
the decoder is responsible 
for predicting the English 
words, we need to apply 

masking as we saw before.

Why don’t we do 
masked self-attention 

in the encoder?



Now, we have cross attention, 
which connects the decoder to 
the encoder by enabling it to 

attend over the encoder’s final 
hidden states.



After stacking a bunch of 
these decoder blocks, we 

finally have our familiar 
Softmax layer to predict 
the next English word



Positional encoding



Creating positional encodings?
• We could just concatenate a fixed value to each time step 

(e.g., 1, 2, 3, … 1000) that corresponds to its position, 
but then what happens if we get a sequence with 5000 
words at test time? 

• We want something that can generalize to arbitrary 
sequence lengths. We also may want to make attending 
to relative positions (e.g., tokens in a local window to the 
current token) easier. 

• Distance between two positions should be consistent 
with variable-length inputs



Intuitive example

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/



Transformer positional encoding

Positional encoding is a 512d vector 
i = a particular dimension of this vector 
pos = dimension of the word 
d_model = 512 



What does this look like? 
(each row is the pos. emb. of a 50-word sentence)

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/



Despite the intuitive flaws, many models 
these days use learned positional 

embeddings (i.e., they cannot generalize to 
longer sequences, but this isn’t a big deal for 

their use cases)



Hacks to make 
Transformers work





I went to class and took ___

0      0         1        0         0
cats TV notes took sofa

0.025   0.025        0.9     0.025     0.025
with label smoothing



Get penalized for 
overconfidence!

Loss

Target word confidence



Why these decisions? 
Unsatisfying answer: they empirically worked well. 

Neural architecture search finds even better Transformer variants:

Primer: Searching for efficient Transformer architectures… So et al., Sep. 2021



OpenAI’s Transformer LMs
• GPT (Jun 2018): 117 million parameters, trained on 

13GB of data (~1 billion tokens) 

• GPT2 (Feb 2019): 1.5 billion parameters, trained on 
40GB of data 

• GPT3 (July 2020): 175 billion parameters, ~500GB 
data (300 billion tokens)



Coming up!
• Transfer learning via Transformer models like BERT 

• Tokenization (word vs subword vs character/byte) 

• Prompt-based learning 

• Efficient / long-range Transformers 

• Downstream tasks 


