Transformers and sequenceto-sequence learning

CS 685, Fall 2020

Mohit lyyer College of Information and Computer Sciences University of Massachusetts Amherst

some slides from Emma Strubell

sequence-to-sequence learning

Used when inputs and outputs are both sequences of words (e.g., machine translation, summarization)

- we'll use French (f) to English (e) as a running example
- goal: given French sentence f with tokens f₁, f₂,
 ... f_n produce English translation e with tokens
 e₁, e₂, ... e_m
- real goal: compute $\arg \max p(e|f)$

$$p(e | f) = p(e_1, e_2, ..., e_m | f)$$

= $p(e_1 | f) \cdot p(e_2 | e_1, f) \cdot p(e_3 | e_2, e_1, f) \cdot ...$
= $\prod_{i=1}^m p(e_i | e_1, ..., e_{i-1}, f)$

Just like we've seen before, except we additionally condition our prediction of the next word on some other input (here, the French sentence)

seq2seq models

- use two different neural networks to model $\prod_{i=1}^{L} p(e_i | e_1, \dots, e_{i-1}, f)$
- first we have the *encoder*, which encodes the French sentence *f*
- then, we have the *decoder*, which produces the English sentence e

Neural Machine Translation (NMT)

The sequence-to-sequence model

Encoding of the source sentence. Provides initial hidden state for Decoder RNN.

Encoder RNN produces an encoding of the source sentence.

Neural Machine Translation (NMT)

Training a Neural Machine Translation system

We'll talk much more about machine translation / other seq2seq problems later... but for now, let's go back to the Transformer

By Emma Strubell Multi-head self-attention

By Emma Strubell Multi-head self-attention

By Emma Strubell

Multi-head self-attention

By Emma Strubell Multi-head self-attention

By Emma Strubell Multi-head self-attention

Now, we have cross attention, which connects the decoder to the encoder by enabling it to attend over the encoder's final hidden states.

Output **Probabilities** Now, we have cross attention, Softmax which connects the decoder to the encoder by enabling it to Linear attend over the encoder's final Add & Norm hidden states. Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward N× Add & Norm N× Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Output Input Embedding Embedding Inputs Outputs (shifted right)

After stacking a bunch of these decoder blocks, we finally have our familiar Softmax layer to predict the next English word

After stacking a bunch of these decoder blocks, we finally have our familiar Softmax layer to predict the next English word

Positional encoding

Creating positional encodings?

- We could just concatenate a fixed value to each time step (e.g., 1, 2, 3, ... 1000) that corresponds to its position, but then what happens if we get a sequence with 5000 words at test time?
- We want something that can generalize to arbitrary sequence lengths. We also may want to make attending to *relative positions* (e.g., tokens in a local window to the current token) easier.

Intuitive example

0:	00	00	8:	1	0	0	0
1:	00	01	9:	1	0	0	1
2:	00	10	10:	1	0	1	0
3:	00	11	11:	1	0	1	1
4:	01	00	12:	1	1	0	0
5:	01	01	13:	1	1	0	1
6:	01	10	14:	1	1	1	0
7:	01	1 1	15:	1	1	1	1

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Transformer positional encoding

$$PE_{(pos,2i)} = \sin(rac{pos}{10000^{2i/d_{model}}})$$

$$PE_{(pos,2i+1)} = \cos(rac{10000^{2i/d_{model}}}{10000^{2i/d_{model}}})$$

Positional encoding is a 512d vector i = a particular dimension of this vector pos = dimension of the word $d_model = 512$

Why this function???

"We chose this function because we hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset k, PE_{pos+k} can be represented as a linear function of PE_{pos} ."

$$PE_{(pos,2i)} = \sin(rac{pos}{10000^{2i/d_{model}}})$$

$$PE_{(pos,2i+1)} = \cos(rac{pos}{10000^{2i/d_{model}}})$$

What does this look like?

(each row is the pos. emb. of a 50-word sentence)

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Despite the intuitive flaws, many models these days use *learned positional embeddings* (i.e., they cannot generalize to longer sequences, but this isn't a big deal for their use cases) Hacks to make Transformers work

Optimizer

We used the Adam optimizer (cite) with $\beta_1 = 0.9$, $\beta_2 = 0.98$ and $\epsilon = 10^{-9}$. We varied the learning rate over the course of training, according to the formula: $lrate = d_{model}^{-0.5} \cdot min(step_num^{-0.5}, step_num \cdot warmup_steps^{-1.5})$ This corresponds to increasing the learning rate linearly for the first warmup_steps training steps, and decreasing it thereafter proportionally to the inverse square root of the step number. We used warmup_steps = 4000.

Note: This part is very important. Need to train with this setup of the model.

During training, we employed label smoothing of value $\epsilon_{ls} = 0.1$ (cite). This hurts perplexity, as the model learns to be more unsure, but improves accuracy and BLEU score.

We implement label smoothing using the KL div loss. Instead of using a one-hot target distribution, we create a distribution that has confidence of the correct word and the rest of the smoothing mass distributed throughout the vocabulary.

During training, we employed label smoothing of value $\epsilon_{ls} = 0.1$ (cite). This hurts perplexity, as the model learns to be more unsure, but improves accuracy and BLEU score.

We implement label smoothing using the KL div loss. Instead of using a one-hot target distribution, we create a distribution that has confidence of the correct word and the rest of the smoothing mass distributed throughout the vocabulary.

I went to class and took _____

cats TV notes took sofa

During training, we employed label smoothing of value $\epsilon_{ls} = 0.1$ (cite). This hurts perplexity, as the model learns to be more unsure, but improves accuracy and BLEU score.

We implement label smoothing using the KL div loss. Instead of using a one-hot target distribution, we create a distribution that has confidence of the correct word and the rest of the smoothing mass distributed throughout the vocabulary.

I went to class and took _

catsTVnotestooksofa00100

During training, we employed label smoothing of value $\epsilon_{ls} = 0.1$ (cite). This hurts perplexity, as the model learns to be more unsure, but improves accuracy and BLEU score.

We implement label smoothing using the KL div loss. Instead of using a one-hot target distribution, we create a distribution that has confidence of the correct word and the rest of the smoothing mass distributed throughout the vocabulary.

I went to class and took cats TV notes took sofa 0 0 1 0 0 0.025 0.025 0.9 0.025 0.025

with label smoothing

Get penalized for overconfidence!

Byte pair encoding (BPE)

Deal with rare words / large vocabulary by instead using *subword* tokenization

system	sentence				
source	health research institutes				
reference	Gesundheitsforschungsinstitute				
WDict	Forschungsinstitute				
C2-50k	Fo rs ch un gs in st it ut io ne n				
BPE-60k	Gesundheits forsch ungsinstitu ten				
BPE-J90k	Gesundheits forsch ungsin stitute				
source	asinine situation				
reference	dumme Situation				
WDict	asinine situation \rightarrow UNK \rightarrow asinine				
C2-50k	as $ in in e$ situation $\rightarrow As in en si tu at io n$				
BPE-60k	as in ine situation $\rightarrow A$ in line-Situation				
BPE-J90K	as $ in ine $ situation $\rightarrow As in in- $ Situation				

Sennrich et al., ACL 2016