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sequence-to-sequence learning

• we’ll use French (f) to English (e) as a running 
example 

• goal: given French sentence f with tokens f1, f2, 
… fn  produce English translation e with tokens 
e1, e2, … em

arg max
e

p(e | f )• real goal: compute 

Used when inputs and outputs are 
both sequences of words (e.g., 

machine translation, summarization)



This is an instance of 
conditional language modeling

p(e | f ) = p(e1, e2, …, em | f )

= p(e1 | f ) ⋅ p(e2 |e1, f ) ⋅ p(e3 |e2, e1, f ) ⋅ …

=
m

∏
i=1

p(ei |e1, …, ei−1, f )

Just like we’ve seen before, except we 
additionally condition our prediction of 

the next word on some other input 
(here, the French sentence)



seq2seq models
• use two different neural networks to model  

• first we have the encoder, which encodes the 
French sentence f 

• then, we have the decoder, which produces 
the English sentence e
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∏
i=1

p(ei |e1, …, ei−1, f )
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Neural Machine Translation (NMT)

2/15/1823

<START>

Source sentence (input)

les    pauvres sont démunis

The sequence-to-sequence model
Target sentence (output)

D
ecoder RN

N

Encoder RNN produces 
an encoding of the 
source sentence.

Encoding of the source sentence.
Provides initial hidden state 

for Decoder RNN.

Decoder RNN is a Language Model that generates 
target sentence conditioned on encoding.
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Training a Neural Machine Translation system

2/15/1825
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Source sentence (from corpus)

<START>   the      poor    don’t    have      any    moneyles    pauvres sont démunis

Target sentence (from corpus)

Seq2seq is optimized as a single system.
Backpropagation operates “end to end”.

Decoder RNN
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= negative log 
prob of “the”

* = 1
-./0#

1
*/ =                 +          +         +         +          +         +

= negative log 
prob of <END>

= negative log 
prob of “have”



We’ll talk much more about 
machine translation / other seq2seq 
problems later… but for now, let’s 

go back to the Transformer



Multi-head self-attention
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Multi-head self-attention
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Multi-head self-attention
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Multi-head self-attention + feed forward

Multi-head self-attention + feed forward

Multi-head self-attention
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Layer 1

Layer p

Multi-head self-attention + feed forwardLayer J

committee awards Strickland advanced opticswhoNobel

By Emma Strubell





encoder



encoder

decoder



encoder

decoder
So far we’ve just talked 

about self-attention… what 
is all this other stuff?





Position embeddings are added to each 
word embedding. Otherwise, since we 

have no recurrence, our model is unaware 
of the position of a word in the sequence!
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Residual connections, which mean that we 
add the input to a particular block to its 

output, help improve gradient flow
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A feed-forward layer on top of the attention-
weighted averaged value vectors allows us 

to add more parameters / nonlinearity
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We stack as many of these 
Transformer blocks on top of each 
other as we can (bigger models are 
generally better given enough data!)
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Moving onto the decoder, which 
takes in English sequences that 
have been shifted to the right 

(e.g., <START> schools opened 
their)







We first have an instance of 
masked self attention. Since 
the decoder is responsible 
for predicting the English 
words, we need to apply 

masking as we saw before.



Why don’t we do 
masked self-attention 

in the encoder?
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Now, we have cross attention, 
which connects the decoder to 
the encoder by enabling it to 

attend over the encoder’s final 
hidden states.
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After stacking a bunch of 
these decoder blocks, we 

finally have our familiar 
Softmax layer to predict 
the next English word
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Positional encoding



Creating positional encodings?
• We could just concatenate a fixed value to each time 

step (e.g., 1, 2, 3, … 1000) that corresponds to its 
position, but then what happens if we get a 
sequence with 5000 words at test time? 

• We want something that can generalize to arbitrary 
sequence lengths. We also may want to make 
attending to relative positions (e.g., tokens in a local 
window to the current token) easier.



Intuitive example

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/



Transformer positional encoding

Positional encoding is a 512d vector 
i = a particular dimension of this vector 
pos = dimension of the word 
d_model = 512 



Why this function???
“We chose this function because we hypothesized it 
would allow the model to easily learn to attend by 
relative positions, since for any fixed offset k, PEpos+k 
can be represented as a linear function of PEpos.” 



What does this look like? 
(each row is the pos. emb. of a 50-word sentence)

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/



Despite the intuitive flaws, many models 
these days use learned positional 

embeddings (i.e., they cannot generalize to 
longer sequences, but this isn’t a big deal for 

their use cases)



Hacks to make 
Transformers work







I went to class and took ___

cats TV notes took sofa



I went to class and took ___

0      0         1        0         0
cats TV notes took sofa



I went to class and took ___

0      0         1        0         0
cats TV notes took sofa

0.025   0.025        0.9     0.025     0.025
with label smoothing



Get penalized for 
overconfidence!

Loss

Target word confidence



Byte pair encoding (BPE)
• Deal with rare words / large vocabulary by instead 

using subword tokenization

Sennrich et al., ACL 2016


