
Transformers and sequence-
to-sequence learning

CS 685, Fall 2020

Mohit Iyyer

College of Information and Computer Sciences

University of Massachusetts Amherst

some slides from Emma Strubell

sequence-to-sequence learning

• we’ll use French (f) to English (e) as a running
example

• goal: given French sentence f with tokens f1, f2,
… fn produce English translation e with tokens
e1, e2, … em

arg max
e

p(e | f)• real goal: compute

Used when inputs and outputs are
both sequences of words (e.g.,

machine translation, summarization)

This is an instance of
conditional language modeling

p(e | f) = p(e1, e2, …, em | f)

= p(e1 | f) ⋅ p(e2 |e1, f) ⋅ p(e3 |e2, e1, f) ⋅ …

=
m

∏
i=1

p(ei |e1, …, ei−1, f)

Just like we’ve seen before, except we
additionally condition our prediction of

the next word on some other input
(here, the French sentence)

seq2seq models
• use two different neural networks to model

• first we have the encoder, which encodes the
French sentence f

• then, we have the decoder, which produces
the English sentence e

4

L

∏
i=1

p(ei |e1, …, ei−1, f)

5

En
co

de
r

RN
N

Neural Machine Translation (NMT)

2/15/1823

<START>

Source sentence (input)

les pauvres sont démunis

The sequence-to-sequence model
Target sentence (output)

D
ecoder RN

N

Encoder RNN produces
an encoding of the
source sentence.

Encoding of the source sentence.
Provides initial hidden state

for Decoder RNN.

Decoder RNN is a Language Model that generates
target sentence conditioned on encoding.

the

ar
gm

ax

the

ar
gm

ax

poor

poor

ar
gm

ax

don’t

Note: This diagram shows test time behavior:
decoder output is fed in as next step’s input

have any money <END>

don’t have any money

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

6

En
co

de
r

RN
N

Neural Machine Translation (NMT)

2/15/1823

<START>

Source sentence (input)

les pauvres sont démunis

The sequence-to-sequence model
Target sentence (output)

D
ecoder RN

N

Encoder RNN produces
an encoding of the
source sentence.

Encoding of the source sentence.
Provides initial hidden state

for Decoder RNN.

Decoder RNN is a Language Model that generates
target sentence conditioned on encoding.

the

ar
gm

ax

the

ar
gm

ax

poor

poor

ar
gm

ax

don’t

Note: This diagram shows test time behavior:
decoder output is fed in as next step’s input

have any money <END>

don’t have any money

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

7

Training a Neural Machine Translation system

2/15/1825

En
co

de
r R

NN

Source sentence (from corpus)

<START> the poor don’t have any moneyles pauvres sont démunis

Target sentence (from corpus)

Seq2seq is optimized as a single system.
Backpropagation operates “end to end”.

Decoder RNN

!"# !"$!"% !"& !"' !"(!")

*# *$ *% *& *' *(*)

= negative log
prob of “the”

* = 1
-./0#

1
*/ = + + + + + +

= negative log
prob of <END>

= negative log
prob of “have”

We’ll talk much more about
machine translation / other seq2seq
problems later… but for now, let’s

go back to the Transformer

Multi-head self-attention

9

Layer p

Q
K
V

MH

M1

committee awards Strickland advanced opticswhoNobel

optics
advanced

who
Strickland

awards
committee

NobelA

By Emma Strubell

Multi-head self-attention

9

Layer p

Q
K
V

MH

M1

committee awards Strickland advanced opticswhoNobel

optics
advanced

who
Strickland

awards
committee

NobelA

By Emma Strubell

Multi-head self-attention

10
committee awards Strickland advanced opticswhoNobel

By Emma Strubell

Multi-head self-attention

11
committee awards Strickland advanced opticswhoNobel

By Emma Strubell

Multi-head self-attention + feed forward

Multi-head self-attention + feed forward

Multi-head self-attention

11

Layer 1

Layer p

Multi-head self-attention + feed forwardLayer J

committee awards Strickland advanced opticswhoNobel

By Emma Strubell

encoder

encoder

decoder

encoder

decoder
So far we’ve just talked

about self-attention… what
is all this other stuff?

Position embeddings are added to each
word embedding. Otherwise, since we

have no recurrence, our model is unaware
of the position of a word in the sequence!

Position embeddings are added to each
word embedding. Otherwise, since we

have no recurrence, our model is unaware
of the position of a word in the sequence!

Residual connections, which mean that we
add the input to a particular block to its

output, help improve gradient flow

Residual connections, which mean that we
add the input to a particular block to its

output, help improve gradient flow

Residual connections, which mean that we
add the input to a particular block to its

output, help improve gradient flow

A feed-forward layer on top of the attention-
weighted averaged value vectors allows us

to add more parameters / nonlinearity

A feed-forward layer on top of the attention-
weighted averaged value vectors allows us

to add more parameters / nonlinearity

We stack as many of these
Transformer blocks on top of each
other as we can (bigger models are
generally better given enough data!)

We stack as many of these
Transformer blocks on top of each
other as we can (bigger models are
generally better given enough data!)

Moving onto the decoder, which
takes in English sequences that
have been shifted to the right

(e.g., <START> schools opened
their)

We first have an instance of
masked self attention. Since
the decoder is responsible
for predicting the English
words, we need to apply

masking as we saw before.

Why don’t we do
masked self-attention

in the encoder?

We first have an instance of
masked self attention. Since
the decoder is responsible
for predicting the English
words, we need to apply

masking as we saw before.

Why don’t we do
masked self-attention

in the encoder?

We first have an instance of
masked self attention. Since
the decoder is responsible
for predicting the English
words, we need to apply

masking as we saw before.

Why don’t we do
masked self-attention

in the encoder?

Now, we have cross attention,
which connects the decoder to
the encoder by enabling it to

attend over the encoder’s final
hidden states.

Now, we have cross attention,
which connects the decoder to
the encoder by enabling it to

attend over the encoder’s final
hidden states.

After stacking a bunch of
these decoder blocks, we

finally have our familiar
Softmax layer to predict
the next English word

After stacking a bunch of
these decoder blocks, we

finally have our familiar
Softmax layer to predict
the next English word

Positional encoding

Creating positional encodings?
• We could just concatenate a fixed value to each time

step (e.g., 1, 2, 3, … 1000) that corresponds to its
position, but then what happens if we get a
sequence with 5000 words at test time?

• We want something that can generalize to arbitrary
sequence lengths. We also may want to make
attending to relative positions (e.g., tokens in a local
window to the current token) easier.

Intuitive example

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Transformer positional encoding

Positional encoding is a 512d vector
i = a particular dimension of this vector
pos = dimension of the word
d_model = 512

Why this function???
“We chose this function because we hypothesized it
would allow the model to easily learn to attend by
relative positions, since for any fixed offset k, PEpos+k
can be represented as a linear function of PEpos.”

What does this look like?
(each row is the pos. emb. of a 50-word sentence)

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Despite the intuitive flaws, many models
these days use learned positional

embeddings (i.e., they cannot generalize to
longer sequences, but this isn’t a big deal for

their use cases)

Hacks to make
Transformers work

I went to class and took ___

cats TV notes took sofa

I went to class and took ___

0 0 1 0 0
cats TV notes took sofa

I went to class and took ___

0 0 1 0 0
cats TV notes took sofa

0.025 0.025 0.9 0.025 0.025
with label smoothing

Get penalized for
overconfidence!

Loss

Target word confidence

Byte pair encoding (BPE)
• Deal with rare words / large vocabulary by instead

using subword tokenization

Sennrich et al., ACL 2016

