How do we train a neural language model?

\[L \]

\(\text{how to adjust the params of our model to better predict the next word} \)

NLM (concatenation):

\[
\begin{align*}
\theta : & \quad \text{params } (W_1, W_2) \\
\Theta : & \quad (c_1, c_2, c_3)
\end{align*}
\]

\[
\begin{align*}
h = & \, f(W_1 [c_1, c_2, c_3]) \\
o = & \, \text{softmax}(W_2 h)
\end{align*}
\]

steps to train this model:

1. define a **loss fn** \(L(\theta) \), this tells us how bad the model currently is at predicting the next word

 \(L \) smooth, differentiable

2. Given \(L(\theta) \), we compute the gradient of \(L \) with respect to \(\theta \)

 \(\theta \) gradient gives us the direction
of steepest ascent of L

L) same dimensionality as Θ

L) for each param j in Θ, gradient tells you how much L would change if you increase j by a very small amount $\frac{dL}{d\Theta}$

L) for concat LM

$$\frac{dL}{d\Theta} = \sum \frac{dL}{dW_1}, \frac{dL}{dW_2}, \frac{dL}{dW_3}...$$

3. Given gradient $\frac{dL}{d\Theta}$, we take a step in the direction of the negative gradient.

L) this minimize L

$$\Theta_{new} = \Theta_{old} - \eta \frac{dL}{d\Theta}$$

L) gradient

L) learning rate

L) controls step size

optimizer:
- stochastic grad. descent
- Adam
- Adafactor
important hyperparams:
- learning rate η
- batch size
 - how many training examples do you use to estimate $\frac{dL}{d\theta}$ before taking a step

Loss function used to train NLMs

\Rightarrow cross-entropy loss

students opened their \Rightarrow books

training prefix \Rightarrow target, $|V|$ labels

goal: maximize $p(\text{books} | \text{"students opened their"})$

minimize negative log prob of "books"

$L = - \log p (\text{books} | \text{"students opened their"})$

why "cross-entropy" loss?
def of cross-entropy between \(p \) and \(q \):

\[
- \sum_{w \in V} p(w) \log q(w)
\]

\(\Rightarrow 1 \) when \(w = \text{books} \)

\(\Rightarrow 0 \) otherwise

\(= - \log q(\text{books} | "\text{students opened their"}) \)

reg. log prob. of the correct word

backpropagation: algorithm to compute gradient \(\frac{dL}{d\theta} \)
in an efficient manner

\[
\begin{array}{ccc}
\odot & W_1 & W_2 \\
\odot & h & h \\
\odot & 0 & 0 \\
\end{array}
\]

\(h = \tanh(w_1 x) \)

\(0 = \tanh(w_2 h) \)

1. compute loss function \(L \)

\[
L = \frac{1}{2} (y - o)^2
\]

square loss / L2 loss

good for regression problems
2. Compute gradient

\[
\frac{dl}{d\theta} = \sum \frac{dl}{dw_1}, \frac{dl}{dw_2}
\]

Chain rule of calculus

\[
\frac{d}{dx} g(f(x)) = \frac{dg}{df} \cdot \frac{df}{dx}
\]

\[
L = \frac{1}{2} (y-o)^2
\]

Intermediate vars:

\[
\begin{align*}
& a = w_2 h \\
& b = w_1 x \\
& \frac{dl}{dw_2} = \frac{dl}{do} \cdot \frac{do}{da} \cdot \frac{da}{dw_2} \\
& \frac{dl}{dw_1} = \frac{dl}{do} \cdot \frac{do}{da} \cdot \frac{da}{dh} \cdot \frac{dh}{db} \cdot \frac{db}{dw_1}
\end{align*}
\]

Backpropagation: Chain rule of calculus + Caching prev. computed derivatives
3. updating params

\[w_{1\text{new}} = w_{1\text{old}} - \eta \frac{\partial \ell}{\partial w_1} \]
\[w_{2\text{new}} = w_{2\text{old}} - \eta \frac{\partial \ell}{\partial w_2} \]