Today: gradient descent \Rightarrow cross-entropy loss
backpropagation

\mathcal{L} FF/concat
\mathcal{L} RNN (recurrent NN)

NLM: given "students opened their", predict "book"

$\mathbf{h} = f(W_1 \begin{bmatrix} c_1 & c_2 & c_3 \end{bmatrix})$

$\mathbf{\theta} = \text{softmax}(W_2 \mathbf{h})$

how do we train this model?

\mathcal{L} how do we adjust our model parameters $\mathbf{\theta}$
to make better predictions of the next word?

\mathcal{L} GRADIENT DESCENT

1. define loss function $\mathcal{L}(\mathbf{\theta})$ that tells us
 how bad the model is currently doing at predicting
 the next word
2. Given $L(\theta)$, we compute the gradient of L with respect to Θ.
 - The gradient gives us the direction of steepest ascent of L.
 - It has the same dimensionality as Θ.
 - For each parameter j in Θ, it tells you how much L would increase if you increase j by a very small amount.

3. Given gradient $\frac{dL}{d\Theta}$, we take a step in the direction of the negative gradient, thus minimizing L.
 $$\Theta_{new} = \Theta_{old} - \eta \frac{dL}{d\Theta}$$
 Learning rate η controls step size.

Important hyperparameters:
- Learning rate η
- Batch size: how many training examples do you use to estimate $\frac{dL}{d\Theta}$ before taking a step.
Simple example:

\[\begin{align*}
\times w_2 & \rightarrow h \rightarrow o \\
\end{align*} \]

Inputs: \((x, y)\) e.g. \((5, 4.3)\)

\[h = \tanh(w_1x) \]

\[o = \tanh(w_2h) \]

1. Compute loss fn \(\ell\):

\[\ell = \frac{1}{2} (y-o)^2 \]

\(\frac{\text{Square loss / L2 loss}}{\text{good for regression problems}}\)

\(L\) \(\rightarrow\) \(\text{target}\) \(\rightarrow\) \(\text{model's prediction}\)

2. Compute gradient:

\[\frac{d\ell}{d\theta} : \frac{d\ell}{dw_1}, \frac{d\ell}{dw_2} \quad (2 \text{ params}) \]

Important: chain rule of calculus

\[\frac{d}{dx} g(f(x)) = \frac{dg}{df} \cdot \frac{df}{dx} \]

Let's make intermediate vars

\(a = w_2h, \ b = w_1x\)

\[\frac{d\ell}{dw_2} = \frac{d\ell}{do} \cdot \frac{do}{da} \cdot \frac{da}{dw_2} \]

\[-(y-o) \cdot (1-o^2) \cdot h \]
$$\frac{dL}{dw_1} = \frac{dL}{da} \cdot \frac{da}{dh} \cdot \frac{dh}{db} \cdot \frac{db}{dw_2}$$

backpropagation: chain rule of calculus + caching prev. computed derivatives

3. update params

$$w'_{2_{new}} = w_{2_{old}} - \eta \frac{dL}{dw_2}, \quad w'_{1_{new}} = w_{1_{old}} - \eta \frac{dL}{dw_1}$$

what loss \(\mathcal{L}\) is used in LM?

- **cross-entropy loss**, generally useful for any classification task

Students opened their \(\rightarrow\) books

goal:

maximize \(p(\text{books} | \text{students opened their})\)

minimize negative log probability of "books"

\[\mathcal{L} = -\log p(\text{books} | \text{students opened their})\]

why "cross-entropy" loss?

model's predicted dist. \(p\)
data distribution p:

... students opened their

$p(\text{books} | \ldots) = 1.0$

defn of cross entropy between p and q is:

$$- \sum_{w \in V} p(w) \log q(w)$$

- 1 when $w = \text{books}$
- 0 for every other w

$$= - \log q(\text{books} | \text{Students opened their})$$

neg. log prob of correct word

Recurrent Neural Networks:

- h_0 to h_1 to h_2 to o
- Input to hidden to hidden to output

- w_h, w_e, w_o, c_1, c_2
- Params:

$$L = \frac{1}{2} (y - o)^2$$

$$o = w_o h_2$$

$$h_2 = \tanh(w_e c_2 + w_h h_1)$$

$$b$$
\[h_1 = tanh \left(w_e c_i + w_h h_o \right) \]

\[\frac{dL}{dw_0} = \frac{dL}{d_0} \cdot \frac{d_0}{dw_0} = -(y_o) \cdot h_2 \]

\[\frac{dL}{dc_2} = \frac{dL}{d_0} \cdot \frac{d_0}{dh_2} \cdot \frac{dh_2}{da} \cdot \frac{da}{dc_2} = -(y_o) \cdot w_0 \cdot (1-h_2^2) \cdot w_e \]

\[\frac{dL}{dw_e} \text{ and } \frac{dL}{dw_h} \text{ are trickier b/c they are used at multiple timesteps in the network} \]

\[\text{by backprop thru time allows us to compute these by summing contributions from diff. time steps} \]

\[\frac{dL}{dw_e} = \frac{dL}{d_0} \cdot \frac{d_0}{dh_2} \cdot \frac{dh_2}{da} \cdot \frac{da}{dw_e} + \frac{dL}{d_0} \cdot \frac{d_0}{dh_2} \cdot \frac{dh_2}{da} \cdot \frac{da}{dh_i} \cdot \frac{dh_i}{db} \cdot \frac{db}{dw_e} \]

we can accumulate these \(\frac{dL}{dw_e} \) as we step back thru time

\[\text{Vanishing gradient problem: these gradient contributions from faraway steps go to zero} \]