Transformers and sequence-to-sequence learning

CS 685, Spring 2022

Mohit Iyyer
College of Information and Computer Sciences
University of Massachusetts Amherst

some slides from Emma Strubell
From last time

• Project proposals due Friday 2/18

• Quiz 1 due Monday 2/21
sequence-to-sequence learning

Used when inputs and outputs are both sequences of words (e.g., machine translation, summarization)

• we’ll use French \((f) \) to English \((e) \) as a running example

• **goal**: given French sentence \(f \) with tokens \(f_1, f_2, \ldots, f_n \) produce English translation \(e \) with tokens \(e_1, e_2, \ldots, e_m \)

• **real goal**: compute \(\arg \max_e p(e \mid f) \)
This is an instance of conditional language modeling

\[p(e | f) = p(e_1, e_2, \ldots, e_m | f) \]
\[= p(e_1 | f) \cdot p(e_2 | e_1, f) \cdot p(e_3 | e_2, e_1, f) \cdot \ldots \]
\[= \prod_{i=1}^{m} p(e_i | e_1, \ldots, e_{i-1}, f) \]

Just like we’ve seen before, except we additionally condition our prediction of the next word on some other input (here, the French sentence)
seq2seq models

• use two different neural networks to model
 \[
 \prod_{i=1}^{L} p(e_i | e_1, \ldots, e_{i-1}, f)
 \]

• first we have the encoder, which encodes the French sentence \(f \)

• then, we have the decoder, which produces the English sentence \(e \)
iPad
Introduce seq2seq on iPad too
So far we’ve just talked about self-attention… what is all this other stuff?
Self-attention (in encoder)

[Vaswani et al. 2017]
Self-attention (in encoder)

\[Q, K, V\]

Layer p

Nobel committee awards Strickland who advanced optics

[Slides by Emma Strubell! Vaswani et al. 2017]
Self-attention (in encoder)

Slides by Emma Strubell!

[Vaswani et al. 2017]
Self-attention (in encoder)

[Slides by Emma Strubell!]

[Vaswani et al. 2017]
Self-attention (in encoder)

Layer p

- Nobel
- committee
- awards
- Strickland
- who
- advanced
- optics

V

K

Q

A

optics
advanced
who
Strickland
awards
committee
Nobel

[Vaswani et al. 2017]
Self-attention (in encoder)

[Vaswani et al. 2017]

Slides by Emma Strubell!
Slides by Emma Strubell!

Self-attention (in encoder)

\[M \]

\[\text{optics} \]

\[\text{advanced} \]

\[\text{who} \]

\[\text{Strickland} \]

\[\text{awards} \]

\[\text{committee} \]

\[\text{Nobel} \]

\[A \]

\[\text{Q} \]

\[\text{K} \]

\[\text{V} \]

\[\text{Layer } p \]

\[\text{Nobel} \]

\[\text{committee} \]

\[\text{awards} \]

\[\text{Strickland} \]

\[\text{who} \]

\[\text{advanced} \]

\[\text{optics} \]

[Vaswani et al. 2017]
Self-attention (in encoder)

[M] Q K V

optics advanced who Strickland awards committee Nobel

A

Q K V

Layer p

Nobel committee awards Strickland who advanced optics

[211x691] Self-attention (in encoder)

Slides by Emma Strubell!

[Vaswani et al. 2017]
Multi-head self-attention

Multi-head self-attention is introduced in [Vaswani et al. 2017]. It uses multiple "heads" to compute self-attention for different parts of the inputsequence. Each head processes a different subset of the input, allowing the model to focus on different aspects of the data. The attention is computed over the query (Q), key (K), and value (V) matrices, with each corresponding to a head. The output of each head is then combined to produce the final output for that layer.
Multi-head self-attention
Multi-head self-attention

[Vaswani et al. 2017]
Multi-head self-attention

Layer 1

Layer p

Layer J

Multi-head self-attention + feed forward

Nobel committee awards Strickland who advanced optics

[Vaswani et al. 2017]
Position embeddings are *added* to each word embedding. Otherwise, since we have no recurrence, our model is unaware of the position of a word in the sequence!
Residual connections, which mean that we add the input to a particular block to its output, help improve gradient flow.
A feed-forward layer on top of the attention-weighted averaged value vectors allows us to add more parameters / nonlinearity.
We stack as many of these Transformer blocks on top of each other as we can (bigger models are generally better given enough data!)
Moving onto the decoder, which takes in English sequences that have been shifted to the right (e.g., \texttt{<START>} \textit{schools opened their})
We first have an instance of *masked self attention*. Since the decoder is responsible for predicting the English words, we need to apply masking as we saw before.
We first have an instance of **masked self attention**. Since the decoder is responsible for predicting the English words, we need to apply masking as we saw before. Why don’t we do masked self-attention in the encoder?
Now, we have cross attention, which connects the decoder to the encoder by enabling it to attend over the encoder’s final hidden states.
After stacking a bunch of these decoder blocks, we finally have our familiar Softmax layer to predict the next English word.
Positional encoding

EMBEDDING WITH TIME SIGNAL

POSITIONAL ENCODING

EMBEDDINGS

INPUT

x₁ = t₁ + x₁

x₂ = t₂ + x₂

x₃ = t₃ + x₃

Je

suis

étudiant
Creating positional encodings?

- We could just concatenate a fixed value to each time step (e.g., 1, 2, 3, ... 1000) that corresponds to its position, but then what happens if we get a sequence with 5000 words at test time?

- We want something that can generalize to arbitrary sequence lengths. We also may want to make attending to relative positions (e.g., tokens in a local window to the current token) easier.

- Distance between two positions should be consistent with variable-length inputs
Intuitive example

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Transformer positional encoding

\[PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{2i/d_{model}}}\right) \]

\[PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{2i/d_{model}}}\right) \]

Positional encoding is a 512d vector

\(i \) = a particular dimension of this vector

\(pos \) = dimension of the word

\(d_{model} = 512 \)
What does this look like?
(each row is the pos. emb. of a 50-word sentence)

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
Despite the intuitive flaws, many models these days use *learned positional embeddings* (i.e., they cannot generalize to longer sequences, but this isn’t a big deal for their use cases)
Hacks to make Transformers work
Optimizer

We used the Adam optimizer (cite) with $\beta_1 = 0.9$, $\beta_2 = 0.98$ and $\epsilon = 10^{-9}$. We varied the learning rate over the course of training, according to the formula: $\text{lrate} = d_{\text{model}}^{-0.5} \cdot \min(\text{step_num}^{-0.5}, \text{step_num} \cdot \text{warmup_steps}^{-1.5})$. This corresponds to increasing the learning rate linearly for the first warmup_steps training steps, and decreasing it thereafter proportionally to the inverse square root of the step number. We used $\text{warmup_steps} = 4000$.

Note: This part is very important. Need to train with this setup of the model.
Label Smoothing

During training, we employed label smoothing of value $\epsilon_{ls} = 0.1$ (cite). This hurts perplexity, as the model learns to be more unsure, but improves accuracy and BLEU score.

We implement label smoothing using the KL div loss. Instead of using a one-hot target distribution, we create a distribution that has confidence of the correct word and the rest of the smoothing mass distributed throughout the vocabulary.

I went to class and took ___

cats TV notes took sofa

0 0 1 0 0 0

0.025 0.025 0.9 0.025 0.025 0.025

with label smoothing
Get penalized for overconfidence!

Loss

Target word confidence
Why these decisions?

Unsatisfying answer: they empirically worked well.

Neural architecture search finds even better Transformer variants:

Primer: Searching for efficient Transformer architectures… So et al., Sep. 2021
OpenAI’s Transformer LMs

- **GPT (Jun 2018):** 117 million parameters, trained on 13GB of data (~1 billion tokens)
- **GPT2 (Feb 2019):** 1.5 billion parameters, trained on 40GB of data
- **GPT3 (July 2020):** 175 billion parameters, ~500GB data (300 billion tokens)
Coming up!

- Transfer learning via Transformer models like BERT
- Tokenization (word vs subword vs character/byte)
- Prompt-based learning
- Efficient / long-range Transformers
- Downstream tasks