Transformer configuration

Decoder:

\rightarrow masked MH-SA

[Diagram of masked MH-SA]

Prefix LM:

[Diagram of partially masked MH-SA]

- p_1: complete
- p_2: sins
- p_3: phrase

- c_1: students
- c_2: opened
- c_3: their

Token we want to generate

Useful for text generation
Encoder:

- Students opened their books

- Useful for computing representations of a sequence of text that can then be used in other applications

- Cannot generate text!

- Ex: BERT, RoBERTa, ELECTRA
Encoder / Decoder model:
(sequence-to-sequence model)

Cross-attention always uses the representations from the final layer of the encoder.
1. Pretraining
 - Self-supervised objective
 - Language modeling
 - Use as much data as you can find
 - Biggest model you can afford
 - Goal: a model that understands many linguistic properties
 - Grammar
 - World knowledge
 - "The President of the USA is ---"
 - "Emergent properties"
 - We aren't focusing on a specific task or application

2. Fine-tuning
 - Smaller labeled dataset corresponding to a single task/domain of interest
 - Goal: maximize perf on this task/domain
 - Parameter adaptation
 - Parameter-efficient adaptation
Step 1: Pretraining:

Randomly initialized Transformer decoder $\xrightarrow{\text{train on}}$ pre-trained Transformer decoder $\xrightarrow{\text{transfer learning}}$

Step 2: Fine-tuning:

Pre-trained Transformer decoder $\xrightarrow{\text{train on}}$ small task/domain specific dataset \Rightarrow Finetuned Transformer decoder specialized for our task
BERT:

→ example of the encoder paradigm
→ pretraining
→ masked LM
→ fine-tuning
→ adapt to "downstream" task

Pretraining BERT:

```
[MASK] their book

15%

→ usually 15% of tokens are masked

→ not good for text generation
```