Position embeddings in Transformers:

- Without some explicit injection of position info, self-attention doesn't have any notion of order

Students opened their books

\[\text{additive pos. embs} \]
\[\text{absolute pos. embs} \]

absolute vs. relative pos embs

\[\text{represent every pair of tokens in the input} \]

\[q_{\text{students}} = W_q \cdot (c_{\text{students}} + p_1) \]

relative position embs:

- Generally cannot be added directly to input embs (RoPE is an exception)
- Instead directly modify the attn matrix
ALibi: $q_{\text{students}} = f(W_q \cdot C_{\text{students}})$

$k_{\text{books}} = f(W_k \cdot C_{\text{books}})$

\Rightarrow intuitively, words that are closer together have a higher dot product

\Rightarrow ALibi enables extrapolation beyond the training seq length

\Rightarrow position info is only affecting q, k, but not v

Rotary position embs (RoPE)

- enables relative pos. embs without modifying the attn matrix like ALibi

- instead of adding pos. emb, we actually rotate the q,k vectors via matrix/vector product w/ a rotation matrix
goal: dot product of rotated q, k
\((q^T k) \) should be a function of
relative position only, not abs. pos.

ex.
\(c_1, c_2, c_3, c_4 \)
students opened their books

we want to compute \(q_4 \cdot k_1 \)

\(\text{RPE: find } f_q, f_k | g \) such that

\[
\begin{align*}
 f_q (c_{\text{books}}, 4) &= q_4 \\
 f_k (c_{\text{students}}, 1) &= k_1
\end{align*}
\]

\(q_4 \cdot k_1 = g (c_{\text{books}}, c_{\text{students}}, 3) \)
\(\Leftrightarrow q_4, k_1 \)

\(\implies \) this can be accomplished by
rotating \(W_q \) \& \(W_k \) by diff. angles

\[
\begin{align*}
 f_q (c_{\text{books}}, 4) &= R_{\theta_q, 4} \cdot W_q c_{\text{books}} \\
 f_k (c_{\text{students}}, 1) &= R_{\theta_k, 1} \cdot W_k c_{\text{students}} \\
 q &= q^T k
\end{align*}
\]
\[R_{\theta, it} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \]

where \(\theta \) is hyperparameter