Parameter-efficient fine-tuning (PEFT)

- High-level: we want to avoid modifying most of the pretrained model’s parameters during fine-tuning.

- Prompting: requires adjusting zero params to solve a downstream task.

What is the sentiment of the below sentence? Answer w/ either “pos” or “neg”.
Input sentence:
Output: pos

- Prompt engineering

- Limitations:
 - Hard to solve very complex reasoning/understanding tasks
 - Requirements for the pretrained model are immense
 - Huge-scale pretraining
 - High quality large scale instruction tuning
 - RLHF requires access to very expensive human proof datasets
Review of full model finetuning:

- Input:
 - Pretrained decoder
 - This movie is good (EOS)

Predict positive

Prompt tuning (Lester et al., 2022)

- Input:
 - Pretrained decoder
 - This movie is good

Predict positive

Update: keep all pretrained params frozen,
only do

\[
e_1_{\text{new}} = e_1_{\text{old}} - \eta \frac{dl}{de_1},
\]

\[
e_2_{\text{new}} = \ldots
\]
LoRA (low-rank adaptation):

\[h \approx f(Wx) \frac{dL}{dW} \]

\(W \) is an \(m \times n \) matrix
\(\frac{dL}{dW} \) is also \(m \times n \)

\[W_{\text{new}} = W_{\text{old}} - h \frac{dL}{dW} \]

having two low-rank matrices \(A \) and \(B \)

\(r = \text{rank parameter} \)
\(\text{want } r \ll cccccc m, n \)

product \(AB^T \), \(m \times n \)

in LoRA:

\[h = f((W_{\text{old}} + AB^T)x) \]
we compute \(\frac{dl}{dA} \) and \(\frac{dl}{dB} \), much smaller than \(\frac{dl}{dw} \).

At the end of LoRA fine-tuning, we have a separate \(A, B \) for each tuned weight matrix.

\[
W_{\text{new}} = W_{\text{LoRA}} AB^T \quad f(W_{\text{new}} x)
\]

\(\text{QLoRA: quantized LoRA} \)

normal models: FP32

\(\downarrow \)

4 bit, 8 bit integer quantization