Topics to study!

Language models
- n-gram [unigram, bigram, etc]
- perplexity

"Simple" neural LMs
- fixed-window neural LM
 - concat [word embs] \rightarrow \text{type/token}
 - linear layers \rightarrow h = Wx
 - weight matrix
 - f = Relu
- Softmax
 - used in output layer to get \(p(w_i|w_{i-1}) \)
 - used in self-attn

Transformer LMs
- self attention
 - query/key/value
 - multi-head self-attn
 - KV caching
 - masking during training
- position embeddings
 - learned vs. fixed
 - absolute vs. relative
- AliBi
 - add linear bias to attn matrix
 - no additive embedding
- RoPE
 - rotate Q, K
 - no additive embs

- Transformer configurations:
 - decoder vs. encoder vs. encoder-decoder
 - decoders predict the next word
 - masked self-attn
 - “prefix LM” where prompt is unmasked
 - encoders compute representations of the entire input text
 - unmasked self-attn
 - cannot generate text
 - encoder/decoder models separate the input/prompt from generated output
 - cross-attn uses queries from decoder and K/V from encoder
 - residual connections needed in decoder to include both encoder values
Training neural LMs:
- gradient descent
- backpropagation
 - chain rule + caching derivatives
- cross-entropy loss
- batching
- tokenization of inputs/outputs
 - BPE for subwords
- PyTorch implementation of Transformer and training loop (HW 2)

Transfer learning (pretraining \Rightarrow fine-tuning)
- fine-tuning (SFT)
 - needs labeled dataset for a downstream task (e.g., sentiment)
 - much smaller than pretraining data
 - same loss as pretraining: cross-entropy on target outputs
- Parameter-efficient adaptation
 - LoRA/prompt tuning
 - reduce number of params that are modified vs. SFT
Decoding from LMs:
- how to generate text at test-time
- greedy vs. beam search
- nucleus sampling vs. ancestral sampling
 - effect of "p" in nucleus sampling

Aligning LMs:

3 stages of RLHF:

1. instruction tuning
 - SFT on instruction-following data
 - PLAN

2. reward model training on
 human pref judgments
 - Bradley-Terry pref. model

3. objective:
\[
\max_{\pi} \mathbb{E}_{x,y} \left[r(x,y) - \beta D_{KL}(\pi(\cdot|x) \| \text{Pref}(\cdot|x)) \right]
\]

- requires rollouts from policy model \(\pi \)
 - "rollouts" are generations

\[\text{Reward of output } y \text{ given input } x \]
\[\text{KL penalty to prevent deviations from } \text{Pref} \]
given an instruction x, we sample a y using a decoding algo
- optimize objective using PPO

- "Best-of-n" sampling
 - instead of stage 3, just sample multiple y's from the LM and rerank them w/ reward model

- DPO (direct pref optimization)
 - no explicit reward model
 - no rollouts

 high-level derivation:

 1. express reward model in terms of optimal policy π^*

 \[r(x, y) = \beta \log \frac{\pi^*(y|x)}{\pi_{ref}(y|x)} + \beta \log Z \]

 \[\uparrow \text{normalizes inverteable to compute} \]

 2. plug into Bradley-Terry model

 \[P(y_w > y_2 | x) = \frac{\exp(r(x, y_w))}{\exp(r(x, y_w)) + \exp(r(x, y_2))} \]
3. convert to loss fn

$$L_{\text{opo}} \left(\pi, \pi_{\text{ref}} \right) = -E \log \left(\beta \log \frac{\pi(y|w,x)}{\pi_{\text{ref}}(y|w,x)} \right)$$

- allows us to simply fine-tune over human prefs with modified loss fn

- LLM-based feedback
- constitutional AI

Prompting

- zero-shot vs. few-shot
 - few-shot uses "demonstrations" of x,y pairs
 - chain of thought
 - retrieval

Scaling

- Chinchilla
 - importance of data size vs. model size vs. total compute (FLOPS)
 - small models don't exhibit properties such as few-shot learning/inspection following
Evaluation
- Perplexity
- BLEU / ROUGE (word matching)
- BLEURT / COMET
 - fine-tune encoder on human judgments
- LLM-based eval
 - GPT-Eval, Fact Score
- human eval (e.g. HW 2)