Recurrent neural network:

\[h_n = f(W_h h_{n-1} + W_c c_n) \]

RNN gradient \(\Rightarrow \) "backpropagation thru time"

\[L_3 = -\log P(\text{books} | \text{students opened their}) \]
\[L_2 = -\log P(\text{their} | \text{students opened}) \]
\[L_1 = -\log P(\text{opened} | \text{students}) \]

\[L = \frac{L_1 + L_2 + L_3}{3} \]

average neg. log likelihood of the ground-truth next word over all tokens in the batch

batch:
1. students opened their books
2. people walked their dog
3. the classroom fell silent
Issues w/ RNNs:

1. "bottleneck"
 - Ray Mooney, 2014
 "you can’t represent the meaning of a sentence in a BLEEPING vector."

2. lack of parallelism across timesteps
 - I can only compute h_n after computing h_{n-1}

Attention mechanism:

history: - developed initially for RNNs and for machine translation
 - Bahdanau, Cho et al, 2014
 - Vaswani et al. 2017 dropped the "recurrent" aspect and created a fully attention-based architecture
 - Transformer
 - for machine translation
 - introduced by Google
 - hidden state at each timestep is independent of $h_1...n-1$
Self-attention:

computation of hidden state at timestep 3:

\[h_3 = 0.3v_1 + 0.5v_2 + 0.2v_3 \]

\[\text{softmax} \]

\[\text{predict "books"} \]

\[\text{attn scores: } \langle q_3 \cdot k_1, q_3 \cdot k_2, q_3 \cdot k_3 \rangle \]

Query: \(q_1 = f(W_q c_1) \), \(q_2 = f(W_q c_2) \)

Key: \(k_1 = f(W_k c_1) \)

Value: \(v_1 = f(W_v c_1) \)

\(W_q, W_k, W_v \) are randomly initialized parameters learned during training!
computations at second time step:

\[h_2 = 0.3 \cdot v_1 + 0.7 \cdot v_2 \]

\[\text{Softmax} \rightarrow \text{predict layer} \]

\[\text{attn: Softmax}(q_2 \cdot k_1, q_2 \cdot k_2) \]

no dependencies between \(h_1, h_2, h_3 \)

\[\Rightarrow \text{parallelize} \]

\[\Rightarrow \text{reduce bottleneck} \]
how to parallelize:

\[f_1, f_2, f_3 \quad k_1, k_2, k_3 \]

Attention vectors

\[a_1 = \langle q_1, k_1 \rangle \]
\[a_2 = \langle q_2 k_1, q_2 k_2 \rangle \]
\[a_3 = \langle q_3 k_1, q_3 k_2, q_3 k_3 \rangle \]

\[f_1 \quad f_2 \quad f_3 \]
\[k_1 \quad k_2 \quad k_3 \]

These cells have info about the future, we need to mask.

Softmax

\[\begin{pmatrix}
 f_1 \\
 f_2 \\
 f_3
\end{pmatrix}
\]

\[\begin{pmatrix}
 1 & -\infty & -\infty \\
 1 & 1 & -\infty \\
 1 & 1 & 1
\end{pmatrix}
\]

Attention scores

\[\begin{pmatrix}
 k_1 \\
 k_2 \\
 k_3
\end{pmatrix}
\]
\[\begin{pmatrix}
 v_1 \\
 v_2 \\
 v_3
\end{pmatrix}
\]

=

\[\begin{pmatrix}
 h_1 \\
 h_2 \\
 h_3
\end{pmatrix} \]