
CS685 Homework 2: Implementing a Transformer (Due April 8th)

Goals: The primary goal of this assignment is to give you hands-on experience implementing
a Transformer encoder. Understanding how these neural models work and building one from
scratch will help you understand not just language modeling, but also systems for many other
applications such as machine translation.

Installation

• The list of installed packages in the autograder is: numpy, nltk, spacy, torch, scipy,
matplotlib, torchvision.

• Please use Python 3.5+ and a recent version of PyTorch for this project. You should follow the
instructions at https://pytorch.org/get-started/locally/ to install PyTorch on your machine.
The assignment is small-scale enough to complete using CPU only, so don’t worry about
installing CUDA and getting GPU support working unless you want to.

• Installing via Anaconda is typically easiest, especially if you are on OS X, where the system
Python has some weird package versions. Installing in a virtual environment is recommended
but not essential.

Dataset and Code

Data The dataset for this homework is derived from the text8 collection, which comes from
Wikipedia. Your method will use character-level tokenization and operate over text8 sequences
that are each exactly 20 characters long. Only 27 character types are present (lowercase characters
and spaces); special characters are replaced by a single space and numbers are spelled out as
individual digits (50 becomes five zero).

Framework code: The framework code you are given consists of several files. We will describe
these in the following sections. utils.py implements an Indexer class, which can be used to
maintain a bijective mapping between indices and features (strings). letter_counting.py
contains the driver code, which imports transformer.py, the file you will be editing for this
assignment.

Building a Transformer Encoder

You will implement a simplified Transformer (missing components like layer normalization and
multi-head attention) from scratch for a simple task. Given a string of characters, your task is to
predict, for each position in the string, how many times the character at that position occurred
previously, maxing out at 2. This is a 3-class classification task (with labels 0, 1, or > 2, which
we’ll just denote as 2). This task is easy with a rule-based system, but it is not so easy for a model
to learn. However, Transformers are ideally set up to be able to “look back” with self-attention to
count occurrences in the context. Below is an example string (which ends in a trailing space) and
its corresponding labels:

i like movies a lot
00010010002102021102

We also present a modified version of this task that counts both occurrences of letters before and
after in the sequence:

1

https://pytorch.org/get-started/locally/
http://mattmahoney.net/dc


i like movies a lot
22120120102102021102

Note that every letter of the same type always receives the same label, no matter where it is in
the sentence in this version. Adding the -task BEFOREAFTER flag will run this second version;
default is the first version.
lettercounting-train.txt and lettercounting-dev.txt both contain character

strings of length 20. You can assume that your model will always see 20 characters as input
and make a prediction at each position in the sequence.

Getting started Run:

python letter_counting.py --task BEFOREAFTER
python letter_counting.py --task BEFORE

This loads the data but will fail out because the Transformer hasn’t been implemented yet. (We
didn’t bother to include a rule-based implementation because it will always just get 100%.)

Implementation Implement Transformer and TransformerLayer. You should identify the num-
ber of other letters of the same type in the sequence. This will require implementing both Trans-
former and TransformerLayer, as well as training in train_classifier.

Your solutions should not use nn.TransformerEncoder, nn.TransformerDecoder, or
any other off-the-shelf self-attention layers. You can use nn.Linear, nn.Embedding, and Py-
Torch’s provided nonlinearities / loss functions to implement Transformers from scratch.

TransformerLayer This layer should contain the following components in order:

1. self-attention (single-headed is fine; you can use either masked or unmasked attention)

2. residual connection

3. two linear layers, the first with a non-linearity (e.g., ReLU)

4. final residual connection

You do not need to implement layer normalization (a component of the Transformer which we did
not discuss in class) for this assignment. Because this task is relatively simple, you don’t need a
very well-tuned architecture to make this work. You will implement all of these components from
scratch.

You will want to form queries, keys, and values matrices with linear layers, then use the queries
and keys to compute attention over the sentence, then combine with the values. You’ll want to
use matmul for this purpose, and you may need to transpose matrices as well. Double-check your
dimensions and make sure everything is happening over the correct dimension. Furthermore,
dividing your dot products by

√
dk as in Vaswani et al. (2017)’s attention paper may help stabilize

and improve training.

PositionalEncoding We provide a PositionalEncoding module that initializes a
nn.Embedding layer and embeds the index of each character1 We intend that you to add

1The drawback of this in general is that your Transformer cannot generalizes to longer sequences at test time, but
this is not a problem here where all of the train and test examples are the same length. If you want, you can explore the
sinusoidal embedding scheme from Attention Is All You Need (Vaswani et al., 2017), but this is a bit more finicky to get
working.

2



these position embeddings to the character embeddings when building the full Transformer
in the next step. To be clear, if the input sequence is the, then the embedding of the first
token would be embedchar(t) + embedpos(0), and the embedding of the second token would be
embedchar(h) + embedpos(1).

Transformer Building the Transformer will involve: (1) adding positional encodings to the input
(see the PositionalEncoding class); (2) using one or more of your TransformerLayers; and
(3) using Linear and softmax layers to make the prediction. You will simultaneously be making
predictions over each position in the sequence. Your network should return the log probabilities
at the output layer (a 20x3 matrix) as well as the attentions you compute, which are then plotted
for you for visualization purposes in plots/.

Training A skeleton for training is provided in train_classifier. We have already formed
input/output tensors inside LetterCountingExample, so you can use these as your inputs
and outputs. Note that you will need to make simultaneous predictions at all time steps and
accumulate losses over all of them simultaneously. NLLLoss can help with computing a “bulk”
loss over the entire sequence.

Grading Your final implementation should get over 90% accuracy on both the BEFOREAFTER
and BEFORE tasks. If your implementation achieves below 90% on either task, you will lose 2
points for each absolute percentage point below 90%. For example, if you get 88% on BEFORE-
AFTER and 80% on BEFORE, your homework score will be 76/100. Our reference implementation
achieves over 98% accuracy on both tasks in 5-10 epochs of training. It takes about 20 seconds per
epoch using 1-2 single-head Transformer layers (there is some variance and it can depend on ini-
tialization). Also note that the autograder trains your model on an additional task as well., so
do not hardcode anything about these labels (or attempt to cheat by returning the correct answer
by directly counting letters yourself). Any Transformer-based implementation that works for BE-
FORE and BEFOREAFTER will also work for the hidden task.

Debugging Tips As always, make sure you can overfit a very small training set as an initial test,
inspecting the loss of the training set at each epoch. You will need your learning rate set carefully
to let your model train. Even with a good learning rate, it will take longer to overfit data with
this model than with others we’ve explored! Then scale up to train on more data and check the
development performance of your model. Calling decode inside the training loop and looking
at the attention visualizations can help you reason about what your model is learning and see
whether its predictions are becoming more accurate or not.

If everything is stuck around 70%, you may not be successfully training your layers, which can
happen if you attempt to initialize layers inside a Python list; these layers will not be “detected”
by PyTorch and their weights will not be updated during learning.

Consider using small values for hyperparameters so things train quickly. In particular, with
only 27 characters, you can get away with small embedding sizes for these, and small hidden
sizes for the Transformer (100 or less) may work better than you think!

Exploration (optional, you do not need to submit anything for these questions)

1. Look at the attention masks produced. What is the model doing? Does it match your expec-
tations?

2. Try using more Transformer layers (3-4). Do all of the attention masks fit the pattern you
expect?

3

https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html


Deliverables and Submission

You will need to upload two files to Gradescope to receive full credit for this assignment:
transformer.py and the AI disclosure ai_disclosure.txt. Make sure that the following
command works before you submit:

python letter_counting.py

Your AI disclosure should be formatted as specified in the Academic Honesty section below.

Academic Honesty

• We run automatic checks of Python files for plagiarism. Copying code from others is consid-
ered a serious case of cheating.

• There is no penalty for using AI assistance on this homework as long as you submit AI disclo-
sure (this includes storing any prompts that you feed to large language models). That said,
anyone caught using AI assistance without proper disclosure will receive a zero on the as-
signment (we have several automatic tools to detect such cases). We’re literally allowing you
to use it with no limitations, so there is no reason to lie!

• When submitting your solution to Gradescope, please include a text file (ai_disclosure.txt)
together with the Python code. The file should contain answers to the following questions:

1. Did you use any AI assistance to complete this homework? If so, please also specify what
AI you used.

2. If you used a large language model to assist you, please paste all of the prompts that
you used below. Add a separate bullet for each prompt, and specify which problem is
associated with which prompt.

3. Free response: For each problem for which you used assistance, describe your overall
experience with the AI. How helpful was it? Did it just directly give you a good answer,
or did you have to edit it? Was its output ever obviously wrong or irrelevant? Did you
use it to get the answer or check your own answer?

Acknowledgment

This homework is adapted from CS388: Natural Language Processing, taught by Greg Durrett at
the University of Texas at Austin.

References

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All You Need. In arXiv.

4


