
dependency parsing
CS 585, Fall 2018

Introduction to Natural Language Processing

http://people.cs.umass.edu/~miyyer/cs585/

Mohit Iyyer

College of Information and Computer Sciences

University of Massachusetts Amherst

many slides from Marine Carpuat & Brendan O’Connor

http://people.cs.umass.edu/~miyyer/cs585/

questions from last time…
• can you “misplace” the midterms and give us

a retest?
• no
• we’ll apply a curve when computing final grades,

so don’t worry too much! unless you totally bombed it :(
• HW 3?

• last HW (we’ll merge HWs 3 and 4)!
• will be due after Thanksgiving and have an extra

credit component
• more time to work on your projects

• thus, i expect a significant amount of work to
go into the progress reports (due nov 16)!

 2

more stuff

• Mohit out Thursday, guest lecture by Abe
Handler (NLP PhD student)

• will be helpful for your projects!
• No instructor office hours this Friday
• what topics do you want to see covered

towards the end of the class?
• suggest things using the anonymous form

or piazza or in person or whatever

 3

 4

Dependency Grammars
• Syntactic structure = lexical items linked by binary asymmetrical

relations called dependencies

 5

Dependency Relations

 6

 7

Example Dependency Parse

They hid the letter on the shelf

Compare with constituent parse… What’s the relation?

Projectivity

In projective dependency parsing, there are no crossing edges.
I Crossing edges are rare in English:

She ate a pizza yesterday which was vegetarian

I They are more common in other languages, like Czech:2

2figure from (Nivre 2007) [Example: Jacob Eisenstein]

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Projectivity

In projective dependency parsing, there are no crossing edges.
I Crossing edges are rare in English:

She ate a pizza yesterday which was vegetarian

I They are more common in other languages, like Czech:2

2figure from (Nivre 2007) [Example: Jacob Eisenstein]

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Projectivity

 10

12.1. DEPENDENCY GRAMMAR 225

Abigail and Max like kimchi

(a) The leftmost coordinated
item is the head.

Abigail and Max like kimchi

(b) The coordinating conjunc-
tion is the head.

Abigail and Max like kimchi

and

(c) The coordinating conjunction
is “collapsed” out.

Figure 12.4: Three alternatives for representing coordination in a dependency parse

% non-projective edges % non-projective sentences

Czech 1.86% 22.42%
English 0.39% 7.63%
German 2.33% 28.19%

Table 12.1: Frequency of non-projective dependencies in three languages (Kuhlmann and
Nivre, 2010)

is again a possible solution: we can collapse out the prepositions so that the dependency
chain,

President !
prep

of !
pobj

Mexico

would be replaced by President !
PREP :of

Mexico.

Projectivity

The dependency graphs that can be built from all possible lexicalized constituent parses of
a sentence with M words are a proper subset of the spanning trees over M nodes. In other
words, there exist spanning trees that do not correspond to any lexicalized constituent
parse. This is because syntactic constituents are contiguous spans of text, so that the head
h of the constituent that spans the nodes from i to j must have a path to every node in this
span. This property is known as projectivity. Informally, it means that “crossing edges”
are prohibited. The formal definition follows:

Definition 2 (Projectivity). An edge from i to j is projective iff all k between i and j are descen-
dants of i. A dependency parse is projective iff all its edges are projective.

If we were to annotate a dependency parse directly — rather than deriving it from a
lexicalized constituent parse — such non-projective edges would occur. Figure 12.5 gives
an example of a non-projective dependency graph in English. This dependency graph
does not correspond to any constituent parse. In languages where non-projectivity is

(c) Jacob Eisenstein 2014-2017. Work in progress.

[Example: Jacob Eisenstein]

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

 11

Dependency formalisms
• Most general form: a graph G = (V,A)

• V vertices: usually one per word in sentence
• A arcs (set of ordered pairs of vertices): head-dependent relations between

elements in V
• Restricting to trees provide computational advantages

• Single designated ROOT node that has no incoming arcs
• Except for ROOT, each vertex has exactly one incoming arc
• Unique path from ROOT to each vertex in V

• Each word has a single head
• Dependency structure is connected
• There is a single root node from which there is a unique path to each word

 12

Data-driven dependency parsing

Goal: learn a good predictor of dependency graphs
Input: sentence
Output: dependency graph/tree G = (V,A)

Can be framed as a structured prediction task
- very large output space
- with interdependent labels

2 dominant approaches: transition-based parsing and graph-based
parsing

 13

Transition-based dependency parsing

• Builds on shift-reduce parsing
[Aho & Ullman, 1927]

• Configuration
• Stack
• Input buffer of words
• Set of dependency relations

• Goal of parsing
• find a final configuration where
• all words accounted for
• Relations form dependency tree

 14

Transition operators

• Transitions: produce a new
configuration given current
configuration

• Parsing is the task of
• Finding a sequence of transitions
• That leads from start state to

desired goal state

• Start state
• Stack initialized with ROOT node
• Input buffer initialized with words

in sentence
• Dependency relation set = empty

• End state
• Stack and word lists are empty
• Set of dependency relations = final

parse

 15

Arc Standard Transition System
• Defines 3 transition operators [Covington, 2001; Nivre 2003]
• LEFT-ARC:

• create head-dependent rel. between word at top of stack and 2nd word (under
top)

• remove 2nd word from stack
• RIGHT-ARC:

• Create head-dependent rel. between word on 2nd word on stack and word on
top

• Remove word at top of stack
• SHIFT

• Remove word at head of input buffer
• Push it on the stack

 16

Arc standard transition systems
• Preconditions

• ROOT cannot have incoming arcs
• LEFT-ARC cannot be applied when ROOT is the 2nd element in stack
• LEFT-ARC and RIGHT-ARC require 2 elements in stack to be applied

 17

Transition-based Dependency Parser

• Assume an oracle

• Parsing complexity
• Linear in sentence

length!

• Greedy algorithm
• Unlike Viterbi for POS

tagging

example:
book me the morning flight

 18

 19

Where do we get an oracle???

 20

Where do we get an oracle???

we have treebanks annotated with dependencies…

 21

Where do we get an oracle???

we have treebanks annotated with dependencies…

We can treat finding the correct action as a multi-class
classification problem!

input: current parser state (stack / buffer / prev actions)
output: ground-truth action from converted treebank

 22

Where do we get an oracle???

we have treebanks annotated with dependencies…

We can treat finding the correct action as a multi-class
classification problem!

input: current parser state (stack / buffer / prev actions)
output: ground-truth action from converted treebank

How many possible actions are there?

 23

Where do we get an oracle???

we have treebanks annotated with dependencies…

We can treat finding the correct action as a multi-class
classification problem!

input: current parser state (stack / buffer / prev actions)
output: ground-truth action from converted treebank

How many possible actions are there?
shift

right-arc(X)
left-arc(X)

X is any dependency relation!!!

 24

Generating Training Examples

• What we have in a treebank • What we need to train an oracle
• Pairs of configurations and

predicted parsing action

 25

Features

• Configuration consist of stack, buffer, current set of relations

• Typical features
• Features focus on top level of stack
• Use word forms, POS, and their location in stack and buffer

 26

Features example

• Given configuration • Example of useful features

what kind of model can take
features like these as input?

can we use a neural network
for this task? how?

Dependency parsing in action

Dependency parsing is used in many real-world applications,
like question answering (Cui et al, 2005):

What % of the nation’s cheese does Wisconsin produce?

In Wisconsin, where farmers produce 28 % of the nation’s cheese, . . .

[Example: Jacob Eisenstein]

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Dependency parsing in action

Dependency parsing is used in many real-world applications,
like question answering (Cui et al, 2005):

What % of the nation’s cheese does Wisconsin produce?

In Wisconsin, where farmers produce 28 % of the nation’s cheese, . . .

[Example: Jacob Eisenstein]

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Dependency parsing in action

Dependency parsing is used in many real-world applications,
like question answering (Cui et al, 2005):

What % of the nation’s cheese does Wisconsin produce?

In Wisconsin, where farmers produce 28 % of the nation’s cheese, . . .

[Example: Jacob Eisenstein]

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Dependency parsing in action

Question answering works by searching for statements which
match well against the query.

I In the surface form of the question, produce and % are six
words apart.

I But in the dependency parse, they’re adjacent.

What % of the nation’s cheese does Wisconsin produce?

[Example: Jacob Eisenstein]

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Constits -> Deps

• Every phrase has a head word. It dominates all other
words of that phrase in the dep. graph.

• Head rules: for every nonterminal in tree, choose one of
its children to be its “head”. This will define head words.

• Every nonterminal type has a different head rule;  
e.g. from Collins (1997):

 31

• If parent is NP,

• Search from right-to-left for first child that’s NN,
NNP, NNPS, NNS, NX, JJR

• Else: search left-to-right for first child which is NP

 32

Adding Headwords to Trees

S

NP

DT

the

NN

lawyer

VP

Vt

questioned

NP

DT

the

NN

witness

+

S(questioned)

NP(lawyer)

DT(the)

the

NN(lawyer)

lawyer

VP(questioned)

Vt(questioned)

questioned

NP(witness)

DT(the)

the

NN(witness)

witness

 33

• Dependencies tend to be less specific than
constituent structure

224 CHAPTER 12. DEPENDENCY PARSING

VP

PP

with a fork

PP

on the table

NP

dinner

V

ate

(a) Flat

VP

PP

with a fork

VP

PP

on the table

VP

NP

dinner

V

ate

(b) Two-level (PTB-style)

VP

PP

with a fork

PP

on the table

VP

NP

dinner

V

ate

(c) Chomsky adjunction

ate dinner on the table with a fork

(d) Dependency representation

Figure 12.3: The three different CFG analyses of this verb phrase all correspond to a single
dependency structure.

shown in Figure 12.3d, these three cases all look the same in a dependency parse. So
if you didn’t think there was any meaningful difference between these three constituent
representations, you may view this as an advantage of the dependency representation.

Dependency grammar still leaves open some tricky representational decisions. For
example, coordination is a challenge: in the sentence, Abigail and Max like kimchi (Fig-
ure 12.4), which word is the immediate dependent of the main verb likes? Choosing ei-
ther Abigail or Max seems arbitrary; for fairness we might choose and, but this seems in
some ways to be the least important word in the noun phrase. One typical solution is
to simply choose the left-most item in the coordinated structure — in this case, Abigail.
Another alternative, as shown in Figure 12.4c, is a collapsed dependency grammar in
which conjunctions are not included as nodes in the graph, but are instead used to label
the edges (De Marneffe et al., 2006). Popel et al. (2013) survey alternatives for handling
this phenomenon across several dependency treebanks.

The same logic that makes us reluctant to accept and as the head of a coordinated noun
phrase may also make us reluctant to accept a preposition as the head of a prepositional
phrase. In the sentence cats scratch people with claws, surely the word claws is more cen-
tral than the word with — and it is precisely the bilexical relations between scratch, claws,
and people that help guide us to the correct syntactic interpretation. Yet there are also
arguments for preferring the preposition as the head — as we saw in section 11.5, the
preposition itself is what helps us to choose verb attachment in meet the President on Mon-
day and noun attachment in meet the President of Mexico. Collapsed dependency grammar

(c) Jacob Eisenstein 2014-2017. Work in progress.

[Example: Jacob Eisenstein]

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Parsing to dependencies

• Constituents -> Dependency conversion is one
approach

• Direct dependency parsing more common

• Annotating dependencies is easier

• http://universaldependencies.org/

• Algorithmic approaches

• Graph-based: global CRF-style models

• History-based: shift-reduce (Nivre)

 34

http://universaldependencies.org/

Graph-based parsing

 35

Introduction

Graph-Based Dependency Parsing

����

���

��	

���� �
�

�

�

�

��

�

�

����

���

��	

����

�

�
�

Recent Advances in Dependency Parsing 3(58)

Inference: minimum spanning tree algorithms
Learning: structured perceptron/svm

Edge scoring models

[Slides: McDonald and Nivre, EACL 2014 tutorial]

http://stp.lingfil.uu.se/~nivre/eacl14.html

Linear vs neural features

• Non-stateful

• Nivre (~2003 & others), “MALT”: linear SVM to
make shift-reduce decisions, trained on oracle
decisions

• Chen and Manning (2014): neural softmax, trained
on oracle decisions

• Andors et al. (2016), “SyntaxNet”: similar but with
CRF-style global normalization

• Stateful: recurrent neural networks over
sentence or state transitions

 36

Transition-Based Dependency Parsing

Greedy, Local, Transition-Based Parsing

I Advantages:
I Highly e�cient parsing – linear time complexity with constant

time oracles and transitions
I Rich history-based feature representations – no rigid

constraints from inference algorithm

I Drawback:
I Sensitive to search errors and error propagation due to greedy

inference and local learning

I The major question in transition-based parsing has been how
to improve learning and inference, while maintaining high
e�ciency and rich feature models

Recent Advances in Dependency Parsing 13(54)[Slides: McDonald and Nivre, EACL 2014 tutorial]

http://stp.lingfil.uu.se/~nivre/eacl14.html

Better search

• Greedy decoding: errors can propagate 
(e.g. garden paths!)

• Why not Viterbi?

• Beam search

• Beam: contain K automaton states (partial parses)

• Iterate until done:

• For each item on beam: enumerate expansions

• Take top-K scoring items from ALL expansions, as the new
beam.

• Take top item on final beam as solution

• Most common heuristic search strategy for left-to-
right NLP models (incl. generation, machine translation)

 38

