
midterm review
CS 585, Fall 2018

Introduction to Natural Language Processing

http://people.cs.umass.edu/~miyyer/cs585/

Mohit Iyyer

College of Information and Computer Sciences

University of Massachusetts Amherst

http://people.cs.umass.edu/~miyyer/cs585/

questions from last time…

• don’t make the HWs harder! please make the
HWs harder!

• can you go over HMMs / Viterbi? x5
• what’s the purpose of the end symbol in

language models and neural MT?
• do we need to do the optional reading?
• cheat sheet????

 2

midterm details

• 8.5 x 11 cheat sheet allowed, both sides,
hand-written only. bring calculator!

• breakdown:
• 20% text classification (NB, LR, NN)
• 20% language modeling
• 20% POS tagging / HMMs
• 20% word embeddings
• 20% machine translation

 3

text classification

 4

f can be hand-designed rules

• if “won $10,000,000” in x, y = spam
• if “CS585 Fall 2018” in x, y = not spam

 5

what are the drawbacks of this method?

naive Bayes

• represents input text as a bag of words
• what’s the independence assumption???
• given labeled data, we can use naive Bayes

to estimate probabilities for unlabeled data
• goal: infer probability distribution that

generated the labeled data for each label

 6

class conditional probabilities
Bayes rule (ex: x = sentence, y = label in {pos, neg})

 7

p(y |x) =
p(y) ⋅ P(x |y)

p(x)

posterior
prior likelihood

our predicted label is the one with the highest
posterior probability, i.e.,

̂y = arg max
y∈Y

p(y) ⋅ P(x |y)

remember the independence assumption!

 8

̂y = arg max
y∈Y

p(y) ⋅ P(x |y)

= arg max
y∈Y

p(y) ⋅ ∏
w∈x

P(w |y)

maximum a
posteriori

(MAP) class

= arg max
y∈Y

log p(y) + ∑
w∈x

log P(w |y)

computing the prior…

 9

• i hate the movie
• i love the movie
• i hate the actor
• the movie i love
• i love love love love love the movie
• hate movie
• i hate the actor i love the movie

p(y) lets us encode inductive bias about the labels
we can estimate it from the data by simply counting…

label y count p(Y=y) log(p(Y=y))

positive 3 0.43 -0.84

negative 4 0.57 -0.56

computing the likelihood…

 10

word count p(w | y)

i 3 0.19

hate 0 0.00

love 7 0.44

the 3 0.19

movie 3 0.19

actor 0 0.00

total 16

p(X | y=positive) p(X | y=negative)

word count p(w | y)

i 4 0.22

hate 4 0.22

love 1 0.06

the 4 0.22

movie 3 0.17

actor 2 0.11

total 18

posterior probs for Xnew

 11

p(y |x) ∝ arg max
y∈Y

p(y) ⋅ P(Xnew |y)

log p(positive |Xnew) ∝ log P(positive) + log p(Xnew |positive)
= − 0.84 − 4.96 = − 5.80

log p(negative |Xnew) ∝ − 0.56 − 8.91 = − 9.47

Naive Bayes predicts a positive label!

 12

Laplace (add-1) smoothing for Naïve Bayes

=
count(wi ,c)+1

count(w,c
w∈V
∑)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ + V

P̂(wi | c) =
count(wi ,c)
count(w,c)()

w∈V
∑

what happens if we do
add-n smoothing as n increases?

• Input document d (a string...)

• Engineer a feature function, f(d), to generate feature vector x 

 13

f(d) x

• Not just word counts. Anything that might be useful!

• Feature engineering: when you spend a lot of time trying and

testing new features. Very important!!! This is a place to put
linguistics in.

f(d) =

Count of “happy”,

(Count of “happy”) / (Length of doc),

log(1 + count of “happy”),

Count of “not happy”,

Count of words in my pre-specified
word list, “positive words according
to my favorite psychological theory”,

Count of “of the”,

Length of document,

...

Typically these use feature templates:

Generate many features at once

for each word w:

 - ${w}_count

 - ${w}_log_1_plus_count

 - ${w}_with_NOT_before_it_count

 -

✓ ◆

Features

step 1: featurization
1. Given an input text X, compute feature vector x

 14

x = < count(nigerian), count(prince),
count(nigerian prince) >

step 2: dot product w/ weights
1. Given an input text X, compute feature vector x

2. Take dot product of x with weights β to get z

 15

β = < -1, -1, 4>

● compute features (x’s)
● given weights (betas)
● compute the dot product

Classification: LogReg (I)
x = < count(nigerian), count(prince),

count(nigerian prince) >

step 3: compute class probability
1. Given an input text X, compute feature vector x

2. Take dot product of x with weights β to get z

3. Apply logistic function to z

 16

β = < -1, -1, 4>

● compute features (x’s)
● given weights (betas)
● compute the dot product

Classification: LogReg (I)

● compute the dot product

● compute the logistic function

Classification: LogReg (II)

x = < count(nigerian), count(prince),
count(nigerian prince) >

 17

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

Parameter

Objective

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

1

0

2

Undiscovered
Country

Parameter

Objective

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

gradient ascentgradient ascent (non-convex)

good news! the log-likelihood
in LR is concave, which
means that it has just one
local (and global) maximum

 18

 19

Classification:	Regularization!

• Really	full	loss	function	in	practice	includes	regularization over	
all	parameters	*:

• Regularization	prevents	overfitting	when	we	have	a	lot	of	
features	(or	later	a	very	powerful/deep	model,++)

1/18/1811 model	power

overfitting

Regularization

L2 regularization

 20

Classification:	Regularization!

• Really	full	loss	function	in	practice	includes	regularization over	
all	parameters	*:

• Regularization	prevents	overfitting	when	we	have	a	lot	of	
features	(or	later	a	very	powerful/deep	model,++)

1/18/1811 model	power

overfitting

represents all of the model’s parameters!θ

penalizing their norm leads to smaller weights >
we are constraining the parameter space >

we are putting a prior on our model

dropout (for neural networks)

 21

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201650

Regularization: Dropout
“randomly set some neurons to zero in the forward pass”

[Srivastava et al., 2014]

randomly set p% of neurons to 0 in the forward pass

deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

what are our model
parameters (i.e.,

weights)?

backpropagation
• use the chain rule to compute partial

derivatives w/ respect to each parameter
• trick: re-use derivatives computed for higher

layers to compute derivatives for lower layers!

 23

∂L
∂ci

=
∂L

∂out
∂out
∂z2

∂z2

∂z1

∂z1

∂av
∂av
∂ci

∂L
∂W2

=
∂L

∂out
∂out
∂z2

∂z2

∂W2

Rumelhart et al., 1986

language models

 24

 25

Probabilistic Language Modeling
•Goal: compute the probability of a sentence or

sequence of words:

 P(W) = P(w1,w2,w3,w4,w5…wn)

•Related task: probability of an upcoming word:
 P(w5|w1,w2,w3,w4)

•A model that computes either of these:

 P(W) or P(wn|w1,w2…wn-1) is called a language model or LM

we have already seen one way to do this… where?

back to reality…

 26

How to compute P(W)
• How to compute this joint probability:

•P(its, water, is, so, transparent, that)

• Intuition: let’s rely on the Chain Rule of Probability

 27

The Chain Rule applied to compute joint
probability of words in sentence

P(“its water is so transparent”) =

 P(its) × P(water|its) × P(is|its water)

 × P(so|its water is) × P(transparent|its water is so)

 28

How to estimate these probabilities
• Could we just count and divide?

•No! Too many possible sentences!

•We’ll never see enough data for estimating these

€

P(the | its water is so transparent that) =
Count(its water is so transparent that the)
Count(its water is so transparent that)

 29

Markov Assumption

•Simplifying assumption: 
 
 
 
 

•Or maybe

€

P(the | its water is so transparent that) ≈ P(the | that)

€

P(the | its water is so transparent that) ≈ P(the | transparent that)

Andrei Markov (1856~1922)

 30

• The Maximum Likelihood Estimate (MLE)

- relative frequency based on the empirical counts on a

training set

Estimating bigram probabilities

€

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

c — count

 31

Dan*Jurafsky

Perplexity

Perplexity*is*the*inverse*probability*of*
the*test*set,*normalized*by*the*number*
of*words:

Chain*rule:

For*bigrams:

Minimizing'perplexity'is'the'same'as'maximizing'probability

The*best*language*model*is*one*that*best*predicts*an*unseen*test*set
• Gives*the*highest*P(sentence)

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

 32

Lower perplexity = better model

•Training 38 million words, test 1.5 million

words, Wall Street Journal

N-gram
Order

Unigram Bigram Trigram

Perplexity 962 170 109

 33

Dan*Jurafsky

AddMone'estimation

• Also*called*Laplace*smoothing
• Pretend*we*saw*each*word*one*more*time*than*we*did
• Just*add*one*to*all*the*counts!

• MLE*estimate:

• Add,1*estimate:

PMLE (wi |wi−1) =
c(wi−1,wi)
c(wi−1)

PAdd−1(wi |wi−1) =
c(wi−1,wi)+1
c(wi−1)+V

(again!)

 34

Dan*Jurafsky

Compare(with(raw(bigram(counts

 35

Dan*Jurafsky

Backoff and(Interpolation
• Sometimes*it*helps*to*use*less context

• Condition*on*less*context*for*contexts*you*haven’t*learned*much*about*

• Backoff:'
• use*trigram*if*you*have*good*evidence,
• otherwise*bigram,*otherwise*unigram

• Interpolation:'
• mix*unigram,*bigram,*trigram

• Interpolation*works*better

 36

Dan*Jurafsky

Absolute(Discounting(Interpolation
• Save*ourselves*some*time*and*just*subtract*0.75*(or*some*d)!

• (Maybe*keeping*a*couple*extra*values*of*d*for*counts*1*and*2)
• But*should*we*really*just*use*the*regular*unigram*P(w)?
70

PAbsoluteDiscounting (wi |wi−1) =
c(wi−1,wi)− d

c(wi−1)
+λ(wi−1)P(w)

discounted bigram

unigram

Interpolation weight

 37

Problems with	n-gram	Language	Models

Note: Increasing	nmakes	sparsity	problems	worse.
Typically	we	can’t	have	n bigger	than	5.

Problem:What	if	“students	
opened	their” never	occurred	in	
data?	Then	we	can’t	calculate	
probability	for	any !

Sparsity	Problem	2

Problem:What	if	“students	
opened	their						” never	
occurred	in	data?	Then	
has	probability	0!

Sparsity	Problem	1

(Partial)	Solution: Add	small	!
to	count	for	every																.	
This	is	called	smoothing.

(Partial)	Solution: Just	condition	
on	“opened	their” instead.	
This	is	called	backoff.

2/1/1812

 38

Problems with	n-gram	Language	Models

2/1/1813

Storage:	Need	to	store	count	
for	all	possible	n-grams.	So	
model	size	is	O(exp(n)).

Increasing	nmakes	model	size	huge!

 39

A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t) + b2)

W2

h(t) = f(Whh(t−1) + Wect + b1)
h(0) is initial hidden state!

 40

A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1 c2 c3 c4

the students opened their

W2

A	RNN	Language	Model

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can	process	any	length

input
• Model	size	doesn’t	

increase for	longer	input
• Computation	for	step	t

can	(in	theory)	use	
information	from many	
steps	back

• Weights	are	shared
across	timestepsà
representations	are	
shared

RNN	Disadvantages:
• Recurrent	computation	

is	slow
• In	practice,	difficult	to	

access	information	from	
many	steps	back	

More	on	
these	next	
week

2/1/1826

why is this good?

 41

Training	a	RNN	Language	Model

+																		+																			+																		+	…						=

Corpus the students opened their …exams

Loss

…

2/1/1832 c1 c2 c3 c4

W2 W2 W2 W2

POS tagging / HMMs

 42

These are all log-linear models

 43

Logistic Regression

HMMs

Linear-chain CRFs

Naive Bayes
SEQUENCE

SEQUENCE

CONDITIONAL CONDITIONAL

Generative directed models

General CRFs

CONDITIONAL

General
GRAPHS

General
GRAPHS

Fig. 2.3 Diagram of the relationship between naive Bayes, logistic regression, HMMs, linear-
chain CRFs, generative models, and general CRFs.

One perspective for gaining insight into the di↵erence between gen-
erative and discriminative modeling is due to Minka [80]. Suppose we
have a generative model pg with parameters ✓. By definition, this takes
the form

pg(y,x; ✓) = pg(y; ✓)pg(x|y; ✓). (2.10)

But we could also rewrite pg using Bayes rule as

pg(y,x; ✓) = pg(x; ✓)pg(y|x; ✓), (2.11)

where pg(x; ✓) and pg(y|x; ✓) are computed by inference, i.e., pg(x; ✓) =
P

y

pg(y,x; ✓) and pg(y|x; ✓) = pg(y,x; ✓)/pg(x; ✓).
Now, compare this generative model to a discriminative model over

the same family of joint distributions. To do this, we define a prior
p(x) over inputs, such that p(x) could have arisen from pg with some
parameter setting. That is, p(x) = pc(x; ✓0) =

P

y

pg(y,x|✓0). We com-
bine this with a conditional distribution pc(y|x; ✓) that could also have
arisen from pg, that is, pc(y|x; ✓) = pg(y,x; ✓)/pg(x; ✓). Then the re-
sulting distribution is

pc(y,x) = pc(x; ✓0)pc(y|x; ✓). (2.12)

By comparing (2.11) with (2.12), it can be seen that the conditional
approach has more freedom to fit the data, because it does not require

are neural networks log-linear models?

 44

Tagging (Sequence Labeling)

• Given a sequence (in NLP, words), assign appropriate labels to
each word.
• Many NLP problems can be viewed as sequence labeling:
- POS Tagging
- Chunking
- Named Entity Tagging

• Labels of tokens are dependent on the labels of other tokens in
the sequence, particularly their neighbors

Plays well with others.
VBZ RB IN NNS

 45

Open class (lexical) words

Closed class (functional)

Nouns Verbs

Proper Common

Modals

Main

Adjectives

Adverbs

Prepositions

Particles

Determiners

Conjunctions

Pronouns

… more

… more

IBM
Italy

cat / cats
snow

see
registered

can
had

old older oldest

slowly

to with

off up

the some

and or

he its

Numbers

122,312
one

Interjections Ow Eh

 46

 47
are HMMs generative or discriminative models?

 48

HMM Recapitulation

HMM Definition

Assume K parts of speech, a lexicon size of V , a series of observations
{x1, . . . , xN}, and a series of unobserved states {z1, . . . , zN}.

⇡ A distribution over start states (vector of length K):
⇡i = p(z1 = i)

✓ Transition matrix (matrix of size K by K):
✓i ,j = p(zn = j |zn�1 = i)

� An emission matrix (matrix of size K by V):
�j ,w = p(xn = w |zn = j)

Two problems: How do we move from data to a model? (Estimation)
How do we move from a model and unlabled data to labeled data?
(Inference)

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 26 of 35

Markov assumption!

 49

come and get it

VBZ CONJ VBZ PRO

joint prob p(x1, x2, x3, x4, z1, z2, z3, z4) = ???

 50

come and get it

VBZ CONJ VBZ PRO

joint prob p(x1, x2, x3, x4, z1, z2, z3, z4) = ???

= p(VBZ)p(come |VBZ)p(CONJ |VBZ)
p(and |CONJ)p(VBZ |CONJ)p(get |VBZ)
p(PRO|VBZ)p(it|PRO)

πVBZ θVBZ, CONJβVBZ, come

 51

HMM Estimation

Training Sentences

x here come old flattop
z MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO V

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 29 of 35

x = tokens
z = POS tags

 52

HMM Estimation

Initial Probability ⇡

POS Frequency Probability
MOD 1.1 0.234
DET 1.1 0.234
CONJ 1.1 0.234
N 0.1 0.021

PREP 0.1 0.021
PRO 0.1 0.021
V 1.1 0.234

Remember, we’re taking MAP estimates, so we add 0.1 (arbitrarily
chosen) to each of the counts before normalizing to create a
probability distribution. This is easy; one sentence starts with an
adjective, one with a determiner, one with a verb, and one with a
conjunction.

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 30 of 35

let’s use add-alpha smoothing with alpha = 0.1

 53

HMM Estimation

Transition Probability ✓

• We can ignore the words; just look at the parts of speech. Let’s
compute one row, the row for verbs.

• We see the following transitions: V ! MOD, V ! CONJ, V ! V,
V ! PRO, and V ! PRO

POS Frequency Probability
MOD 1.1 0.193
DET 0.1 0.018
CONJ 1.1 0.193
N 0.1 0.018

PREP 0.1 0.018
PRO 2.1 0.368
V 1.1 0.193

• And do the same for each part of speech ...

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 32 of 35

how many transition probability distributions do we have?

 54

HMM Estimation

Emission Probability �

Let’s look at verbs . . .
Word a and come crowd flattop

Frequency 0.1 0.1 1.1 0.1 0.1
Probability 0.0125 0.0125 0.1375 0.0125 0.0125

Word get gotta her here i
Frequency 1.1 1.1 0.1 0.1 0.1
Probability 0.1375 0.1375 0.0125 0.0125 0.0125

Word into it life love my
Frequency 0.1 0.1 0.1 1.1 0.1
Probability 0.0125 0.0125 0.0125 0.1375 0.0125

Word of old people stared stopped
Frequency 0.1 0.1 0.1 1.1 1.1
Probability 0.0125 0.0125 0.0125 0.1375 0.1375

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 34 of 35how many emission probability distributions do we have?

 55

Finding Tag Sequences

Viterbi Algorithm

• Given an unobserved sequence of length L, {x1, . . . , x
L

}, we want
to find a sequence {z1 . . . z

L

} with the highest probability.

• It’s impossible to compute KL possibilities.

• So, we use dynamic programming to compute most likely tags for
each token subsequence from 0 to t that ends in state k .

• Memoization: fill a table of solutions of sub-problems

• Solve larger problems by composing sub-solutions

• Base case:
�1(k) = ⇡

k

�
k,x

i

(1)

• Recursion:
�
n

(k) = max
j

(�
n�1(j)✓

j ,k)�k,x
n

(2)

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 3 of 21

 56

Finding Tag Sequences

Viterbi Algorithm

• Given an unobserved sequence of length L, {x1, . . . , x
L

}, we want
to find a sequence {z1 . . . z

L

} with the highest probability.

• It’s impossible to compute KL possibilities.

• So, we use dynamic programming to compute most likely tags for
each token subsequence from 0 to t that ends in state k .

• Memoization: fill a table of solutions of sub-problems

• Solve larger problems by composing sub-solutions

• Base case:
�1(k) = ⇡

k

�
k,x

i

(1)

• Recursion:
�
n

(k) = max
j

(�
n�1(j)✓

j ,k)�k,x
n

(2)

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 3 of 21

for first time step:

p1(tag) = initial prob(tag) *

emission prob (word1 | tag)

 57

Finding Tag Sequences

Viterbi Algorithm

• Given an unobserved sequence of length L, {x1, . . . , x
L

}, we want
to find a sequence {z1 . . . z

L

} with the highest probability.

• It’s impossible to compute KL possibilities.

• So, we use dynamic programming to compute most likely tags for
each token subsequence from 0 to t that ends in state k .

• Memoization: fill a table of solutions of sub-problems

• Solve larger problems by composing sub-solutions

• Base case:
�1(k) = ⇡

k

�
k,x

i

(1)

• Recursion:
�
n

(k) = max
j

(�
n�1(j)✓

j ,k)�k,x
n

(2)

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 3 of 21

for first time step:

p1(tag) = initial prob(tag) *

emission prob (word1 | tag)
for all other time steps:

pn(tag) = max over prev_tag
(pn-1(prev_tag) * transition

prob(tag|prev_tag))
* emission prob(word | tag)

 58

Viterbi Algorithm

POS ⇡
k

�
k,x1 log �1(k)

MOD 0.234 0.024 -5.18
DET 0.234 0.032 -4.89
CONJ 0.234 0.024 -5.18
N 0.021 0.016 -7.99

PREP 0.021 0.024 -7.59
PRO 0.021 0.016 -7.99
V 0.234 0.121 -3.56

come and get it

Why logarithms?

1. More interpretable than a float with lots of zeros.

2. Underflow is less of an issue

3. Addition is cheaper than multiplication

log(ab) = log(a) + log(b) (4)

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 6 of 21

= log(πkβk,x1
)

 59

Viterbi Algorithm

POS ⇡
k

�
k,x1 log �1(k)

MOD 0.234 0.024 -5.18
DET 0.234 0.032 -4.89
CONJ 0.234 0.024 -5.18
N 0.021 0.016 -7.99

PREP 0.021 0.024 -7.59
PRO 0.021 0.016 -7.99
V 0.234 0.121 -3.56

come and get it

Why logarithms?

1. More interpretable than a float with lots of zeros.

2. Underflow is less of an issue

3. Addition is cheaper than multiplication

log(ab) = log(a) + log(b) (4)

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 6 of 21

= log(πkβk,x1
)

for first time step:

p1(tag) = initial prob(tag) *

emission prob (word1 | tag)

 60

Viterbi Algorithm

POS log �1(j) log �1(j)✓
j ,CONJ log �2(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47

???

-6.02

N -7.99

 �7.99

PREP -7.59

 �7.59

PRO -7.99

 �7.99

V -3.56

-5.21

come and get it

log
⇣
�0(V)✓V, CONJ

⌘
= log �0(k) + log ✓V, CONJ = �3.56 +�1.65

log �1(k) = �5.21� log �CONJ, and =

� 5.21� 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 7 of 21

Viterbi Algorithm

POS log �1(j) log �1(j)✓
j ,CONJ log �2(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47

???

-6.02

N -7.99

 �7.99

PREP -7.59

 �7.59

PRO -7.99

 �7.99

V -3.56

-5.21

come and get it

log
⇣
�0(V)✓V, CONJ

⌘
= log �0(k) + log ✓V, CONJ = �3.56 +�1.65

log �1(k) = �5.21� log �CONJ, and =

� 5.21� 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 7 of 21

for all other time steps:

pn(tag) = max over prev_tag
(pn-1(prev_tag) * transition

prob(tag|prev_tag))
* emission prob(word | tag)

 61

Viterbi Algorithm

POS log �1(j) log �1(j)✓
j ,CONJ log �2(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47

???

-6.02

N -7.99

 �7.99

PREP -7.59

 �7.59

PRO -7.99

 �7.99

V -3.56

-5.21

come and get it

log
⇣
�0(V)✓V, CONJ

⌘
= log �0(k) + log ✓V, CONJ = �3.56 +�1.65

log �1(k) = �5.21� log �CONJ, and =

� 5.21� 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 7 of 21

Viterbi Algorithm

POS log �1(j) log �1(j)✓
j ,CONJ log �2(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47

???

-6.02

N -7.99

 �7.99

PREP -7.59

 �7.59

PRO -7.99

 �7.99

V -3.56

-5.21

come and get it

log
⇣
�0(V)✓V, CONJ

⌘
= log �0(k) + log ✓V, CONJ = �3.56 +�1.65

log �1(k) = �5.21� log �CONJ, and =

� 5.21� 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 7 of 21

for all other time steps:

pn(tag) = max over prev_tag
(pn-1(prev_tag) * transition

prob(tag|prev_tag))
* emission prob(word | tag)

this computation is
inside the max:

pn-1(V) * transition

prob(CONJ|V))

 62

Viterbi Algorithm

POS log �1(j) log �1(j)✓
j ,CONJ log �2(CONJ)

MOD -5.18 -8.48
DET -4.89 -7.72
CONJ -5.18 -8.47 ???

-6.02

N -7.99 �7.99
PREP -7.59 �7.59
PRO -7.99 �7.99
V -3.56 -5.21

come and get it

log
⇣
�0(V)✓V, CONJ

⌘
= log �0(k) + log ✓V, CONJ = �3.56 +�1.65

log �1(k) = �5.21� log �CONJ, and =

� 5.21� 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 7 of 21

do the computation for all
possible prev tags:

pn-1(prev_tag) *
transition prob(CONJ|prev_tag))

and then take the max, which
happens to be V here

 63

Viterbi Algorithm

POS log �1(j) log �1(j)✓
j ,CONJ log �2(CONJ)

MOD -5.18 -8.48
DET -4.89 -7.72
CONJ -5.18 -8.47

??? -6.02

N -7.99 �7.99
PREP -7.59 �7.59
PRO -7.99 �7.99
V -3.56 -5.21

come and get it

log
⇣
�0(V)✓V, CONJ

⌘
= log �0(k) + log ✓V, CONJ = �3.56 +�1.65

log �1(k) = �5.21� log �CONJ, and = � 5.21� 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 7 of 21

now just multiply by the
emission probability

p(word2|CONJ) to get
the final p2(CONJ)

 64

Viterbi Algorithm

POS �1(k) �2(k) b2 �3(k) b3 �4(k) b4
MOD -5.18

-0.00 X -0.00 X -0.00 X

DET -4.89

-0.00 X -0.00 X -0.00 X

CONJ -5.18 -6.02 V

-0.00 X -0.00 X

N -7.99

-0.00 X -0.00 X -0.00 X

PREP -7.59

-0.00 X -0.00 X -0.00 X

PRO -7.99

-0.00 X -0.00 X -14.6 V

V -3.56

-0.00 X -9.03 CONJ -0.00 X

WORD come and get it

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 8 of 21

backpointer!

to find p2(CONJ), we had to compute a
max over k previous states.

the same is true for p2(N), p2(PREP), etc.
for one time step, complexity is k2!

machine translation

 65

MT is hard

• Word meaning:  
many-to-many and context dependent

 66

• Translation itself is hard: metaphors, cultural
references, etc.

 67

Recap: The Noisy Channel Model

I Goal: translation system from French to English

I Have a model p(e | f) which estimates conditional probability
of any English sentence e given the French sentence f . Use
the training corpus to set the parameters.

I A Noisy Channel Model has two components:

p(e) the language model

p(f | e) the translation model

I Giving:

p(e | f) = p(e, f)

p(f)
=

p(e)p(f | e)P
e p(e)p(f | e)

and
argmaxep(e | f) = argmaxep(e)p(f | e)

 68

Word Based Translation Systems

Alignment Function

• Formalizing alignment with an alignment function

• Mapping an English target word at position i to a German source
word at position j with a function a : i ! j

• Example
a : {1 ! 1, 2 ! 2, 3 ! 3, 4 ! 4}

Jordan Boyd-Graber | Boulder Machine Translation: Lexical Models | 11 of 49

 69

Word Based Translation Systems

Reordering

Words may be reordered during translation

das Hausistklein

the house is small
1 2 3 4

1 2 3 4

a : {1 ! 3, 2 ! 4, 3 ! 2, 4 ! 1}

Jordan Boyd-Graber | Boulder Machine Translation: Lexical Models | 12 of 49

 70

Word Based Translation Systems

One-to-Many Translation

A source word may translate into multiple target words

das Haus ist klitzeklein

the house is very small
1 2 3 4

1 2 3 4

5

a : {1 ! 1, 2 ! 2, 3 ! 3, 4 ! 4, 5 ! 4}

Jordan Boyd-Graber | Boulder Machine Translation: Lexical Models | 13 of 49

 71

IBM Model 1: Alignments

I How do we model p(f | e)?

I English sentence e has l words e1 . . . el,
French sentence f has m words f1 . . . fm.

I An alignment a identifies which English word each French
word originated from

I Formally, an alignment a is {a1, . . . am}, where each
aj 2 {0 . . . l}.

I There are (l + 1)

m possible alignments.

translation model
in noisy channel

 72

IBM Model 1: The Generative Process

To generate a French string f from an English string e:

I Step 1: Pick an alignment a with probability 1
(l+1)m

I Step 2: Pick the French words with probability

p(f | a, e,m) =

mY

j=1

t(fj | eaj)

The final result:

p(f, a | e,m) = p(a | e,m)⇥p(f | a, e,m) =

1

(l + 1)

m

mY

j=1

t(fj | eaj)

 73

I
e.g., l = 6, m = 7

e = And the program has been implemented

f = Le programme a ete mis en application

I
a = {2, 3, 4, 5, 6, 6, 6}

p(f | a, e) = t(Le | the)⇥
t(programme | program)⇥
t(a | has)⇥
t(ete | been)⇥
t(mis | implemented)⇥
t(en | implemented)⇥
t(application | implemented)

example

chicken & egg problem!

• if we had the alignments, we could estimate
the parameters of our model (i.e., the lexical
translation probabilities)

• if we had the parameters, we could estimate
the alignments.

• we have neither! :(

 74

 75

Parameter Estimation if the Alignments are Observed
I First: case where alignments are observed in training data.

E.g.,
e(100) = And the program has been implemented

f (100)
= Le programme a ete mis en application

a(100) = h2, 3, 4, 5, 6, 6, 6i

I Training data is (e(k), f (k), a(k)) for k = 1 . . . n. Each e(k) is
an English sentence, each f (k) is a French sentence, each a(k)

is an alignment
I Maximum-likelihood parameter estimates in this case are

trivial:

tML(f |e) =
Count(e, f)

Count(e)
qML(j|i, l,m) =

Count(j|i, l,m)

Count(i, l,m)

EM algorithm

• Expectation maximization (EM) in a nutshell:
1. initialize model parameters (trans. probs) using
some method (e.g., uniform)

2. assign probabilities to missing data (alignments)
3. estimate model parameters from the completed
data

4. iterate steps 2-3 until convergence

 76

 77

dataset:
green house

casa verde

the house

la casa

initialize translation probabilities uniformly:

t(casa|green) = 1/3 t(verde|green) = 1/3 t(la|green) = 1/3

t(casa|house) = 1/3 t(verde|house) = 1/3 t(la|house) = 1/3

t(casa|the) = 1/3 t(verde|the) = 1/3 t(la|the) = 1/3

E-Step 1: compute expected
counts E[count(t(f,e)]

first, for all alignments, let’s compute p(f, a |e) =
m

∏
j=1

t(fj |eaj
)

green house

casa verde

green house

casa verde

the house

la casa

the house

la casa

p(f, a |e) = t(casa |green) × t(verde |house) =
1
9

E-Step 1: compute expected
counts E[count(t(f,e)]

first, for all alignments, let’s compute p(f, a |e) =
m

∏
j=1

t(fj |eaj
)

green house

casa verde

green house

casa verde

the house

la casa

the house

la casa

p(f, a |e) =
1
9

p(f, a |e) =
1
9

p(f, a |e) =
1
9

p(f, a |e) =
1
9

E-Step 1: compute expected
counts E[count(t(f,e)]

next, let’s compute alignment probabilities by normalizing:

p(a | f, e) =
p(a, f |e)

∑a p(a, f |e)

green house

casa verde

green house

casa verde

the house

la casa

the house

la casa

p(a | f, e) =
1
9
2
9

=
1
2

E-Step 1: compute expected
counts E[count(t(f,e)]

t(casa|green) = 1/2 t(verde|green) = t(la|green) = total(green) =

t(casa|house) = t(verde|house) = t(la|house) = total(house) =

t(casa|the) = t(verde|the) = t(la|the) = total(the) =

there is exactly one casa—green
alignment with prob. 1/2

now let’s finally compute expected
(fractional) counts for each (f,e) pair

M-Step 1: compute MLE counts
by normalizing

easy! just normalize each row to sum to 1

t(casa|green) = 1/2 t(verde|green) = 1/2 t(la|green) = 0

t(casa|house) = 1/2 t(verde|house) = 1/4 t(la|house) = 1/4

t(casa|the) = 1/2 t(verde|the) = 0 t(la|the) = 1/2

note that each of the correct translations have increased in
probability! t(casa|house) is now 1/2 instead of 1/3

limitations of IBM models

• discrete alignments
• all alignments equally likely (model 1 only)
• translation of each f word depends only on

aligned e word!

 83

seq2seq models

• use two different RNNs to model

• first we have the encoder, which encodes the
foreign sentence f

• then, we have the decoder, which produces
the English sentence e

 84

L

∏
i=1

p(ei |e1, …, ei−1, f)

 85

Training a Neural Machine Translation system

2/15/1825

En
co

de
r R

NN

Source sentence (from corpus)

<START> the poor don’t have any moneyles pauvres sont démunis

Target sentence (from corpus)

Seq2seq is optimized as a single system.
Backpropagation operates “end to end”.

Decoder RNN

!"# !"$!"% !"& !"' !"(!")

*# *$ *% *& *' *(*)

= negative log
prob of “the”

* = 1
-./0#

1
*/ = + + + + + +

= negative log
prob of <END>

= negative log
prob of “have”

what are the parameters of this model?
Wenc

h , Wenc
e , Cenc, Wdec

h , Wdec
e , Cdec, Wout

C is word embedding matrix

Beam search
• in greedy decoding, we cannot go back and

revise previous decisions!

• fundamental idea of beam search: explore
several different hypotheses instead of just a
single one

• keep track of k most probable partial translations
at each decoder step instead of just one!

Better-than-greedy decoding?

• Greedy decoding has no way to undo decisions!
• les pauvres sont démunis (the poor don’t have any money)
• → the ____
• → the poor ____
• → the poor are ____

• Better option: use beam search (a search algorithm) to explore
several hypotheses and select the best one

2/15/1827

the beam size k is usually 5-10

 87

Beam search decoding: example

Beam size = 2

2/15/1831

poor

people

poor

person

<START>

the

a

-1.90

-1.54

-2.3

-3.2

 88

Beam search decoding: example

Beam size = 2

2/15/1832

poor

people

poor

person

are

don’t

person

but

<START>

the

a

-2.42

-3.12

-2.13

-3.53

 89

how many probabilities do we need to evaluate
at each time step with a beam size of k?

what are the termination
conditions for beam search?

does beam search always produce the best
translation (i.e., does it always find the argmax?)

 90

Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START> the poor don’t have any moneyles pauvres sont démunis

the poor don’t have any money <END>

Decoder RNN

Target sentence (output)

Encoding of the
source sentence.

This needs to capture all
information about the

source sentence.
Information bottleneck!

 91

Sequence-to-sequence with attention

2/15/1856

En
co

de
r

RN
N

Source sentence (input)

<START>les pauvres sont démunis

Decoder RNN
At

te
nt

io
n

di
st

rib
ut

io
n

At
te

nt
io

n
sc

or
es

Attention
output

Concatenate attention output
with decoder hidden state, then
use to compute !"# as before

!"#

the

 92

Sequence-to-sequence with attention

2/15/1857

En
co

de
r

RN
N

Source sentence (input)

<START>les pauvres sont démunis

Decoder RNN
At

te
nt

io
n

sc
or

es

the

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

!"#

poor

decoder, second time step

 93

BLEU
Bilingual Evaluation Understudy

word representations

 94

why use vectors to encode meaning?

• computing the similarity between two words
(or phrases, or documents) is extremely
useful for many NLP tasks

• Q: how tall is Mount Everest?
A: The official height of Mount Everest is
29029 ft

 95

all words are equally (dis)similar!

 96

movie = <0, 0, 0, 0, 1, 0>
film = <0, 0, 0, 0, 0, 1>

how can we compute a vector representation such
that the dot product correlates with word similarity?

dot product is zero!
these vectors are orthogonal

dense word vectors

• model the meaning of a word as an
embedding in a vector space

• this vector space is commonly low dimensional
(e.g., 100-500d).

• what is the dimensionality of a one-hot word
representation?

• embeddings are real-valued vectors (not
binary or counts)

 97

 98

Word2vec

◦Instead of counting how often each
word w occurs near "apricot"

◦Train a classifier on a binary
prediction task:
◦ Is w likely to show up near "apricot"?

◦We don’t actually care about this task
◦But we'll take the learned classifier weights
as the word embeddings

 99

Setup
Let's represent words as vectors of some length (say
300), randomly initialized.
So we start with 300 * V random parameters
Over the entire training set, we’d like to adjust those
word vectors such that we
◦ Maximize the similarity of the target word, context

word pairs (t,c) drawn from the positive data
◦ Minimize the similarity of the (t,c) pairs drawn from

the negative data.

9/7/18

21

 100

Objective Criteria
We want to maximize…

Maximize the + label for the pairs from the positive
training data, and the – label for the pairs sample
from the negative data.

9/7/18

23

X

(t,c)2+

logP (+|t, c) +
X

(t,c)2�

logP (�|t, c)

 101

Focusing on one target word t:

18 CHAPTER 6 • VECTOR SEMANTICS

the word the as a noise word, with unigram probability p(“aardvark”) we would
choose aardvark, and so on. But in practice it is common to set a = .75, i.e. use the
weighting p

3
4 (w):

Pa(w) =
count(w)a

P
w count(w)a (6.23)

Setting a = .75 gives better performance because it gives rare noise words
slightly higher probability: for rare words, Pa(w) > P(w). To visualize this intu-
ition, it might help to work out the probabilities for an example with two events,
P(a) = .99 and P(b) = .01:

Pa(a) =
.99.75

.99.75 + .01.75 = .97

Pa(b) =
.01.75

.99.75 + .01.75 = .03 (6.24)

Given the set of positive and negative training instances, and an initial set of
embeddings, the goal of the learning algorithm is to adjust those embeddings such
that we

• Maximize the similarity of the target word, context word pairs (t,c) drawn
from the positive examples

• Minimize the similarity of the (t,c) pairs drawn from the negative examples.

We can express this formally over the whole training set as:

L(q) =
X

(t,c)2+
logP(+|t,c)+

X

(t,c)2�
logP(�|t,c) (6.25)

Or, focusing in on one word/context pair (t,c) with its k noise words n1...nk, the
learning objective L is:

L(q) = logP(+|t,c)+
kX

i=1

logP(�|t,ni)

= logs(c · t)+
kX

i=1

logs(�ni · t)

= log
1

1+ e�c·t +
kX

i=1

log
1

1+ eni·t
(6.26)

That is, we want to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative sampled non-
neighbor words.

We can then use stochastic gradient descent to train to this objective, iteratively
modifying the parameters (the embeddings for each target word t and each context
word or noise word c in the vocabulary) to maximize the objective.

Note that the skip-gram model thus actually learns two separate embeddings
for each word w: the target embedding t and the context embedding c. Thesetarget

embedding
context

embedding embeddings are stored in two matrices, the target matrix T and the context matrix

is the vector for the
negative sample

ni

you should be able to take
derivatives of this as in HW2!

