midterm review

CS 585, Fall 2018

Introduction to Natural Language Processing http://people.cs.umass.edu/~miyyer/cs585/

Mohit lyyer

College of Information and Computer Sciences
University of Massachusetts Amherst

questions from last time...

- don't make the HWs harder! please make the HWs harder!
- can you go over HMMs / Viterbi? x5
- what's the purpose of the end symbol in language models and neural MT?
- do we need to do the optional reading?
- cheat sheet????

midterm details

- 8.5×11 cheat sheet allowed, both sides, hand-written only. bring calculator!
- breakdown:
- 20\% text classification (NB, LR, NN)
- 20\% language modeling
- 20\% POS tagging / HMMs
- 20% word embeddings
- 20\% machine translation
text classification

f can be hand-designed rules

- if "won $\$ 10,000,000$ " in $\mathbf{x}, \mathbf{y}=\mathbf{s p a m}$
- if "CS585 Fall 2018" in $\mathbf{x}, \mathbf{y}=$ not spam
what are the drawbacks of this method?

naive Bayes

- represents input text as a bag of words
- what's the independence assumption???
- given labeled data, we can use naive Bayes to estimate probabilities for unlabeled data
- goal: infer probability distribution that generated the labeled data for each label

class conditional probabilities

Bayes rule (ex: $x=$ sentence, $y=$ label in \{pos, neg\})

$$
\begin{aligned}
& \text { prior likelihood } \\
& \begin{array}{l}
\text { posterior } \\
p(y \mid x)
\end{array}=\frac{p(y) \cdot P(x \mid y)}{p(x)}
\end{aligned}
$$

our predicted label is the one with the highest posterior probability, i.e.,

$$
\hat{y}=\arg \max _{y \in Y} p(y) \cdot P(x \mid y)
$$

remember the independence assumption!

computing the prior...

- i hate the movie
- i love the movie
- i hate the actor
- the movie i love
- i love love love love love the movie
- hate movie
- i hate the actor i love the movie
$p(y)$ lets us encode inductive bias about the labels we can estimate it from the data by simply counting...

label y	count	$p(Y=y)$	$\log (p(Y=y))$
positive	3	0.43	-0.84
negative	4	0.57	-0.56

computing the likelihood...

$p(X \mid y=p o s i t i v e)$

word	count	$p(w / y)$
i	3	0.19
hate	0	0.00
love	7	0.44
the	3	0.19
movie	3	0.19
actor	0	0.00
total	$\mathbf{1 6}$	

$p(X \mid y=$ negative $)$

word	count	$p(w \mid y)$
i	4	0.22
hate	4	0.22
love	1	0.06
the	4	0.22
movie	3	0.17
actor	2	0.11
total	$\mathbf{1 8}$	

posterior probs for $\mathrm{X}_{\text {new }}$

$p(y \mid x) \propto \arg \max p(y) \cdot P\left(X_{\text {new }} \mid y\right)$
 $$
y \in Y
$$

$\log p\left(\right.$ positive $\left.\mid X_{\text {new }}\right) \propto \log P($ positive $)+\log p\left(X_{\text {new }} \mid\right.$ positive $)$

$$
=-0.84-4.96=-5.80
$$

$\log p\left(\right.$ negative $\left.\mid X_{\text {new }}\right) \propto-0.56-8.91=-9.47$

Naive Bayes predicts a positive label!

Laplace (add-1) smoothing for Naïve Bayes

$$
\begin{aligned}
\hat{P}\left(w_{i} \mid c\right) & =\frac{\operatorname{count}\left(w_{i}, c\right)}{\sum_{w \in V}(\operatorname{count}(w, C))} \\
& =\frac{\operatorname{count}\left(w_{i}, c\right)+1}{\left(\sum_{w \in V} \operatorname{count}(w, c)\right)+|V|}
\end{aligned}
$$

what happens if we do add- n smoothing as n increases?

Features

- Input document d (a string...)
- Engineer a feature function, $f(\mathrm{~d})$, to generate feature vector \boldsymbol{x}
f(d)
$\mathbf{f (d)}=\left(\begin{array}{l}\text { Count of "happy", } \\ \text { (Count of "happy") / (Length of doc), } \\ \text { log(1 + count of "happy"), } \\ \text { Count of "not happy", } \\ \text { Count of words in my pre-specified } \\ \text { word list, "positive words according } \\ \text { to my favorite psychological theory", } \\ \text { Count of "of the", } \\ \text { Length of document, } \\ \text {... }\end{array}\right)$

Typically these use feature templates: Generate many features at once
for each word w:

- \$\{w\}_count
- \$\{w\}_log_1_plus_count
- \$\{w\}_with_NOT_before_it_count
-
- Not just word counts. Anything that might be useful!
- Feature engineering: when you spend a lot of time trying and testing new features. Very important!!! This is a place to put linguistics in.

step 1: featurization

1. Given an input text \mathbf{X}, compute feature vector \mathbf{x}
$\mathbf{x}=<\operatorname{count}($ nigerian $)$, count(prince),

$\operatorname{count}($ nigerian prince) $>$

step 2: dot product w/ weights

1. Given an input text \mathbf{X}, compute feature vector \mathbf{x}

$$
\begin{gathered}
\mathbf{x}=<\operatorname{count}(\text { nigerian }), \text { count(prince) }, \\
\\
\operatorname{count}(\text { nigerian prince) }>
\end{gathered}
$$

2. Take dot product of \mathbf{x} with weights $\boldsymbol{\beta}$ to get \mathbf{z}
$\boldsymbol{\beta}=<-1,-1,4>$

$$
z=\sum_{i=0}^{|X|} \beta_{i} x_{i}
$$

step 3: compute class probability

1. Given an input text \mathbf{X}, compute feature vector \mathbf{x}

$$
\begin{gathered}
\mathbf{x}=<\text { count(nigerian), count(prince) }, \\
\text { } \operatorname{count(nigerian~prince)~}>
\end{gathered}
$$

2. Take dot product of \mathbf{x} with weights $\boldsymbol{\beta}$ to get \mathbf{z}
$\boldsymbol{\beta}=<-1,-1,4>$

$$
z=\sum_{i=0}^{|X|} \beta_{i} x_{i}
$$

3. Apply logistic function to \mathbf{z}

$$
P(z)=\frac{e^{z}}{e^{z}+1}=\frac{1}{1+e^{-z}}
$$

gradient ascent (non-convex)

Gradient Descent (non-convex)
Goal
Optimize log likelihood with respect to variables β

good news! the log-likelihood in LR is concave, which means that it has just one local (and global) maxitnum

Regularization

- Regularization prevents overfitting when we have a lot of features (or later a very powerful/deep model,++)

L2 regularization

$$
J(\theta)=\frac{1}{N} \sum_{i=1}^{N}-\log \left(\frac{e^{f_{y_{i}}}}{\sum_{c=1}^{C} e^{f_{c}}}\right)+\lambda \sum_{k} \theta_{k}^{2}
$$

θ represents all of the model's parameters!
penalizing their norm leads to smaller weights > we are constraining the parameter space > we are putting a prior on our model

dropout (for neural networks)

randomly set $p \%$ of neurons to 0 in the forward pass

(a) Standard Neural Net

(b) After applying dropout.

deep averaging networks

$$
\text { out }=\operatorname{softmax}\left(W_{3} \cdot z_{2}\right)
$$

what are our model
parameters (i.e., weights)?

backpropagation

- use the chain rule to compute partial derivatives w/ respect to each parameter
- trick: re-use derivatives computed for higher layers to compute derivatives for lower layers!

$$
\begin{aligned}
\frac{\partial L}{\partial c_{i}} & =\frac{\partial L}{\partial \text { out }} \frac{\partial \mathrm{out}}{\partial z_{2}} \frac{\partial z_{2}}{\partial z_{1}} \frac{\partial z_{1}}{\partial \mathrm{av}} \frac{\partial \mathrm{av}}{\partial c_{i}} \\
\frac{\partial L}{\partial W_{2}} & =\frac{\partial L}{\partial \text { out }} \frac{\partial \mathrm{out}}{\partial z_{2}} \frac{\partial z_{2}}{\partial W_{2}}
\end{aligned}
$$

language models

back to reality...

Probabilistic Language Modeling

- Goal: compute the probability of a sentence or sequence of words:

$$
P(W)=P\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5} \ldots w_{n}\right)
$$

- Related task: probability of an upcoming word:

$$
P\left(w_{5} \mid w_{1}, w_{2}, w_{3}, w_{4}\right)
$$

- A model that computes either of these:
$\mathrm{P}(\mathrm{W})$ or $\mathrm{P}\left(\mathrm{w}_{n} \mid \mathrm{w}_{1}, \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{w}_{1}-1}\right)$ is called a language model or LM
we have already seen one way to do this... where?

How to compute P(W)

- How to compute this joint probability:
- P(its, water, is, so, transparent, that)
- Intuition: let's rely on the Chain Rule of Probability

The Chain Rule applied to compute joint probability of words in sentence

$$
P\left(w_{1} w_{2} \ldots w_{n}\right)=\prod_{i} P\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right)
$$

$P($ "its water is so transparent") $=$
$P($ its $) \times P($ water \mid its $) \times P($ is \mid its water $)$
$\times P($ solits water is) $\times P$ (transparent \mid its water is so)

How to estimate these probabilities

- Could we just count and divide?
$P($ the \mid its water is so transparent that $)=$
Count(its water is so transparent that the)
Count(its water is so transparent that)
- No! Too many possible sentences!
-We'll never see enough data for estimating these

Markov Assumption

- Simplifying assumption:
$P($ the \mid its water is so transparent that $) \approx P($ the \mid that $)$
- Or maybe
$P($ the \mid its water is so transparent that $) \approx P($ the \mid transparent that $)$

Estimating bigram probabilities

- The Maximum Likelihood Estimate (MLE)
- relative frequency based on the empirical counts on a training set

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{count}\left(w_{i-1}, w_{i}\right)}{\operatorname{count}\left(w_{i-1}\right)}
$$

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
$$

Perplexity

The best language model is one that best predicts an unseen test set

- Gives the highest P(sentence)

Perplexity is the inverse probability of

$$
P P(W)=P\left(w_{1} w_{2} \ldots w_{N}\right)^{-\frac{1}{N}}
$$ the test set, normalized by the number of words:

Chain rule:

$$
\operatorname{PP}(W)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{1} \ldots w_{i-1}\right)}}
$$

For bigrams:

$$
\operatorname{PP}(W)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{i-1}\right)}}
$$

Minimizing perplexity is the same as maximizing probability

Lower perplexity = better model

- Training 38 million words, test 1.5 million words, Wall Street Journal

N-gram Order	Unigram	Bigram	Trigram
Perplexity 962	170	109	

Add-one estimation (again!)

- Also called Laplace smoothing
- Pretend we saw each word one more time than we did
- Just add one to all the counts!
- MLE estimate:

$$
P_{M L E}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
$$

- Add-1 estimate:

$$
P_{A d d-1}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)+1}{c\left(w_{i-1}\right)+V}
$$

Compare with raw bigram counts

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0		0	0
0								
	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

Backoff and Interpolation

- Sometimes it helps to use less context
- Condition on less context for contexts you haven't learned much about
- Backoff:
- use trigram if you have good evidence,
- otherwise bigram, otherwise unigram
- Interpolation:
- mix unigram, bigram, trigram
- Interpolation works better

Absolute Discounting Interpolation

- Save ourselves some time and just subtract 0.75 (or some d)!
discounted bigram
Interpolation weight
$P_{\text {AbsoluteDiscounting }}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)-d}{c\left(w_{i-1}\right)}+\lambda\left(\stackrel{\swarrow}{w-1}^{\swarrow}\right) P(w)$
- (Maybe keeping a couple extra values of d for counts 1 and 2)
- But should we really just use the regular unigram $\mathrm{P}(\mathrm{w})$?

Problems with n-gram Language Models

Sparsity Problem 1

Problems with n-gram Language Models

Increasing n makes model size huge!

A RNN Language Model

output distribution

$$
\hat{y}=\operatorname{softmax}\left(W_{2} h^{(t)}+b_{2}\right)
$$

$\mathrm{h}^{(0)}$ is initial hidden state!
word embeddings

$$
c_{1}, c_{2}, c_{3}, c_{4}
$$

$$
\hat{\boldsymbol{y}}^{(4)}=P\left(\boldsymbol{x}^{(5)} \mid \text { the students opened their }\right)
$$

why is this good?

RNN Advantages:

- Can process any length input
- Model size doesn't increase for longer input
- Computation for step t can (in theory) use information from many steps back
- Weights are shared across timesteps \rightarrow representations are shared

RNN Disadvantages:

- Recurrent computation is slow
- In practice, difficult to access information from __many steps back
$\hat{\boldsymbol{y}}^{(4)}=P\left(\boldsymbol{x}^{(5)} \mid\right.$ the students opened their $)$

Training a RNN Language Model

POS tagging / HMMs

These are all log-linear models

Naive Bayes

Logistic Regression

SEOUENCE

are neural networks log-linear models?

Tagging (Sequence Labeling)

- Given a sequence (in NLP, words), assign appropriate labels to each word.
- Many NLP problems can be viewed as sequence labeling:
- POS Tagging
- Chunking
- Named Entity Tagging
- Labels of tokens are dependent on the labels of other tokens in the sequence, particularly their neighbors

Plays well with others.
VBZ RB IN NNS

Two Types of Constraints

Influential/JJ members/NNS of/IN the/DT House/NNP Ways/NNP and/CC Means/NNP Committee/NNP introduced/VBD legislation/NN that/WDT would/MD restrict/VB how/WRB the/DT new/JJ savings-and-loan/NN bailout/NN agency/NN can/MD raise/VB capital/NN ./.

- "Local": e.g., can is more likely to be a modal verb MD rather than a noun NN
- "Contextual": e.g., a noun is much more likely than a verb to follow a determiner
- Sometimes these preferences are in conflict:

The trash can is in the garage

Hidden Markov Models

- We have an input sentence $x=x_{1}, x_{2}, \ldots, x_{n}$ (x_{i} is the i 'th word in the sentence)
- We have a tag sequence $y=y_{1}, y_{2}, \ldots, y_{n}$
(y_{i} is the i 'th tag in the sentence)
- We'll use an HMM to define

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right)
$$

for any sentence $x_{1} \ldots x_{n}$ and tag sequence $y_{1} \ldots y_{n}$ of the same length.

- Then the most likely tag sequence for x is

$$
\arg \max _{y_{1} \ldots y_{n}} p\left(x_{1} \ldots x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right)
$$

are HMMs generative or discriminative models?

HMM Definition

Assume K parts of speech, a lexicon size of V, a series of observations $\left\{x_{1}, \ldots, x_{N}\right\}$, and a series of unobserved states $\left\{z_{1}, \ldots, z_{N}\right\}$.
π A distribution over start states (vector of length K): $\pi_{i}=p\left(z_{1}=i\right)$
θ Transition matrix (matrix of size K by K):

$$
\theta_{i, j}=p\left(z_{n}=j \mid z_{n-1}=i\right) \quad \text { Markov assumption! }
$$

β An emission matrix (matrix of size K by V):
$\beta_{j, w}=p\left(x_{n}=w \mid z_{n}=j\right)$

VBZ CONJ VBZ PRO

come and get it
joint prob $p\left(x_{1}, x_{2}, x_{3}, x_{4}, z_{1}, z_{2}, z_{3}, z_{4}\right)=? ? ?$

VBZ CONJ VBZ PRO

come and get it
joint prob $\mathrm{p}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}, \mathrm{z}_{4}\right)=$???

$$
\begin{aligned}
& \pi_{\mathrm{VBZ}} \quad \beta_{\mathrm{VBZ}, \mathrm{come}} \quad \theta_{\mathrm{VBZ}, \mathrm{CONJ}} \\
= & p(\mathrm{VBZ}) p(\mathrm{Come\mid VBZ}) p(\mathrm{CONJ} \mid \mathrm{VBZ}) \\
& p(\mathrm{and} \mid \mathrm{CONJ}) p(\mathrm{VBZ\mid CONJ}) p(\mathrm{get} \mid \mathrm{VBZ}) \\
& p(\mathrm{PRO} \mid \mathrm{VBZ}) \mathrm{p}(\mathrm{it} \mid \mathrm{PRO})
\end{aligned}
$$

Training Sentences

$\begin{array}{llllcc}\mathrm{X}=\text { tokens } & x & \text { here } & \text { come } & \text { old } & \text { flattop } \\ \mathrm{z}=\mathrm{POS} \text { tags } & z & \text { MOD } & \mathrm{V} & \text { MOD } & \mathrm{N}\end{array}$

a	crowd	of	people	stopped	and	stared	
DET	N	PREP	N	V	CONJ	V	
	gotta	get	you	into	my	life	
	V	V	PRO	PREP	PRO	V	
		and	I	love	her		
		CONJ	PRO	V	PRO		

Initial Probability π

POS	Frequency	Probability
MOD	1.1	0.234
DET	1.1	0.234
CONJ	1.1	0.234
N	0.1	0.021
PREP	0.1	0.021
PRO	0.1	0.021
V	1.1	0.234

let's use add-alpha smoothing with alpha $=0.1$

Transition Probability θ

- We can ignore the words; just look at the parts of speech. Let's compute one row, the row for verbs.
- We see the following transitions: $\mathrm{V} \rightarrow \mathrm{MOD}, \mathrm{V} \rightarrow \mathrm{CONJ}, \mathrm{V} \rightarrow \mathrm{V}$, $\mathrm{V} \rightarrow \mathrm{PRO}$, and $\mathrm{V} \rightarrow \mathrm{PRO}$

POS	Frequency	Probability
MOD	1.1	0.193
DET	0.1	0.018
CONJ	1.1	0.193
N	0.1	0.018
PREP	0.1	0.018
PRO	2.1	0.368
V	1.1	0.193

how many transition probability distributions do we have?

Emission Probability β
Let's look at verbs

Word	a	and	come	crowd	flattop
Frequency	0.1	0.1	1.1	0.1	0.1
Probability	0.0125	0.0125	0.1375	0.0125	0.0125
Word	get	gotta	her	here	i
Frequency	1.1	1.1	0.1	0.1	0.1
Probability	0.1375	0.1375	0.0125	0.0125	0.0125
Word	into	it	life	love	my
Frequency	0.1	0.1	0.1	1.1	0.1
Probability	0.0125	0.0125	0.0125	0.1375	0.0125
Word	of	old	people	stared	stopped
Frequency	0.1	0.1	0.1	1.1	1.1
Probability	0.0125	0.0125	0.0125	0.1375	0.1375

how many emission probability distributions do we have?

Viterbi Algorithm

- Given an unobserved sequence of length $L,\left\{x_{1}, \ldots, x_{L}\right\}$, we want to find a sequence $\left\{z_{1} \ldots z_{L}\right\}$ with the highest probability.
- It's impossible to compute K^{L} possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$
\begin{equation*}
\delta_{1}(k)=\pi_{k} \beta_{k, x_{i}} \tag{1}
\end{equation*}
$$

- Recursion:

$$
\begin{equation*}
\delta_{n}(k)=\max _{j}\left(\delta_{n-1}(j) \theta_{j, k}\right) \beta_{k, x_{n}} \tag{2}
\end{equation*}
$$

Viterbi Algorithm

- Given an unobserved sequence of length L, $\left\{x_{1}, \ldots, x_{L}\right\}$, we want to find a sequence $\left\{z_{1} \ldots z_{L}\right\}$ with the highest probability.
- It's impossible to compute K^{L} possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutior
- Solve larger problems by composing
- Base case:
for first time step:
$\mathrm{p}_{1}(\mathrm{tag})=$ initial prob(tag) ${ }^{*}$
emission prob (word ${ }_{1}$ |tag)

$$
\begin{equation*}
\delta_{1}(k)=\pi_{k} \beta_{k, x_{i}} \tag{1}
\end{equation*}
$$

- Recursion:

$$
\begin{equation*}
\delta_{n}(k)=\max _{j}\left(\delta_{n-1}(j) \theta_{j, k}\right) \beta_{k, x_{n}} \tag{2}
\end{equation*}
$$

Viterbi Algorithm

- Given an unobserved sequence of length $L,\left\{x_{1}, \ldots, x_{L}\right\}$, we want to find a sequence $\left\{z_{1} \ldots z_{L}\right\}$ with the highest probability.
- It's impossible to compute K^{L} possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutior
for all other time steps: composing
$\mathrm{p}_{\mathrm{n}}(\mathrm{tag})=$ max over prev_tag ($\mathrm{p}_{\mathrm{n}-1}$ (prev_tag) * transition prob(tag|prev_tag))
* emission prob(word | tag)

$$
\begin{equation*}
\delta_{n}(k)=\max _{j}\left(\delta_{n-1}(j) \theta_{j, k}\right) \beta_{k, x_{n}} \tag{2}
\end{equation*}
$$

POS	π_{k}	$\beta_{k, x_{1}}$	$\log \delta_{1}(k)=\log \left(\pi_{k} \beta_{k, x_{1}}\right)$	
MOD	0.234	0.024	-5.18	
DET	0.234	0.032	-4.89	
CONJ	0.234	0.024	-5.18	
N	0.021	0.016	-7.99	
PREP	0.021	0.024	-7.59	
PRO	0.021	0.016	-7.99	
V	0.234	0.121	-3.56	
come and get it				

Why logarithms?

1. More interpretable than a float with lots of zeros.
2. Underflow is less of an issue
3. Addition is cheaper than multiplication

$$
\begin{equation*}
\log (a b)=\log (a)+\log (b) \tag{4}
\end{equation*}
$$

POS	π_{k}	$\beta_{k, \chi_{1}}$	$\log \delta_{1}(k)=\log \left(\pi_{k} \beta_{k, x_{1}}\right)$
MOD	0.234	0.024	-5.18
DET	0.234	0.032	-4.89
CONJ	0.234	0.024	-5.18
N	0.021	0.016	-7.99
PREP	0.021	0.024	-7.59
PRO	0.021	0.016	-7.99
V	0.234	0.121	-3.56
come and for first time step: $p_{1}($ tag $)=$ initial prob(tag) * emission prob (word ${ }_{1}$ \| tag)			

Why logarithms? emission prob (word ${ }_{1}$ | tag)

1. More interpretable than a float with lots of zeros.
2. Underflow is less of an issue
3. Addition is cheaper than multiplication

$$
\begin{equation*}
\log (a b)=\log (a)+\log (b) \tag{4}
\end{equation*}
$$

POS	$\log \delta_{1}(j)$	$\log \delta_{1}(j) \theta_{j, \text { CONJ }}$	$\log \delta_{2}(\mathrm{CONJ})$
MOD	-5.18		
DET	-4.89		$? ? ?$
CONJ	-5.18		
N	-7.99		
PREP	-7.59		
PRO	-7.99	???	
V	-3.56	come and get it	

$\log \left(\delta_{0}(\mathrm{~V}) \theta_{\mathrm{V}, \mathrm{CONJ}}\right)=\log \delta_{0}(k)+\log \theta_{\mathrm{V}, \mathrm{CONJ}}=-3.56+-1.65$
for all other time steps:
$p_{n}($ tag $)=$ max over prev_tag
($\mathrm{p}_{\mathrm{n}-1}$ (prev_tag) * transition prob(tag|prev_tag))

* emission prob(word | tag)

POS	$\log \delta_{1}(j)$	$\log \delta_{1}(j) \theta_{j, \text { CONJ }}$	$\log \delta_{2}(\mathrm{CONJ})$
MOD	-5.18		
DET	-4.89		$? ? ?$
CONJ	-5.18		
N	-7.99		
PREP	-7.59		???
PRO	-7.99		
V	-3.56	come and get it	

$$
\log \left(\delta_{0}(\mathrm{~V}) \theta \mathrm{V}, \mathrm{CONJ}\right)=\log \delta_{0}(k)+\log \theta \mathrm{V}, \mathrm{CONJ}=-3.56+-1.65
$$

this computation is inside the max:
$\mathrm{p}_{\mathrm{n}-1}(\mathrm{~V}$) * transition $\operatorname{prob}(\mathrm{CONJ} / \mathrm{V}))$
for all other time steps:
$p_{n}($ tag $)=$ max over prev_tag
($\mathrm{p}_{\mathrm{n}-1}$ (prev_tag) * transition prob(tag|prev_tag))

* emission prob(word | tag)

POS	$\log \delta_{1}(j)$	$\log \delta_{1}(j) \theta_{j, \text { CONJ }}$	$\log \delta_{2}($ CONJ $)$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	$? ? ?$
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	
come and get it			

do the computation for all possible prev tags:

$$
\mathrm{p}_{\mathrm{n-1}}(\text { (prev_tag })^{*}
$$

transition prob(CONJ|prev_tag)) and then take the max, which happens to be \mathbf{V} here

POS	$\log \delta_{1}(j)$	$\log \delta_{1}(j) \theta_{j, \text { CONJ }}$	$\log \delta_{2}($ CONJ $)$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	
come and get it			

now just multiply by the emission probability p(word $\left.{ }_{2} \mid \mathrm{CONJ}\right)$ to get the final $\mathrm{p}_{2}(\mathrm{CONJ})$

$$
\log \delta_{1}(k)=-5.21+\log \beta \mathrm{CONJ}, \text { and }=-5.21-0.64
$$

backpointer!

POS	$\delta_{1}(k)$	$\delta_{2}(k)$	b_{2}	$\delta_{3}(k)$	b_{3}	$\delta_{4}(k)$	b_{4}
MOD	-5.18						
DET	-4.89						
CONJ	-5.18	-6.02	V				
N	-7.99						
PREP	-7.59						
PRO	-7.99						
V	-3.56						
WORD	come	and	get		it		

to find $\mathrm{p}_{2}(\mathrm{CONJ})$, we had to compute a max over k previous states.
the same is true for $p_{2}(N), p_{2}(P R E P)$, etc. for one time step, complexity is $\mathbf{k}^{\mathbf{2}}$!
machine translation

MT is hard

- Word meaning: many-to-many and context dependent

- Translation itself is hard: metaphors, cultural references, etc.

Recap: The Noisy Channel Model

- Goal: translation system from French to English
- Have a model $p(e \mid f)$ which estimates conditional probability of any English sentence e given the French sentence f. Use the training corpus to set the parameters.
- A Noisy Channel Model has two components:

$$
\begin{gathered}
p(e) \quad \text { the language model } \\
p(f \mid e) \quad \text { the translation model }
\end{gathered}
$$

- Giving:

$$
p(e \mid f)=\frac{p(e, f)}{p(f)}=\frac{p(e) p(f \mid e)}{\sum_{e} p(e) p(f \mid e)}
$$

and

$$
\operatorname{argmax}_{e} p(e \mid f)=\operatorname{argmax}_{e} p(e) p(f \mid e)
$$

Alignment Function

- Formalizing alignment with an alignment function
- Mapping an English target word at position i to a German source word at position j with a function $a: i \rightarrow j$
- Example

$$
a:\{1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4\}
$$

Reordering

Words may be reordered during translation

$$
a:\{1 \rightarrow 3,2 \rightarrow 4,3 \rightarrow 2,4 \rightarrow 1\}
$$

One-to-Many Translation

A source word may translate into multiple target words

IBM Model 1: Alignments

- How do we model $p(f \mid e)$?

translation model in noisy channel

- English sentence e has l words $e_{1} \ldots e_{l}$, French sentence f has m words $f_{1} \ldots f_{m}$.
- An alignment a identifies which English word each French word originated from
- Formally, an alignment a is $\left\{a_{1}, \ldots a_{m}\right\}$, where each $a_{j} \in\{0 \ldots l\}$.
- There are $(l+1)^{m}$ possible alignments.

IBM Model 1: The Generative Process

To generate a French string from an English string e :

- Step 1: Pick an alignment a with probability $\frac{1}{(l+1)^{m}}$
- Step 2: Pick the French words with probability

$$
p(f \mid a, e, m)=\prod_{j=1}^{m} t\left(f_{j} \mid e_{a_{j}}\right)
$$

The final result:
$p(f, a \mid e, m)=p(a \mid e, m) \times p(f \mid a, e, m)=\frac{1}{(l+1)^{m}} \prod_{j=1}^{m} t\left(f_{j} \mid e_{a_{j}}\right)$

example

- e.g., $l=6, m=7$
$e=$ And the program has been implemented
$f=$ Le programme a ete mis en application
- $a=\{2,3,4,5,6,6,6\}$

$$
\begin{aligned}
p(f \mid a, e)= & t(\text { Le } \mid \text { the }) \times \\
& t(\text { programme } \mid \text { program }) \times \\
& t(a \mid \text { has }) \times \\
& t(\text { ete } \mid \text { been }) \times \\
& t(\text { mis } \mid \text { implemented }) \times \\
& t(\text { en } \mid \text { implemented }) \times \\
& t(\text { application } \mid \text { implemented })
\end{aligned}
$$

chicken \& egg problem!

- if we had the alignments, we could estimate the parameters of our model (i.e., the lexical translation probabilities)
- if we had the parameters, we could estimate the alignments.
- we have neither! :(

Parameter Estimation if the Alignments are Observed

- First: case where alignments are observed in training data.
E.g.,
$e^{(100)}=$ And the program has been implemented

$$
\begin{aligned}
& f^{(100)}=\text { Le programme a ete mis en application } \\
& a^{(100)}=\langle 2,3,4,5,6,6,6\rangle
\end{aligned}
$$

- Training data is $\left(e^{(k)}, f^{(k)}, a^{(k)}\right)$ for $k=1 \ldots n$. Each $e^{(k)}$ is an English sentence, each $f^{(k)}$ is a French sentence, each $a^{(k)}$ is an alignment
- Maximum-likelihood parameter estimates in this case are trivial:
$t_{M L}(f \mid e)=\frac{\operatorname{Count}(e, f)}{\operatorname{Count}(e)}$

EM algorithm

- Expectation maximization (EM) in a nutshell: 1. initialize model parameters (trans. probs) using some method (e.g., uniform)

2. assign probabilities to missing data (alignments)
3. estimate model parameters from the completed data
4. iterate steps 2-3 until convergence

dataset:

green house
casa verde
the house
la casa
initialize translation probabilities uniformly:

$\mathrm{t}($ casa \mid green $)=\mathrm{I} / 3$	$\mathrm{t}($ verde \mid green $)=\mathrm{I} / 3$	$\mathrm{t}($ la\|green $)=\mathrm{I} / 3$
$\mathrm{t}($ casa\|house $)=\mathrm{I} / 3$	$\mathrm{t}($ verde\|house $)=\mathrm{I} / 3$	$\mathrm{t}($ la\|house $)=\mathrm{I} / 3$
$\mathrm{t}($ casa \mid the $)=\mathrm{I} / 3$	$\mathrm{t}($ verde \mid the $)=\mathrm{I} / 3$	$\mathrm{t}($ la\|the $)=\mathrm{I} / 3$

E-Step 1: compute expected counts E[count $(t(f, e)]$

first, for all alignments, let's compute $p(f, a \mid e)=\prod_{j=1}^{m} t\left(f_{j} \mid e_{a}\right)$
green house casa verde

the house

$p(f, a \mid e)=t($ casa \mid green $) \times t($ verde \mid house $)=\frac{1}{9}$

E-Step 1: compute expected counts E[count $(t(f, e)]$

first, for all alignments, let's compute $p(f, a \mid e)=\prod_{j=1}^{m} t\left(f_{j} \mid e_{a}\right)$

$p(f, a \mid e)=\frac{1}{9}$

$p(f, a \mid e)=\frac{1}{9}$
$p(f, a \mid e)=\frac{1}{9} \quad p(f, a \mid e)=\frac{1}{9}$

E-Step 1: compute expected counts E[count $(t(f, e)]$

next, let's compute alignment probabilities by normalizing:

$$
p(a \mid f, e)=\frac{p(a, f \mid e)}{\sum_{a} p(a, f \mid e)}
$$

green house
casa verde
$p(a \mid f, e)=\frac{\frac{1}{9}}{\frac{2}{9}}=\frac{1}{2}$
green house the house

the house

E-Step 1: compute expected counts E[count(t(f,e)] now let's finally compute expected (fractional) counts for each (f,e) pair

there is exactly one casa-green alignment with prob. 1/2

$\mathrm{t}($ casa \mid green $)=1 / 2$	$\mathrm{t}($ verde \mid green $)=$	$\mathrm{t}(\mathrm{la} \mid$ green $)=$	$\operatorname{total}($ green $)=$
t (casa\|house) $=$	$\mathrm{t}\left(\right.$ verde ${ }^{\text {house }}$) $=$	$\mathrm{t}(\mathrm{la} \mid$ house $)=$	total(house) =
$\mathrm{t}($ casa\|the $)=$	$\mathrm{t}($ verde \mid the $)=$	t (la\|the) $=$	total(the) $=$

M-Step 1: compute MLE counts by normalizing

easy! just normalize each row to sum to 1

t (casa\|green) $=\mathrm{I} / 2$	t (verde\|green $)=\mathrm{I} / 2$	t (la\|green) $=0$
t (casa\|house $)=\mathrm{I} / 2$	$\mathrm{t}($ verde\|house $)=\mathrm{I} / 4$	t (la\|house) $=\mathrm{I} / 4$
t (casa\|the $)=\mathrm{I} / 2$	t (verde\|the $)=0$	$\mathrm{t}($ la\|the $)=\mathrm{I} / 2$

note that each of the correct translations have increased in probability! t(casa|house) is now $1 / 2$ instead of $1 / 3$

limitations of IBM models

- discrete alignments
- all alignments equally likely (model 1 only)
- translation of each f word depends only on aligned e word!

seq2seq models

- use two different RNNs to model $\prod_{i=1}^{L} p\left(e_{i} \mid e_{1}, \ldots, e_{i-1}, f\right)$
- first we have the encoder, which encodes the foreign sentence f
- then, we have the decoder, which produces the English sentence e

Training a Neural Machine Translation system

what are the parameters of this model?
$W_{h}^{e n c}, W_{e}^{e n c}, C^{e n c}, W_{h}^{d e c}, W_{e}^{d e c}, C^{d e c}, W_{\text {out }}$
C is word embedding matrix

Beam search

- in greedy decoding, we cannot go back and revise previous decisions!
- les pauvres sont démunis (the poor don't have any money)
- \rightarrow the \qquad
- \rightarrow the poor \qquad
\rightarrow the poor are \qquad
- fundamental idea of beam search: explore several different hypotheses instead of just a single one
- keep track of k most probable partial translations at each decoder step instead of just one! the beam size k is usually $5-10$

Beam search decoding: example

Beam size $=2$

Beam search decoding: example

Beam size $=2$

does beam search always produce the best translation (i.e., does it always find the argmax?)
how many probabilities do we need to evaluate at each time step with a beam size of k ?

what are the termination conditions for beam search?

Sequence-to-sequence: the bottleneck problem

Encoding of the
source sentence.
This needs to capture all information about the source sentence. Information bottleneck!

Sequence-to-sequence with attention

Sequence-to-sequence with attention

BLEU

Bilingual Evaluation Understudy

N -gram overlap between machine translation output and reference translation

Compute precision for n-grams of size 1 to 4

Add brevity penalty (for too short translations)

$$
\operatorname{BLEU}=\min \left(1, \frac{\text { output-length }}{\text { reference-length }}\right)\left(\prod_{i=1}^{4} \text { precision }_{i}\right)^{\frac{1}{4}}
$$

Typically computed over the entire corpus, not single sentences

word representations

why use vectors to encode meaning?

- computing the similarity between two words (or phrases, or documents) is extremely useful for many NLP tasks
- Q: how tall is Mount Everest?

A: The official height of Mount Everest is 29029 ft

all words are equally (dis)similar!

movie $=<0,0,0,0,1,0>$
film $=<0,0,0,0,0,1>$
dot product is zero!
these vectors are orthogonal

how can we compute a vector representation such that the dot product correlates with word similarity?

dense word vectors

- model the meaning of a word as an embedding in a vector space
- this vector space is commonly low dimensional (e.g., 100-500d).
- what is the dimensionality of a one-hot word representation?
- embeddings are real-valued vectors (not binary or counts)

Word2vec

- Instead of counting how often each word w occurs near "apricot"
-Train a classifier on a binary prediction task:
- Is w likely to show up near "apricot"?
- We don't actually care about this task
- But we'll take the learned classifier weights as the word embeddings

Setup

Let's represent words as vectors of some length (say 300), randomly initialized.

So we start with 300 * V random parameters
Over the entire training set, we'd like to adjust those word vectors such that we

- Maximize the similarity of the target word, context word pairs (t, c) drawn from the positive data
- Minimize the similarity of the (t, c) pairs drawn from the negative data.

Objective Criteria

We want to maximize...

$$
\sum_{(t, c) \in+} \log P(+\mid t, c)+\sum_{(t, c) \in-} \log P(-\mid t, c)
$$

Maximize the + label for the pairs from the positive training data, and the - label for the pairs sample from the negative data.

Focusing on one target word t:

n_{i} is the vector for the negative sample

$$
\begin{aligned}
L(\theta) & =\log P(+\mid t, c)+\sum_{i=1} \log P\left(-\mid t, n_{i}\right) \\
& =\log \sigma(c \cdot t)+\sum_{i=1}^{k} \log \sigma\left(-n_{i} \cdot t\right) \\
& =\log \frac{1}{1+e^{-c \cdot t}}+\sum_{i=1}^{k} \log \frac{1}{1+e^{n_{i} \cdot t}}
\end{aligned}
$$

you should be able to take derivatives of this as in HW2!

