midterm review

CS 5685, Fall 2018

Introduction to Natural Language Processing
http://people.cs.umass.edu/~miyyer/cs585/

Mohit lyyer

College of Information and Computer Sciences
University of Massachusetts Amherst

http://people.cs.umass.edu/~miyyer/cs585/

questions from last time...

e don’'t make the HWs harder! please make the
HWs harder!

e can you go over HMMs / Viterbi? x5

e what's the purpose of the end symbol In
language models and neural MT??

e do we need to do the optional reading”?
e cheat sheet?7?7

Midterm detalls

® 3.5 x 11 cheat sheet allowed, both sides,
hand-written only. bring calculator!
® preakdown:
e 20% text classification (NB, LR, NN)
e 20% language modeling
e 20% POS tagging / HMMs
o 20% word embeddings
e 20% machine translation

text classification

f can be hand-designed rules

e if “won $10,000,000” in x, y = spam
e if “CS585 Fall 2018” in x, y = not spam

what are the drawbacks of this method?

naive Bayes

® represents input text as a bag of words

® given labeled data, we can use naive Bayes
to estimate probabilities for unlabeled data

* goal: infer probability distribution that
generated the labeled data for each label

class conditional probabillities

Bayes rule (ex: x = sentence, y = label in {pos, neg})

| prior likelihood
posteior p(y) - P(x|)
p(y|x) =
p(x)

our predicted label is the one with the highest
posterior probabllity, I.e.,

y = arg max p(y) - P(x|y)
yeyY

7

remember the independence assumption!

maximuma A

posteriori y — arg maXp(y)) P('x ‘ y)

(MAP) class ye Y

= arg max p(y) - HP(W\Y)

cY
Y wex

= arg max log p(y) + Z log P(w|y)
yer WEX

8

computing the prior...

| hate the movie

| love the movie

| hate the actor

the movie | love

| love love love love love the movie
hate movie

| hate the actor | love the movie

p(y) lets us encode inductive bias about the labels
we can estimate it from the data by simply counting...
label y count p(Y=y) log(p(Y=y))

positive 3 0.43 -0.84
negative 4 0.57 -0.56

computing the likelihood...

p(X | y=positive) o(X | y=negative)
word count p(wly) word count p(w ly)
| 3 0.19 | 4 0.22
hate 0 0.00 hate 4 0.22
love / 0.44 love 1 0.06
the 3 0.19 the 4 0.22
movie 3 0.19 movie 3 0.17
actor 0 0.00 actor 2 0.11

total 16 total 18

posterior probs for Xnew

p(y|x) o arg mél;ip(y) - P(Xnew |)
Y

log p(positive | X,,,) o log P(positive) + log p(X,.,, | POSItIVE)
=—0.84 -496 = —5.80

log p(negative | X)) o —0.56 — 891 = —9.47

Naive Bayes predicts a positive label!

Laplace (add-1) smoothing for Naive Bayes

count(w:, C)

Y (count(w; ¢))
weV

P(w; | c)

count(w;, C) + 1
[)
Y count(w,c)| + |V

\nweV /

what happens if we do
add-n smoothing as n increases?

Features

¢ |nput document d (a string...)
e Engineer a feature function, f(d), to generate feature vector x

f(d) - x

Count of “happy”, Typically these use feature templates:
(Count of *happy”) / (Length of doc), Generate many features at once

log(1 + count of “happy”),
Count of “not happy”,

f d — + Count of words in my pre-specified for each word w:
e word list, “positive words according _ ${W} count

to my favorite psychological theory”, $
- ${w}_log_1_plus_count

Count of “of the”,
\ Length of document, / - ${w}_with_NOT_before_it_count

e Not just word counts. Anything that might-b"e useful!

¢ Feature engineering: when you spend a lot of time trying and
testing new features. Very important!!! This is a place to put

linguistics in. 3

step 1: featurization

1. Given an input text X, compute feature vector x

X = < count(nigerian), count(prince),
count(nigerian prince) >

step 2: dot product w/ weights

1. Given an input text X, compute feature vector x

X = < count(nigerian), count(prince),
count(nigerian prince) >

2. Take dot product of x with weights 3 to get z
B=<-1,-1,4>(x

c = Z Bix;
i=0

\§ J

step 3: compute class probability

1. Given an input text X, compute feature vector x
X = < count(nigerian), count(prince),
count(nigerian prince) >

2. Take dot product of x with weights B to get z
B=<-1,-1,4> ~ ~
& = Z/Bixz'
=0,

\§ J

3. Apply logistic function to z

gradient ascent (hon-convex)

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables 3

A
Objective

>

Parameter

good news! the log-likelihooo
N LR Is concave, which
means that it has just one

local (and g\obWum

— f(x) =-x"2

— (1 - alpha)f(a) + alpha f(b) |

18

Regularization

e Regularization prevents overfitting when we have a lot of
features (or later a very powerful/deep model,++)

A

overfitting

model power

|2 regularization

N
1 efvi
i—1 Zc:1€ ¢ k

0 represents all of the model’s parameters!

penalizing their norm leads to smaller weights >
we are constraining the parameter space >
we are putting a prior on our model

20

dropout (for neural networks)

of neurons to O in the forward pass

L
Q .““
3 No7ANe7
% XA
> XKD KK
[= @ Qy%».%‘»%»i.

: SN0
O R R
c CHRCHRRC
S 7>\ 2/ ><\
S AN

[Srivastava et al., 2014]

(b) After applying dropout.

ard Neural Net

.
v

a) Stand

o
S

21

deep averaging networks

out = softmax(W; - z,)

nat are our model
parameters (i.e.,
weights)?

a really good book
CH Co C3 C4

pbackpropagation

® use the chain rule to compute partial
derivatives w/ respect to each parameter

® trick: re-use derivatives computed for higher
layers to compute derivatives for lower layers!

oL - oL o0out 0Z2 0Z1 oav
oc; dout 0z, dz dav o,

oL oL dout oz

oW, oout 0z, oW,

23 Rumelhart et al., | 986

language moadaels

24

pack to reality...

Probabilistic Language Modeling

* Goal: compute the probability of a sentence or
sequence of words:

P(W) = P(W;,W5,W3,W/,Wc.. W,)

* Related task: probability of an upcoming word:

P(Ws | Wy,Wy,W3,W,)

* A model that computes either of these:
P(W) or P(w,|w,,w,..w,) 1S called a language model or LM

we have already seen one way to do this... where?

25

How to compute P(W)

* How to compute this joint probability:

*P(its, water, is, so, transparent, that)

* Intuition: let’s rely on the Chain Rule of Probability

26

The Chain Rule applied to compute joint
probabillity of words in sentence

Pww,...w)= HP(wi lww,...w._)

P(“its water is so transparent”) =
P(its) x P(water|its) x P(is|its water)
x P(so|its water i1s) x P(transparent|its water is so)

27

How to estimate these probabillities

* Could we just count and divide?

P(the |its water is so transparent that) =

Count(its water 1s so transparent that the)

Count(its water 1s so transparent that)

* No! Too many possible sentences!
* We’ll never see enough data for estimating these

28

Markov Assumption

* Simplifying assumption:

Andrei Markov (1856~1922)

P(the |its water is so transparent that) = P(the |that)

* Or maybe
P(the |its water is so transparent that) = P(the |transparent that)

29

-stimating bigram probabillities

« The Maximum Likelihood Estimate (MLE)
- relative frequency based on the empirical counts on a

training set count(W W)
AW, [w.,) = S
count(w.,)

P(w, | w,,) = W)

c — count
aw.,)

30

Perplexity

The best language model is one that best predicts an unseen test set

e Gives the highest P(sentence) |

_ N
Perplexity is the inverse probability of PECW) Plwws..wy)

the test set, normalized by the number 1
of words: =]</P(w1w2...wN)
: N
Chain rule: PP(W) = ‘\\];[1 BT D)
For bigrams: N
PP(W) = {\\IEPMM y

Minimizing perplexity is the same as maximizing probability

31

Lower perplexity = better model

* Training 38 million words, test 1.5 million
words, Wall Street Journal

N-gram |Unigram Bigram Trigram
Order

Perplexity 962

32

Add-one estimation (again!)

Also called Laplace smoothing
Pretend we saw each word one more time than we did

Just add one to all the counts!
c(w,_,w,)

PMLE (Wi | Wi—l) =
MLE estimate: c(w,_,)

cw,_,,w.)+1
. | P, (wlw_)=—0H0>"
Add-1 estimate: Add-1 ! c(w_)+V

33

Compare with raw bigram counts

1 want | to eat chinese | food | lunch | spend

1 5 827 0 9 0 0 0 2

want 2 0 608 | 1 6 6 5 1

to 2 0 4 686 | 2 0 6 211

eat 0 0 2 0 16 2 42 0

chinese 1 0 0 0 0 82 1 0

food 15| O 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 1 0 0 0 0 0

1 want to eat chinese | food| lunch| spend

1 3.8 527 0.64 6.4 0.64 0.64| 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 4.4 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese || 0.2 0.098| 0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38| 0.19 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16 | 0.16 0.16

34

Backoff and Interpolation

Sometimes it helps to use less context

e Condition on less context for contexts you haven’t learned much about

Backoff:

e use trigram if you have good evidence,
e otherwise bigram, otherwise unigram

Interpolation:

* mix unigram, bigram, trigram

Interpolation works better

35

Absolute Discounting Interpolation

e Save ourselves some time and just subtract 0.75 (or some d)!

discounted bigram Interpolation weight

c(w_,w,)—d /

P, AbsoluteDiscounting (Wi l Wi—l) = T)L (Wi—l)P (W)
c(w,_,) N
unigram

e (Maybe keeping a couple extra values of d for counts 1 and 2)

e But should we really just use the regular unigram P(w)?

36

Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if “students
opened their w;” never
occurred in data? Then w;
has probability O!

(Partial) Solution: Add small 6
»| to count for every w; € V.
This is called smoothing.

count(students opened their w;
count(students opened their)

P(w;|students opened their) =

Sparsity Problem 2

Problem: What if “students . . "y
. . (Partial) Solution: Just condition
opened their” never occurred in » -
»| on “opened their” instead.

data? Then w 't calculat is |
e can't calculate This is called backoff.

probability for any w;!

Problems with n-gram Language Models

Storage: Need to store count
for all possible n-grams. So
model size is O(exp(n)).

count(students opened their w;

P(w;|students opened their) =
(w;] P) count(students opened their)

Increasing n makes model size huge!

38

94 = P(z®|the students opened their)

A RNN Language Model books

_L laptops
output distribution

$ = softmax(W,h'" + b,)

mA_|

St
~
C
~
e

000®|"
|

h,(0)

h(4)

)

hidden states
A = fW,h"D + We + b))

h©O) is initial hidden state!

W

>

S
S

|

[oooo](?[cccc]
[oooo]?[cccc]
[oooo]?[cccc

exxx

word embeddings
C1, €y €3, Cy

0000
(evee).

the students opened their
C

o
[
%

@)
W
~

39

why is this good?

RNN Advantages:

Can process any length
input

Model size doesn’t
increase for longer input
Computation for step t
can (in theory) use
information from many
steps back

Weights are shared
across timesteps 2
representations are
shared

RNN Disadvantages:

Recurrent computation
is slow

In practice, difficult to
access information from

_many steps back

h,(0)

=

000®|"
|

Wiy,

— >

g(4) — P(:c(5) [the students opened their)

books
_L laptops

o.)A_|

N
~~
(\V)
~

N
~~
w
~

h(4)

)

S
S

|

exxx

40

[0000]?[0000]
[0000]?[0000]
[oooo]?[cccc

0000
(evee).

the students opened their
3 C

_{3

S
R

~

Training a RNN Language Model

Loss >
Q(l) g(2)
W, W
wo_ ol el
@) @ O
| W, (@) W, |@
O | @ : O
O @ O
Tw. Tw
O O
n| © 2)| ©
O O
o O
Corpus > the students
Cl' ‘ CH

JU®G) + J2@G) + TG

3)

41

|

g(B)

W,

opened
3

Wi,

— >

+ J&(0)

|

g(4)

W,
h|

O
O
O
O
Tw.
@)
1) ©
@)
@)

+

their
C4

+ ...

Wi,

R

exams

J(0) = % S0)

POS tagging / HMMs

These are all log=linear models

=R

SEQUENCE

Naive Bayes HMMs

co@m cu@m
do Mk &4

Logistic Regression Linear-chain CRFs

are neural networks log-linear models®

43

Tagging (Sequence Labeling)

» Given a sequence (in NLP, words), assign appropriate labels to
each word.

» Many NLP problems can be viewed as sequence labeling:
- POS Tagging
- Chunking
- Named Entity Tagging

 Labels of tokens are dependent on the labels of other tokens in
the sequence, particularly their neighbors

Plays well with others.

44

Open class (lexical) words

Nouns Verbs Adjectives
Proper Common Main Adverbs
Numbers ... more

Closed class (functional)

Modals

Determiners Prepositions

Conjunctions Particles ... more

Pronouns

Interjections

45

Two Types of Constraints

Influential /JJ members/NNS of /IN the/DT House/NNP Ways/NNP and/CC
Means/NNP Committee/ NNP introduced /VBD legislation/NN that/'WDT
would/MD restrict/VB how/WRB the/DT new/JJ savings-and-loan/NN
bailout/NN agency/NN can/MD raise/VB capital /NN ./.

» "Local”: e.g., canis more likely to be a modal verb MD
rather than a noun NN

» “Contextual”: e.g., a noun is much more likely than a
verb to follow a determiner

» Sometimes these preferences are in conflict:
The trash can is in the garage

46

Hidden Markov Models

» We have an input sentence & = &, x9,...,1,
(x; is the i'th word in the sentence)

» We have a tag sequence y = 41,42, ..., ¥Yn
(y; is the i'th tag in the sentence)

» We'll use an HMM to define
])(A.'l'l. LoyeooeyTn,Y1,4Y2,..., .‘/n)

for any sentence x, ..., and tag sequence i, ...y, of the
same length.

» Then the most likely tag sequence for x is

arg max p(r) ... Tn. Y1. Y2, - - ., U)
Y1--Yn

are HMMSs generative or discriminative models”

47

HMM Definition

Assume K parts of speech, a lexicon size of V/, a series of observations
{x1,...,xn}, and a series of unobserved states {z;,...,zy}.

A distribution over start states (vector of length K):
T = p(z1 = i)

Transition matrix (matrix of size K by K):

0ij = p(zn =Jjlzn—1 =1) Markov assumption!
An emission matrix (matrix of size K by V):

Bj,w — P(Xn — W|Zn :J)

48

vBZ CONJ VBZ PRO

come and get It

joint prob p(X1, Xo, X3, X4, Z1, Zo2, 73, Z4) = ??7?

49

vBZ CONJ VBZ PRO

come and get It

joint prob p(X1, Xo, X3, X4, Z1, Zo2, 73, Z4) = ??7?

= p(VBZ)p(come | VBZ)p(CONJ | VBZ)
p(and | CONJ)p(VBZ | CONJ)p(get | VBZ)
p(PROVB2)p(it|PRO)

50

Training Sentences

X = tokens x here come old flattop
z = POS tags z MOD VvV MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO V

and I love her
CONJ PRO V PRO

51

Initial Probability 7

POS | Frequency | Probability
MOD 1.1 0.234
DET 1.1 0.234
CONJ 1.1 0.234

N 0.1 0.021
PREP 0.1 0.021
PRO 0.1 0.021

V 1.1 0.234

let’s use add-alpha smoothing with alpha = 0.1

52

Transition Probability 6

We can ignore the words; just look at the parts of speech. Let's
compute one row, the row for verbs.

We see the following transitions: V. — MOD, V — CONJ, V — V,
V — PRO, and V — PRO

POS | Frequency | Probability
MOD 1.1 0.193
DET 0.1 0.018
CONJ 1.1 0.193

N 0.1 0.018
PREP 0.1 0.018
PRO 2.1 0.368

V 1.1 0.193

how many transition probability distributions do we have”?

53

Emission Probability 3

| et's look at verbs . ..

Word a and come crowd flattop
Frequency 0.1 0.1 1.1 0.1 0.1
Probability | 0.0125 0.0125 0.1375 0.0125 0.0125

Word get gotta her here i
Frequency 1.1 1.1 0.1 0.1 0.1
Probability | 0.1375 0.1375 0.0125 0.0125 0.0125

Word into it life love my
Frequency 0.1 0.1 0.1 1.1 0.1
Probability | 0.0125 0.0125 0.0125 0.1375 0.0125

Word of old people stared stopped
Frequency 0.1 0.1 0.1 1.1 1.1
Probability | 0.0125 0.0125 0.0125 0.1375 0.1375

how many emission probability distributions do we have?

54

Viterbi Algorithm

Given an unobserved sequence of length L, {xy,...,x.}, we want
to find a sequence {z; ...z } with the highest probability.

It's impossible to compute KL possibilities.

So, we use dynamic programming to compute most likely tags for
each token subsequence from 0 to t that ends in state k.

Memoization: fill a table of solutions of sub-problems
Solve larger problems by composing sub-solutions
Base case:
01(k) = Tk Bk x; (1)

Recursion:

On(k) = max (6n—1(/)0; k) Bk x, (2)

J

Viterbi Algorithm

Given an unobserved sequence of length L, {xy,...,x.}, we want
to find a sequence {z; ...z } with the highest probability.

It's impossible to compute KL possibilities.

So, we use dynamic programming to compute most likely tags for
each token subsequence from 0 to t that ends in state k.

r

Memoization: fill a table of solutior for first time step:

Solve larger problems by composing p;(tag) = initial prob(tag) *
Base case: emission prob (word+ | tag)

01(k) = Tk Bk x (1)

Recursion:

On(k) = max (6n—1(/)0; k) Bk x, (2)

J

Viterbi Algorithm

Given an unobserved sequence of length L, {xy,...,x.}, we want
to find a sequence {z; ...z } with the highest probability.

It's impossible to compute KL possibilities.

So, we use dynamic programming to compute most likely tags for
each token subsequence from 0 to t that ends in state k.

r

Memoization: fill a table of solutior for first time step:

for all other time steps: omposing 01(tag) = initial probitag) *
Pr(tag) = max over pre,V,—tag emission prob (word+ | tag)
(on-1(prev_tag) * transition
prob(tag|prev_tag)) 01(k) = 7Bk x (1)
* emission prob(word | tag)
On(k) = max (dn—1()0; k) Bk x, (2)

J

POS Tk Bk,xl Iog 51(/():: log(ﬂkﬁk,xl)
MOD | 0.234 | 0.024 -5.13
DET | 0.234 | 0.032 -4.39
CONJ | 0.234 | 0.024 -5.18
N 0.021 | 0.016 -7.99
PREP | 0.021 | 0.024 -7.59
PRO | 0.021 | 0.016 -7.99
V 0.234 | 0.121 -3.56

Why logarithms?

come and get it

More interpretable than a float with lots of zeros.

Underflow is less of an issue

Addition is cheaper than multiplication

log(ab) = log(a) + log(b)

(4)

log 61 (k)= log(ﬂkﬁk,xl)

Why logarithms?

POS Tk Bk,xl

MOD | 0.234 | 0.024 -5.18

DET | 0.234 | 0.032 -4.89

CONJ | 0.234 | 0.024 -5.18
N 0.021 | 0.016 -7.99

PREP | 0.021 | 0.024 -7.59

PRO | 0.021 | 0.016 -7.99
V 0.234 | 0.121 -3.56

come and

for first time step:
p1(tag) = initial prob(tag) *
emission prob (wordy | tag)

More interpretable than a float with lots of zeros.

Underflow is less of an issue

Addition is cheaper than multiplication

log(ab) = log(a) + log(b)

(4)

POS Iog 51(]) Iog 51(1)9_/,CONJ |og 52(CONJ)
MOD -5.18
DET -4.389
CONJ | -5.18 [
N -7.99
PREP | -7.59
PRO -7.99
Vv -3.56 o

/W?{e and get it

Iog (5O(V)9V, CONJ) — Iog 50(k) + |og 9\/’ CONJ = —3.56 + —1.65

for all other time steps:
Pn(tag) = max over prev_tag
(on-1(prev_tag) * transition
prob(tag|prev_tag))
* emission prob(word | tag)

POS |og 51(]) Iog 51(1)9_/,CONJ |og 52(CONJ)
MOD -5.18
DET -4.389
CONJ | -5.18 [
N -7.99
PREP | -7.59
PRO -7.99
Vv -3.56 o

/W?{e and get it

Iog (50(V)9V, CONJ) — Iog 50(k) + |og 9\/’ CONJ = —3.56 + —1.65

this computation is for all other time steps:
Pn(tag) = max over prev_tag

inside the max: (Pn-1(prev_tag) * transition

pn—‘l(\/) * transition prob(’[aglprev_’[ag))
prob(CONJ|V)) * emission prob(word | tag)

POS Iog 51(]) Iog 51(1)9_/,CONJ |og 52(CONJ)
MOD -5.138 -3.43
DET -4.389 -7.72
CONJ | -5.18 -8.47 [
N -7.99 < -7.99
PREP | -7.59 < —7.59
PRO -7.99 < —-7.99
V -3.56

come and get it

do the computation for all

nossible prev tags:

On-1(prev_tag) *
transition prob(CONJ|prev_tag))

and then take the max, which
happens to be V here

POS Iog 51(]) Iog 51(1)9_/,CONJ |og 52(CONJ)
MOD -5.138 -3.43
DET -4.389 -7.72
CONJ | -5.18 -3.47
N -7.99 < —-7.99
PREP | -7.59 < —7.59
PRO -7.99 < —7.99
V -3.56

come and get it

now just multiply by the
emission probability
p(wordz| CONJ) to get
the final p2(CONJ)

logd1(k) = —5.21 + log 6CONJ, and = 5.21 — 0.64

backpointer!

~

POS 01(k) | d2(k) | b2 | 93(k) b3 da(k)
MOD | -5.18
DET -4.89
CONJ | -5.18 | -6.02 | V
N -7.99
PREP | -7.59
PRO -7.99
V -3.56
WORD | come and get it

to find p2(CONJ), we had to compute a
max over K previous states.
the same is true for p2(N), p2(PREP), etc.
for one time step, complexity is k2!

machine translation

65

MT is hard

® Word meaning:
many-to-many and context dependent

® [ranslation itself is hard: metaphors, cultural

references, etc.
66

Recap: The Noisy Channel Model

» Goal: translation system from French to English

» Have a model p(e| f) which estimates conditional probability
of any English sentence e given the French sentence f. Use
the training corpus to set the parameters.

» A Noisy Channel Model has two components:
p(e) the language model
p(f | e) the translation model

» Giving:
Cplef) pEp(fle)
p(f) 2.ple)p(f|e)

ple | f)

and
argmax,p(e | f) = argmax,p(e)p(f |)

67

Alignment Function

Formalizing alignment with an alignment function

Mapping an English target word at position / to a German source
word at position j with a function a:/ — |

Example
a:{l1—1,2—23—34—4}

Reordering

Words may be reordered during translation

1 2 3 4
klein I1st das Haus

the house Is small
1 2 3 4

a:{l1—32—43—->24—1}

One-to-Many Translation

A source word may translate into multiple target words

1 2 3 4
das Haus ist Kklitzeklein

/\

the house Is very small
1 2 3 4 3

a:{l—1,2—-23—->34—45—4}

IBM Model 1: Alignments

translation model

H del [-
» How do we mode p(f | 6) IN NOISY channel

» English sentence e has [words e; ... ¢,
French sentence f has m words f; ... f,,.

» An alignment a identifies which English word each French
word originated from

» Formally, an alignment a is {aq,...a,,}, where each
Q; c {O ce l}

» There are (I + 1)™ possible alignments.

71

IBM Model 1: The Generative Process

To generate a French string f from an English string e:

1
[+1)m

» Step 1: Pick an alignment a with probability (

» Step 2: Pick the French words with probability

p(f ‘ a,e,m) — Ht(f] | €a,j)
The final result:
p(fa] ecm) = pla | e.m)<pf | a.eom) = [1e0r 1 e

72

example

> eg,l=6,m=7

e = And the program has been implemented

| = Le programme a ete mis en application
» a=1{2,3,4,5,6,6,6}

p(flae) = t(Le|the) x
t(programme | program) X
t(a | has) X

t(ete | been) x

t(mes | implemented) X

t(en | implemented) X

(a

t(application | implemented)

chicken & egg problem!

e |f we had the alignments, we could estimate
the parameters of our model (i.e., the lexical
translation probabilities)

e |f we had the parameters, we could estimate
the alignments.

e we have neither! :(

74

Parameter Estimation if the Alignments are Observed

» First: case where alignments are observed in training data.

E.g.,
et — And the program has been implemented

100 — | e programme a ete mis en application
a9 = (23 4.5.6,6,6)

> Training data is (e, f®) q®) for k = 1...n. Each e is
an English sentence, each f("“) is a French sentence, each a®
Is an alignment

» Maximum-likelihood parameter estimates in this case are
trivial:

farn(fle) = Count(e, f)

Count(e)

75

EM algorithm

* Expectation maximization (EM) in a nutshell:

1. Initialize model parameters (trans. probs) using
some method (e.g., uniform)

2. assign probabilities to missing data (alignments)

3. estimate model parameters from the completed
data

4, iterate steps 2-3 until convergence

76

dataset:

green house the house
casa verde la casa

initialize translation probabilities uniformly:

t(casa|green) = |/3 | t(verde|green) = 1/3 t(lajgreen) = |/3

t(casalhouse) = |/3 | t(verde|house) = |/3 | t(lalhouse) = 1/3

t(casalthe) = |/3 t(verde|the) = |/3 t(lajthe) = |/3

77

E-Step 1: compute expected
counts E|count(t(f,e)]

first, for all alignments, let's compute p(f,ale) = Ht(files)
j=1

green house | green house the house the house

R e S T e

casa verde casa verde la casa la casa

1
p(f,a|e) = t(casa|green) x r(verde |house) = 5

E-Step 1: compute expected
counts E|count(t(f,e)]

first, for all alignments, let's compute p(f,ale) = Ht(files)
j=1

green house green house the house the house

R S N e

casa verde casa verde la casa la casa

1 1 1 1
p(f,a\e)=§ P(f»a|€)=§ P(f»d\e)=§ P(f,a\e)=3

E-Step 1: compute expected
counts E|count(t(f,e)]

next, let's compute alignment probabilities by normalizing:

p(a,fle)
2. pla.fle)

plalf,e) =

green house| green house the house the house

o> T X<

casa verde casa verde la casa la casa

plalf,e) = 5

ol o]~

E-Step 1: compute expected

counts E|count(t(f,e)]

now let’s finally compute expected
(fractional) counts for each (f,e) pair

there is exactly one casa—green
alignment with prob. 1/2

t(casalgreen) = |/2 | t(verde|green) = t(lagreen) = total(green) =
t(casalhouse) = t(verde|house) = t(lalhouse) = total(house) =
t(casalthe) = t(verde|the) = t(la|the) = total(the) =

M-Step 1: compute MLE counts

by normalizing

easy! just normalize each row to sum to 1

t(casalgreen) = |/2

t(verde|green) = 1/2

t(lajgreen) =0

t(casalhouse) = |/2

t(verde|house) = /4

t(lalhouse) = 1/4

t(casalthe) = |/2

t(verde|the) =0

t(la|the) = 1/2

note that each of the correct translations have increased in
probability! t(casalhouse) is now 1/2 instead of 1/3

Imitations of IBM models

® (iscrete alignments

e all alignments equally likely (model 1 only)

® translation of each f word depends only on
aligned e word!

83

seqgZseq models

L
e use two different RNNs to model Hp(eilep €15 f)
i=1

® first we have the encoder, which encodes the

foreign sentence f

® then, we have the decoder, which produces
the English sentence e

84

Encoder RNN

Training a Neural Machine Translation system

= negative log = negative log = negative log
1 T prob of “the” prob of “have” prob of <END>
J=:0 e = [l J o+ Js el Js + Js 4
) T T T T T T T
yio Y2 Y3 Yo Vs Ve V7
BRI NHHNE o8] e 8| [e] s I8
© ©
< o o |e (e 1ol lo 1o 1o o[lo |0
L @ () @ () (@) o (@) o o o (@)
les pauvres sont démunis <START> the poor don’t have any money
N J \ J
Y Y
Source sentence (from corpus) Target sentence (from corpus)

what are the parameters of this model”
W;nc, Weenc, Cenc, lez’ec, Wg’ec, Cdec, Wo

ut

NNY 49P033a(

85 C is word embedding matrix

Beam search

® |n greedy decoding, we cannot go back and

revise prev

IouUs decisions!

* |les pauvres sont déemunis (the poor don’t have any money)

* > the
* — the poor

* = the poor are

e fundamental idea of beam search: explore
several different hypotheses instead of just a

single one

e Keep track of k most probable partial translations
at each decoder step instead of just one!

the beam size k is usually 5-10

Beam search decoding: example

Beam size = 2

poor | -1.90
the <
people | -2.3

/

<START>

\a

< poor -1.54
person

-3.2

Beam search decoding

Beam size =2

: example

are -2.42
poor
the< don’t | -2.13
/ people
<START>
\ person | -3.12
poor
a < but -3.53

person

does beam search always produce the best
translation (i.e., does it always find the argmax?)

how many probabilities do we need to evaluate
at each time step with a beam size of k”?

what are the termination
conditions for beam search??

89

Encoder RNN

Sequence-to-sequence: the bottleneck problem

Encoding of the
source sentence.
This needs to capture all Target sentence (output)
information about the A

4 \
source sentence. " don't END
. e poor don ave any money <END>
Information bottleneck! P v Y Y

R RERAEAINA R R RE R RE R
@ (@ (@

) o “|lo| ‘e[|e@ 1o lo[o[lo[" lo[e[o
[() [@ (@ O o o o o (@
les pauvres sont démunis <START> the poor don’t have any money
\ J

Y
Source sentence (input)

NNY 42P023a(d

Attention
distribution

Attention

Encoder

Sequence-to-sequence with attention

scores

RNN

.
. .
-
b
l““‘

.
A
.
.®
PRy
.
“ K4
.* ¥
.®
.
.®
.
.
PRy

Attention

output

U
U
- .
U .
U -
& -
& -
N -
U
8 H
o .
U
N .
. -
0 .

{ i
TTT T

*
*
*
*
*
*
*
f:

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

the

A

les pauvres sont démunis

\

J

Y

Source sentence (input)

—>1 0000

<START>

Concatenate attention output

y, <— with decoder hidden state, then

use to compute ¥y, as before

Attention
distribution

Attention

Encoder

Sequence-to-sequence with attention

scores

RNN

Attention
output

O"

*

*
‘-“‘i

@ QJ/. @

poor

‘e N\
*
’0
*
*
N 2
*
*
*
*
*
*
*
*
*

‘\
“
\J

A .

-

:

* -
o* -
* -

o - *
** . .
* - .
** - ®
. - .
o* - *

1]

—> 0000

les pauvres sont démunis

\

J

Y
Source sentence (input)

©000]|

—>1 0000

|

<START> the

decoder, second time step

BLEU
Silingual Evaluation Understudy

N-gram overlap between machine translation output and reference translation
Compute precision for n-grams of size 1 to 4

Add brevity penalty (for too short translations)

N

4
, output-length .
BLEU = 1 .

- mm(’reference—length) (Zl_llp recision,)

Typically computed over the entire corpus, not single sentences

93

word representations

94

why use vectors to encode meaning”?

® computing the similarity between two words
(or phrases, or documents) is extremely
useful for many NLP tasks

e (: how tall is Mount Everest?

A: The official height of Mount Everest is
29029 ft

95

all words are equally (dis)similar!

movie = <0, 0,0, 0, 1, O>
flm =<0,0,0,0,0, 1>

dot product is zero!
these vectors are orthogonal

how can we compute a vector representation such
that the dot product correlates with word similarity”?

96

dense word vectors

® model the meaning of a word as an
embedding in a vector space

e this vector space is commonly low dimensional
(e.g., 100-5004d).

e what Is the dimensionality of a one-hot worad
representation?

® cmbeddings are real-valued vectors (not
binary or counts)

97

Word2vec

°lnstead of counting how often each
word w occurs near "apricot”

°Train a classifier on a binary
prediction task:
°|s w likely to show up near "apricot"?

°We don’t actually care about this task

°-But we'll take the learned classifier weights
as the word embeddings

98

Setup

Let's represent words as vectors of some length (say
300), randomly initialized.

So we start with 300 * V random parameters

Over the entire training set, we’'d like to adjust those
word vectors such that we

> Maximize the similarity of the target word, context
word pairs (t,c) drawn from the positive data

> Minimize the similarity of the (t,c) pairs drawn from
the negative data.

Objective Criteria

We want to maximize...
Z logP(+|t,c) + Z logP(—|t, c)
(t,c)e+ (t,c)E—

Maximize the + label for the pairs from the positive

training data, and the — label for the pairs sample
from the negative data.

Focusing on one target word t:

n;is the vector for the
negative sample

log P(+|t,c)+) logP(—|t,n;)
=1

L(6)

k
logo(c-t)+) logo(—n;-t)
=1

1 k 1
] N7
N p— Z_; P51 enit

you should be able to take
derivatives of this as in HW2!

