Introduction to Syntax

CS 585, Fall 2018
Introduction to Natural Language Processing http://people.cs.umass.edu/~miyyer/cs585/

Mohit lyyer

College of Information and Computer Sciences
University of Massachusetts Amherst
(Slides and Lecture by Tu Vu)
some slides adapted from Michael Collins, Marine Carpuat, Wei Xu, and Rebecca Hwa

A Reminder!

- Project proposal
- due on October 19, 2018 (this Friday) at 11:59 PM
- Midterm
- will be held in this room on October 25, 2018 (next Thursday)
- will cover text classification, word representations, language modeling, sequence labeling, and machine translation
- will not cover today's lecture and next lectures
- 20% multiple choice, 80% short answer/computational questions
- 1-page "cheat sheet" allowed, must be hand-written
- Reading for the next lecture
- JM 12

Overview

$>$ An Introduction to Syntax
$>$ Constituency
$>$ Context-Free Grammars (CFGs)
$>$ English Grammar in a Nutshell

Overview

$>$ An Introduction to Syntax

- Syntax
- Syntax and Grammar
- Syntax vs. Semantics
- Syntax in NLP applications
- Syntactic Structure
> Constituency
$>$ Context-Free Grammars (CFGs)
$>$ English Grammar in a Nutshell

Syntax

- Sýntaxis (setting out together or arrangement)
- The ordering of words and how they group into phrases

Syntax

- Sýntaxis (setting out together or arrangement)
- The ordering of words and how they group into phrases

- [[students]][cook and serve][grandparents]]]
- [[students][[cook][and][serve grandparents]]]

Syntax and Grammar

- Goal of syntactic theory
- "explain how people combine words to form sentences and how children attain knowledge of sentence structure"
- Grammar
- implicit knowledge of a native speaker
- acquired without explicit instruction
- minimally able to generate all and only the possible sentences of the language

Syntax vs. Semantics

"Colorless green ideas sleep furiously." - Noam Chomsky (1957)

Contrast with: "sleep green furiously ideas colorless"

Syntax in NLP application

- Syntactic analysis is often a key component in many applications
- Grammar checkers
- Dialogue systems
- Question answering
- Information extraction
- Machine translation

An Example: Machine Translation

- English word order is
- subject - verb - object
- Japanese word order is
- subject - object - verb

English:	IBM bought Lotus
Japanese:	IBM Lotus bought

English: Sources said that IBM bought Lotus yesterday
Japanese: \quad Sources yesterday IBM Lotus bought that said

Another Example: Paraphrasing

Credit: Wei Xu

Lexical	$[\mathrm{VBD}]$	applauded \rightarrow praised
Syntactic	$[\mathrm{NP}]$	NNP's JJ legislation \rightarrow the JJ law of NNP

Syntactic Structure

- Constituency (phrase structure)
- Phrase structure organizes words in nested constituents

${ }_{S}\left[{ }_{N P}\left[P_{\text {rro }} \mathrm{I}\right]\right]\left[{ }_{V P}[V \operatorname{prefer}]\left[{ }_{N P}\left[{ }_{D e t} \mathrm{a}\right]\left[{ }_{N o m}[N\right.\right.\right.$ morning $]\left[{ }_{N o m}[N\right.$ flight $\left.\left.\left.\left.]\right]\right]\right]\right]$

Syntactic Structure (cont.)

- Dependency structure
- Shows which words depend on (modify or are arguments of) which on other words

Overview

- An Introduction to Syntax

$>$ Constituency

- Constituency
- Grammars and Constituency
> Context-Free Grammars (CFGs)
$>$ English Grammar in a Nutshell

Constituency

- Basic idea
- Groups of words behaving as single units, or constituents
- Constituents form coherent classes that behave similarly
- With respect to their internal structure: e.g., at the core of a noun phrase is a noun
- With respect to other constituents: e.g., noun phrases generally occur before verbs

Constituency (cont.)

- Examples
- Noun phrases

Harry the Horse	a high-class spot such as Mindy's
the Broadway coppers	the reason he comes into the Hot Box
they	three parties from Brooklyn

- Prepositional phrases
on September seventeenth

Constituency (cont.)

- Examples
- Noun phrases

Harry the Horse	a high-class spot such as Mindy's
the Broadway coppers	the reason he comes into the Hot Box
they	three parties from Brooklyn

- Prepositional phrases
on September seventeenth

What evidence do we have that these groups of words behave as single units (or "form constituents")?

Constituency (cont.)

- One piece of evidence
- They can all appear in similar syntactic environments, e.g., before a verb
three parties from Brooklyn arrive...
a high-class spot such as Mindy's attracts... the Broadway coppers love... they sit

Constituency (cont.)

- One piece of evidence
- They can all appear in similar syntactic environments, e.g., before a verb

```
three parties from Brooklyn arrive...
a high-class spot such as Mindy's attracts...
the Broadway coppers love...
they sit
```

- This is true for the entire phrase but not true of each of the individual words that make up the phrase

```
*from arrive... *as attracts...
*the is... *spot sat...
```

(*) marks fragments that are not grammatical English sentences

Constituency (cont.)

- Another piece of evidence
- They can be placed in a number of different locations, e.g., at the beginning (preposed) or at the end (postposed) of a sentence

On September seventeenth, I'd like to fly from Atlanta to Denver I'd like to fly on September seventeenth from Atlanta to Denver I'd like to fly from Atlanta to Denver on September seventeenth

Constituency (cont.)

- Another piece of evidence
- They can be placed in a number of different locations, e.g., at the beginning (preposed) or at the end (postposed) of a sentence

On September seventeenth, I'd like to fly from Atlanta to Denver I'd like to fly on September seventeenth from Atlanta to Denver I'd like to fly from Atlanta to Denver on September seventeenth

- Again, the entire phrase can be placed differently, but the individual words that make up the phrase cannot be

[^0]
Grammars and Constituency

- For a particular language:
- What are the "right" set of constituents?
- What rules govern how they combine?

Grammars and Constituency (cont.)

- For a particular language:
- What are the "right" set of constituents?
- What rules govern how they combine?
- Answer: not obvious and difficult
- A significant part of developing a grammar involves discovering the inventory of constituents present in the language
- That's why there are many different theories of grammar and competing analyses of the same data!

Grammars and Constituency (cont.)

- Some standard grammar formalisms:
- Context-Free Grammar (CFG)
- Lexical-Functional Grammar (LFG)
- Head-Driven Phrase Structure Grammar (HPSG),
- Tree-Adjoining Grammar (TAG),
- Combinatory Categorial Grammar (CCG)
- While CFG emphasizes phrase-structure rules, the other approaches share the common theme of making better use of the lexicon

Overview

$>$ An Introduction to Syntax

$>$ Constituency
$>$ Context-Free Grammars (CFGs)

- The Chomsky Hierarchy
- Context-Free Grammars (CFGs)
- Formal Definition of Context-Free Grammar
- Syntactic Parsing
- Examples of ambiguous structures
> English Grammar in a Nutshell

The Chomsky Hierarchy

- You've already seen one class of grammars: regular expressions
- A pattern like ^[a-z][0-9]\$ corresponds to a grammar which accepts (matches) some strings but not others.
- Q: Can regular languages define infinite languages?

The Chomsky Hierarchy (cont.)

- You've already seen one class of grammars: regular expressions
- A pattern like ${ }^{\wedge}[a-z][0-9] \$$ corresponds to a grammar which accepts (matches) some strings but not others.
- Q: Can regular languages define infinite languages? Yes, e.g. a*

The Chomsky Hierarchy (cont.)

- You've already seen one class of grammars: regular expressions
- A pattern like ^[a-z][0-9]\$ corresponds to a grammar which accepts (matches) some strings but not others.
- Q: Can regular languages define infinite languages? Yes, e.g. a*
- Q: Can regular languages define arbitrarily complex languages?

The Chomsky Hierarchy (cont.)

- You've already seen one class of grammars: regular expressions
- A pattern like ^[a-z][0-9]\$ corresponds to a grammar which accepts (matches) some strings but not others.
- Q: Can regular languages define infinite languages? Yes, e.g. a*
- Q: Can regular languages define arbitrarily complex languages?
No. Cannot match all strings with matched parentheses or in $a^{n} b^{n}$ forms in general (recursion/arbitrary nesting).

The Chomsky Hierarchy (cont.)

- Hierarchy of classes of formal languages
- One grammar is of greater generative power or complexity than another if it can define a language that other cannot define.

- Context-free grammars are more powerful than regular grammars, and can account for much of the syntactic structure of English.

Context-Free Grammars

- Context-Free Grammars (CFGs)
- Aka Phrase Structure Grammars
- Aka Backus-Naur Form (BNF)
- The most widely used formal system for modeling constituent structure in English and other natural languages
- Good enough for most NLP applications!

The idea of basing a grammar on constituent structure dates back to Wilhelm Wundt (1900) but was not formalized until Chomsky (1956) and, independently, Backus (1959)

- Consist of
- Rules or productions
- Terminals
- Non-terminals

Context-Free Grammars (cont.)

- Rules or productions each rule can express
- the ways that symbols of the language can be grouped and ordered together

$N P \rightarrow$ Det Nominal
NP \rightarrow ProperNoun
Nominal \rightarrow Noun | Nominal Noun

- a lexicon of words and symbols

$$
\begin{aligned}
\text { Det } & \rightarrow a \\
\text { Det } & \rightarrow \text { the } \\
\text { Noun } & \rightarrow \text { flight }
\end{aligned}
$$

Context-Free Grammars (cont.)

- Terminals
- Words in the language, e.g., "the", "flight"
- Non-terminals
- The constituents in the language, e.g., noun phrases (NP), verb phrases (VP)
- Express abstractions over terminals

Context-Free Grammars (cont.)

- A grammar with examples for each rule

Grammar Rules	Examples
$S \rightarrow N P V P$	I + want a morning flight
$N P \rightarrow$ Pronoun	I
Proper-Noun	Los Angeles
Det Nominal	a + flight
Nominal \rightarrow Nominal Noun	morning + flight
Noun	flights
$V P \rightarrow$ Verb	do
Verb NP	want + a flight
Verb NP PP	leave + Boston + in the morning
Verb PP	leaving + on Thursday
PP \rightarrow Preposition NP	from + Los Angeles

" $"$ " indicates that a non-terminal has alternate possible expansions

Context-Free Grammars (cont.)

- A lexicon

$$
\begin{aligned}
\text { Noun } \rightarrow & \text { flights } \mid \text { breeze } \mid \text { trip } \mid \text { morning } \\
\text { Ver } \rightarrow & \rightarrow \text { is } \mid \text { prefer } \mid \text { like } \mid \text { need } \mid \text { want } \mid \text { fly } \\
\text { Adjective } \rightarrow & \text { cheapest } \mid \text { non-stop } \mid \text { first } \mid \text { latest } \\
& \mid \text { other } \mid \text { direct } \\
\text { Pronoun } \rightarrow & \text { me }|I| \text { you } \mid \text { it } \\
\text { Proper-Noun } \rightarrow & \text { Alaska } \mid \text { Baltimore } \mid \text { Los Angeles } \\
& \mid \text { Chicago } \mid \text { United } \mid \text { American } \\
\text { Determiner } \rightarrow & \text { the }|a| \text { an } \mid \text { this } \mid \text { these } \mid \text { that } \\
\text { Preposition } \rightarrow & \text { from } \mid \text { to } \mid \text { on } \mid \text { near } \\
\text { Conjunction } \rightarrow & \text { and } \mid \text { or } \mid \text { but }
\end{aligned}
$$

" $"$ " indicates that a non-terminal has alternate possible expansions

Context-Free Grammars (cont.)

- The form of a context-free rule $A \rightarrow \beta$
- $\quad \beta$ is an ordered list of one or more terminals and nonterminals
- A is a single non-terminal symbol expressing some cluster or generalization.
- In the lexicon, β is a word and A is its lexical category, or POS
- Two view of a CFG
- As a device for generating sentences
- As a device for assigning a structure to a given sentence

Context-Free Grammars (cont.)

- CFG as a generator
- We can read the rule $A \rightarrow \beta$ as "rewrite the symbol A on the left with string of symbols in β on the right".

An example

Rule expansions Rules used
 S

Grammar Rules	
$S \rightarrow N P V P$	
$N P \rightarrow$	Pronoun
	Proper-Noun
	Det Nominal
Nominal \rightarrow	Nominal Noun Noun
$V P \rightarrow$	
	Verb NP
	Verb NP PP
	Verb PP
$P P \rightarrow$	Preposition NP

```
Noun }->\mathrm{ flight | breeze | trip | morning
            Verb }->\mathrm{ is | prefer | like | need | want | fly
    Adjective }->\mathrm{ cheapest | non-stop | first | latest
        | other | direct
    Pronoun }->\mathrm{ me | I| you | it
Proper-Noun }->\mathrm{ Alaska | Baltimore | Los Angeles
    | Chicago | United | American
    Determiner }->\mathrm{ the | a| an | this | these | that
    Preposition }->\mathrm{ from |to | on | near
Conjunction }->\mathrm{ and | or | but
```


An example (cont.)

Rule expansions Rules used
 $S \quad S \rightarrow N P$ VP

Grammar Rules
$\rangle S \rightarrow N P V P$
$N P \rightarrow$ Pronoun
Proper-Noun
\| Det Nominal
$\text { Nominal } \underset{ }{\rightarrow} \text { Nominal Noun }$
$V P \rightarrow$ Verb
Verb NP
Verb NP PP
\| Verb PP
PP \rightarrow Preposition NP

```
Noun }->\mathrm{ flight | breeze | trip | morning
    Verb }->\mathrm{ is | prefer | like | need | want | fly
    Adjective }->\mathrm{ cheapest | non-stop | first | latest
        | other | direct
    Pronoun }->\mathrm{ me | I| you | it
Proper-Noun }->\mathrm{ Alaska | Baltimore | Los Angeles
    | Chicago | United | American
    Determiner }->\mathrm{ the | a| an | this | these | that
    Preposition }->\mathrm{ from | to | on | near
    Conjunction }->\mathrm{ and | or |but
```


An example (cont.)

Rule expansions Rules used
 S
 $S \rightarrow N P V P$

Grammar Rules	
$S \rightarrow$	$N P$ VP
$N P \rightarrow$	Pronoun
	Proper-Noun
	Det Nominal
Nominal \rightarrow	Nominal Noun
	Noun
$V P \rightarrow$	Verb
	Verb NP
	Verb NP PP
	Verb PP
$P P \rightarrow$	Preposition NP

```
Noun }->\mathrm{ flight | breeze | trip | morning
    Verb }->\mathrm{ is | prefer | like | need | want | fly
    Adjective }->\mathrm{ cheapest | non-stop | first | latest
        | other | direct
    Pronoun }->\mathrm{ me | I| you | it
Proper-Noun }->\mathrm{ Alaska | Baltimore | Los Angeles
    | Chicago | United | American
    Determiner }->\mathrm{ the | a| an | this | these | that
    Preposition }->\mathrm{ from | to | on | near
    Conjunction }->\mathrm{ and | or |but
```


An example (cont.)

Rule expansions Rules used
 S NP VP
 $S \rightarrow N P V P$
 $\mathrm{NP} \rightarrow \mathrm{Pro}$


```
            Noun }->\mathrm{ flight | breeze | trip | morning
            Verb }->\mathrm{ is | prefer | like | need | want | fly
    Adjective }->\mathrm{ cheapest | non-stop | first | latest
        | other | direct
    Pronoun }->\mathrm{ me | I| you | it
Proper-Noun }->\mathrm{ Alaska | Baltimore | Los Angeles
    | Chicago | United | American
    Determiner }->\mathrm{ the | a| an | this | these | that
    Preposition }->\mathrm{ from | to | on | near
    Conjunction }->\mathrm{ and | or | but
```


An example (cont.)

Rule expansions Rules used

NP VP
Pro VP

$S \rightarrow N P V P$
$N P \rightarrow$ Pro

Grammar Rules	
$S \rightarrow N P V P$	
$N P \rightarrow$	Pronoun
	Proper-Noun
	Det Nominal
Nominal \rightarrow	Nominal Noun
	Noun
$V P \rightarrow$	Verb
	Verb NP
	Verb NP PP
	Verb PP
$P P \rightarrow$	Preposition NP

An example (cont.)

Rule expansions Rules used
 S NP VP Pro VP
 $S \rightarrow N P V P$
 $\mathrm{NP} \rightarrow \mathrm{Pro}$
 $\mathrm{VP} \rightarrow$ Verb NP


```
            Noun }->\mathrm{ flight | breeze | trip | morning
            Verb }->\mathrm{ is | prefer | like | need | want | fly
    Adjective }->\mathrm{ cheapest | non-stop | first | latest
        | other | direct
    Pronoun }->\mathrm{ me | I| you | it
Proper-Noun }->\mathrm{ Alaska | Baltimore | Los Angeles
    | Chicago | United | American
    Determiner }->\mathrm{ the | a| an | this | these | that
    Preposition }->\mathrm{ from |to | on | near
    Conjunction }->\mathrm{ and | or | but
```


An example (cont.)

Rule expansions Rules used

S

NP VP
Pro VP
Pro Verb NP


```
            Noun }->\mathrm{ flight | breeze | trip | morning
            Verb }->\mathrm{ is | prefer | like | need | want | fly
    Adjective }->\mathrm{ cheapest | non-stop | first | latest
        | other | direct
    Pronoun }->\mathrm{ me | I| you | it
Proper-Noun }->\mathrm{ Alaska | Baltimore | Los Angeles
    | Chicago | United | American
    Determiner }->\mathrm{ the | a| an | this | these | that
    Preposition }->\mathrm{ from |to | on | near
    Conjunction }->\mathrm{ and | or | but
```


An example (cont.)

Rule expansions Rules used
 S
 NP VP
 Pro VP
 Pro Verb NP

Noun \rightarrow flight \mid breeze \mid trip \mid morning	
Verb \rightarrow	is \mid prefer \mid like \mid need \mid want \mid fly
Adjective \rightarrow	cheapest \mid non-stop \mid first \mid latest
	\mid other \mid direct
Pronoun \rightarrow	me $\|I\|$ you \mid it
Proper-Noun \rightarrow Alaska \mid Baltimore \mid Los Angeles	
	\mid Chicago \mid United \mid American
Determiner \rightarrow the \mid a an \mid this \mid these \mid that	
Preposition \rightarrow from \mid to \mid on \mid near	
Conjunction \rightarrow and \mid or \mid but	

 Verb \(\rightarrow\) is \(\mid\) prefer \(\mid\) like \(\mid\) need \(\mid\) want \(\mid\) fly
 Adjective \(\rightarrow\) cheapest \(\mid\) non-stop \(\mid\) first \(\mid\) latest
 | other | direct
 Pronoun \rightarrow me $|I|$ you \mid it
Proper-Noun \rightarrow Alaska \mid Baltimore \mid Los Angeles
\mid Chicago \mid United \mid American
Determiner \rightarrow the $|a|$ an \mid this \mid these \mid that
Preposition \rightarrow from \mid to \mid on \mid near
Conjunction \rightarrow and \mid or \mid but

An example (cont.)

Rule expansions Rules used

S

NP VP
Pro VP
Pro Verb NP
I Verb NP


```
            Noun }->\mathrm{ flight | breeze | trip | morning
            Verb }->\mathrm{ is | prefer | like | need | want | fly
    Adjective }->\mathrm{ cheapest | non-stop | first | latest
        | other | direct
    Pronoun }->\mathrm{ me | I| you | it
Proper-Noun }->\mathrm{ Alaska | Baltimore | Los Angeles
    | Chicago | United | American
    Determiner }->\mathrm{ the | a| an | this | these | that
    Preposition }->\mathrm{ from | to | on | near
    Conjunction }->\mathrm{ and | or | but
```


An example (cont.)

Rule expansions Rules used

S
NP VP
Pro VP
Pro Verb NP
I Verb NP
$S \rightarrow N P V P$
$\mathrm{NP} \rightarrow$ Pro
VP \rightarrow Verb NP
Pro $\rightarrow I$
Verb \rightarrow prefer


```
    Noun \(\rightarrow\) flight \(\mid\) breeze \(\mid\) trip \(\mid\) morning
    Verb \(\rightarrow\) is \(\mid\) prefer \(\mid\) like \(\mid\) need \(\mid\) want \(\mid\) fly
    Adjective \(\rightarrow\) cheapest \(\mid\) non-stop \(\mid\) first \(\mid\) latest
        | other \(\mid\) direct
    Pronoun \(\rightarrow\) me \(|I|\) you \(\mid\) it
Proper-Noun \(\rightarrow\) Alaska \(\mid\) Baltimore \(\mid\) Los Angeles
    \(\mid\) Chicago \(\mid\) United \(\mid\) American
    Determiner \(\rightarrow\) the \(|a|\) an \(\mid\) this \(\mid\) these \(\mid\) that
    Preposition \(\rightarrow\) from \(\mid\) to \(\mid\) on \(\mid\) near
Conjunction \(\rightarrow\) and \(\mid\) or \(\mid\) but
```


An example (cont.)

Rule expansions Rules used

S

NP VP
Pro VP
Pro Verb NP
I Verb NP
I prefer NP

Grammar Rules	
$S \rightarrow$	$N P$ VP
$N P \rightarrow$	Pronoun
	Proper-Noun
	Det Nominal
Nominal \rightarrow	Nominal Noun
	Noun
$V P \rightarrow$	
	Verb $\mathrm{N}^{\text {P }}$
	Verb NP PP
	Verb PP
PP \rightarrow	Preposition NP

An example (cont.)

Rule expansions Rules used

S

NP VP
Pro VP
Pro Verb NP
I Verb NP
I prefer NP
$S \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ Pro
VP \rightarrow Verb NP
Pro $\rightarrow I$
Verb \rightarrow prefer
NP \rightarrow Det Nom


```
            Noun \(\rightarrow\) flight \(\mid\) breeze \(\mid\) trip \(\mid\) morning
            Verb \(\rightarrow\) is \(\mid\) prefer \(\mid\) like \(\mid\) need \(\mid\) want \(\mid\) fly
    Adjective \(\rightarrow\) cheapest \(\mid\) non-stop \(\mid\) first \(\mid\) latest
        \(\mid\) other \(\mid\) direct
        Pronoun \(\rightarrow\) me \(|I|\) you \(\mid\) it
Proper-Noun \(\rightarrow\) Alaska \(\mid\) Baltimore \(\mid\) Los Angeles
                            \(\mid\) Chicago \(\mid\) United \(\mid\) American
    Determiner \(\rightarrow\) the \(|a|\) an \(\mid\) this \(\mid\) these \(\mid\) that
    Preposition \(\rightarrow\) from \(\mid\) to \(\mid\) on \(\mid\) near
    Conjunction \(\rightarrow\) and \(\mid\) or \(\mid\) but
```


An example (cont.)

Rule expansions Rules used

S

NP VP
Pro VP
Pro Verb NP
I Verb NP
I prefer NP
I prefer Det Nom


```
            Noun \(\rightarrow\) flight \(\mid\) breeze \(\mid\) trip \(\mid\) morning
            Verb \(\rightarrow\) is \(\mid\) prefer \(\mid\) like \(\mid\) need \(\mid\) want \(\mid\) fly
    Adjective \(\rightarrow\) cheapest \(\mid\) non-stop \(\mid\) first \(\mid\) latest
        | other \(\mid\) direct
        Pronoun \(\rightarrow\) me \(|I|\) you \(\mid\) it
Proper-Noun \(\rightarrow\) Alaska \(\mid\) Baltimore \(\mid\) Los Angeles
            \(\mid\) Chicago \(\mid\) United \(\mid\) American
    Determiner \(\rightarrow\) the \(|a|\) an \(\mid\) this \(\mid\) these \(\mid\) that
    Preposition \(\rightarrow\) from \(\mid\) to \(\mid\) on \(\mid\) near
Conjunction \(\rightarrow\) and \(\mid\) or \(\mid\) but
```


An example (cont.)

Rule expansions Rules used

S
NP VP
Pro VP
Pro Verb NP
I Verb NP
I prefer NP
I prefer Det Nom
$S \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ Pro
VP \rightarrow Verb NP
Pro $\rightarrow I$
Verb \rightarrow prefer
NP \rightarrow Det Nom
Det $\rightarrow a$

Noun \rightarrow flight \mid breeze \mid trip \mid morning	
Verb \rightarrow is \mid prefer \mid like \mid need \mid want \mid fly	
Adjective \rightarrow	cheapest \mid non-sto \mid first \mid latest
	\mid other \mid direct
Pronoun \rightarrow me \mid I \mid you \mid it	
Proper-Noun \rightarrow	Alaska \mid Baltimore \mid Los Angeles
	\mid Chicago \mid United \mid American
Determiner \rightarrow	the \mid a \mid an \mid this \mid these \mid that
Preposition \rightarrow from \mid to \mid on \mid near	
Conjunction \rightarrow and \mid or \mid but	

An example (cont.)

Rule expansions Rules used

S

NP VP
Pro VP
Pro Verb NP
I Verb NP
I prefer NP
I prefer Det Nom
I prefer a Nom
$S \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ Pro
VP \rightarrow Verb NP
Pro $\rightarrow I$
Verb \rightarrow prefer
NP \rightarrow Det Nom
Det $\rightarrow a$


```
            Noun \(\rightarrow\) flight \(\mid\) breeze \(\mid\) trip \(\mid\) morning
            Verb \(\rightarrow\) is \(\mid\) prefer \(\mid\) like \(\mid\) need \(\mid\) want \(\mid\) fly
        Adjective \(\rightarrow\) cheapest \(\mid\) non-stop \(\mid\) first \(\mid\) latest
        | other | direct
        Pronoun \(\rightarrow\) me \(|I|\) you \(\mid\) it
Proper-Noun \(\rightarrow\) Alaska \(\mid\) Baltimore \(\mid\) Los Angeles
            \(\mid\) Chicago \(\mid\) United \(\mid\) American
Determiner \(\rightarrow\) the \(|a|\) an \(\mid\) this \(\mid\) these \(\mid\) that
Preposition \(\rightarrow\) from \(\mid\) to \(\mid\) on \(\mid\) near
Conjunction \(\rightarrow\) and \(\mid\) or \(\mid\) but
```


An example (cont.)

Rule expansions Rules used

S

NP VP
Pro VP
Pro Verb NP
I Verb NP
I prefer NP
I prefer Det Nom
I prefer a Nom
$S \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ Pro
VP \rightarrow Verb NP
Pro $\rightarrow I$
Verb \rightarrow prefer
NP \rightarrow Det Nom
Det $\rightarrow a$
Nom \rightarrow Nom Noun


```
            Noun \(\rightarrow\) flight \(\mid\) breeze \(\mid\) trip \(\mid\) morning
            Verb \(\rightarrow\) is \(\mid\) prefer \(\mid\) like \(\mid\) need \(\mid\) want \(\mid\) fly
            Adjective \(\rightarrow\) cheapest \(\mid\) non-stop \(\mid\) first \(\mid\) latest
                        | other | direct
        Pronoun \(\rightarrow\) me \(|I|\) you \(\mid\) it
Proper-Noun \(\rightarrow\) Alaska \(\mid\) Baltimore \(\mid\) Los Angeles
            \(\mid\) Chicago \(\mid\) United \(\mid\) American
    Determiner \(\rightarrow\) the \(|a|\) an \(\mid\) this \(\mid\) these \(\mid\) that
    Preposition \(\rightarrow\) from \(\mid\) to \(\mid\) on \(\mid\) near
Conjunction \(\rightarrow\) and \(\mid\) or \(\mid\) but
```


An example (cont.)

Rule expansions Rules used

S

NP VP
Pro VP
Pro Verb NP
I Verb NP
I prefer NP
I prefer Det Nom
I prefer a Nom
I prefer a Nom Noun

S \rightarrow NP VP
$\mathrm{NP} \rightarrow$ Pro
VP \rightarrow Verb NP
Pro $\rightarrow I$
Verb \rightarrow prefer
NP \rightarrow Det Nom
Det $\rightarrow a$
Nom \rightarrow Nom Noun


```
            Noun \(\rightarrow\) flight \(\mid\) breeze \(\mid\) trip \(\mid\) morning
            Verb \(\rightarrow\) is \(\mid\) prefer \(\mid\) like \(\mid\) need \(\mid\) want \(\mid\) fly
            Adjective \(\rightarrow\) cheapest \(\mid\) non-stop \(\mid\) first \(\mid\) latest
            | other | direct
        Pronoun \(\rightarrow\) me \(|I|\) you \(\mid\) it
Proper-Noun \(\rightarrow\) Alaska \(\mid\) Baltimore \(\mid\) Los Angeles
            \(\mid\) Chicago \(\mid\) United \(\mid\) American
Determiner \(\rightarrow\) the \(|a|\) an \(\mid\) this \(\mid\) these \(\mid\) that
Preposition \(\rightarrow\) from \(\mid\) to \(\mid\) on \(\mid\) near
Conjunction \(\rightarrow\) and \(\mid\) or \(\mid\) but
```


An example (cont.)

Rule expansions Rules used

S

NP VP
Pro VP
Pro Verb NP
I Verb NP
I prefer NP
I prefer Det Nom
I prefer a Nom
I prefer a Nom Noun
$S \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ Pro
VP \rightarrow Verb NP
Pro $\rightarrow I$
Verb \rightarrow prefer
NP \rightarrow Det Nom
Det $\rightarrow a$
Nom \rightarrow Nom Noun
Nom \rightarrow Noun


```
            Noun \(\rightarrow\) flight \(\mid\) breeze \(\mid\) trip \(\mid\) morning
            Verb \(\rightarrow\) is \(\mid\) prefer \(\mid\) like \(\mid\) need \(\mid\) want \(\mid\) fly
        Adjective \(\rightarrow\) cheapest \(\mid\) non-stop \(\mid\) first \(\mid\) latest
            | other | direct
        Pronoun \(\rightarrow\) me \(|I|\) you \(\mid\) it
Proper-Noun \(\rightarrow\) Alaska \(\mid\) Baltimore \(\mid\) Los Angeles
    \(\mid\) Chicago \(\mid\) United \(\mid\) American
    Determiner \(\rightarrow\) the \(|a|\) an \(\mid\) this \(\mid\) these \(\mid\) that
    Preposition \(\rightarrow\) from \(\mid\) to \(\mid\) on \(\mid\) near
Conjunction \(\rightarrow\) and \(\mid\) or \(\mid\) but
```


An example (cont.)

Rule expansions Rules used

S

NP VP
Pro VP
Pro Verb NP
I Verb NP
I prefer NP
I prefer Det Nom
I prefer a Nom
I prefer a Nom Noun
I prefer a Noun Noun
$S \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ Pro
VP \rightarrow Verb NP
Pro $\rightarrow I$
Verb \rightarrow prefer
NP \rightarrow Det Nom
Det $\rightarrow a$
Nom \rightarrow Nom Noun
Nom \rightarrow Noun


```
            Noun \(\rightarrow\) flight \(\mid\) breeze \(\mid\) trip \(\mid\) morning
            Verb \(\rightarrow\) is \(\mid\) prefer \(\mid\) like \(\mid\) need \(\mid\) want \(\mid\) fly
        Adjective \(\rightarrow\) cheapest \(\mid\) non-stop \(\mid\) first \(\mid\) latest
            \(\mid\) other \(\mid\) direct
            Pronoun \(\rightarrow\) me \(|I|\) you \(\mid\) it
Proper-Noun \(\rightarrow\) Alaska \(\mid\) Baltimore \(\mid\) Los Angeles
            \(\mid\) Chicago \(\mid\) United \(\mid\) American
Determiner \(\rightarrow\) the \(|a|\) an \(\mid\) this \(\mid\) these \(\mid\) that
Preposition \(\rightarrow\) from \(\mid\) to \(\mid\) on \(\mid\) near
Conjunction \(\rightarrow\) and \(\mid\) or \(\mid\) but
```


An example (cont.)

Rule expansions Rules used

S

NP VP
Pro VP
Pro Verb NP
I Verb NP
I prefer NP
I prefer Det Nom
I prefer a Nom
I prefer a Nom Noun
I prefer a Noun Noun
$S \rightarrow N P V P$
$\mathrm{NP} \rightarrow$ Pro
VP \rightarrow Verb NP
Pro $\rightarrow I$
Verb \rightarrow prefer
NP \rightarrow Det Nom
Det $\rightarrow a$
Nom \rightarrow Nom Noun
Nom \rightarrow Noun
Noun \rightarrow flight

An example (cont.)

Rule expansions Rules used

S
NP VP
Pro VP
Pro Verb NP
I Verb NP
I prefer NP
I prefer Det Nom
I prefer a Nom
I prefer a Nom Noun
I prefer a Noun Noun
I prefer a Noun flight
$S \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ Pro
VP \rightarrow Verb NP
Pro $\rightarrow I$
Verb \rightarrow prefer
NP \rightarrow Det Nom
Det $\rightarrow a$
Nom \rightarrow Nom Noun
Nom \rightarrow Noun
Noun \rightarrow flight


```
            Noun \(\rightarrow\) flight \(\mid\) breeze \(\mid\) trip \(\mid\) morning
            Verb \(\rightarrow\) is \(\mid\) prefer \(\mid\) like \(\mid\) need \(\mid\) want \(\mid\) fly
            Adjective \(\rightarrow\) cheapest \(\mid\) non-stop \(\mid\) first \(\mid\) latest
            | other | direct
        Pronoun \(\rightarrow\) me \(|I|\) you \(\mid\) it
Proper-Noun \(\rightarrow\) Alaska \(\mid\) Baltimore \(\mid\) Los Angeles
            \(\mid\) Chicago \(\mid\) United \(\mid\) American
Determiner \(\rightarrow\) the \(|a|\) an \(\mid\) this \(\mid\) these \(\mid\) that
Preposition \(\rightarrow\) from \(\mid\) to \(\mid\) on \(\mid\) near
Conjunction \(\rightarrow\) and \(\mid\) or \(\mid\) but
```


An example (cont.)

Rule expansions Rules used

S
NP VP
Pro VP
Pro Verb NP
I Verb NP
I prefer NP
I prefer Det Nom
I prefer a Nom
I prefer a Nom Noun
I prefer a Noun Noun
I prefer a Noun flight
$S \rightarrow N P$ VP
$N P \rightarrow$ Pro
VP \rightarrow Verb NP
Pro $\rightarrow I$
Verb \rightarrow prefer
NP \rightarrow Det Nom
Det $\rightarrow a$
Nom \rightarrow Nom Noun
Nom \rightarrow Noun
Noun \rightarrow flight
Noun \rightarrow morning

An example (cont.)

Rule expansions Rules used

S

NP VP
Pro VP
Pro Verb NP
I Verb NP
I prefer NP
I prefer Det Nom
I prefer a Nom
I prefer a Nom Noun
I prefer a Noun Noun
I prefer a Noun flight
I prefer a morning flight
$S \rightarrow N P V P$
$\mathrm{NP} \rightarrow$ Pro
VP \rightarrow Verb NP
Pro $\rightarrow I$
Verb \rightarrow prefer
NP \rightarrow Det Nom
Det $\rightarrow a$
Nom \rightarrow Nom Noun
Nom \rightarrow Noun
Noun \rightarrow flight
Noun \rightarrow morning

An example (cont.)

- Some Terminologies

- Each grammar must have one designated start symbol, S
- We say the string "I prefer a morning flight" can be derived from S and the sequence of rule expansions is called a derivation of the string
- A CFG \mathcal{L} can be used to generate a set of strings. This set of strings is called the formal language defined by \mathcal{L}
- Sentences that can be derived by \mathcal{L} are called grammatical sentences in the formal language defined by \mathcal{L}

Sequence of
rule expansions
S
NP VP
Pro VP
Pro Verb NP
IVerb NP
I prefer NP
I prefer Det Nom
I prefer a Nom
I prefer a Nom Noun
I prefer a Noun Noun
I prefer a Noun flight
I prefer a morning flight

- Sentences that cannot be derived by \mathcal{L} are called ungrammatical sentences in the formal language defined by \mathcal{L}

An example (cont.)

- We can represent the derivation by a parse tree or in bracketed notation

Q: What information is conveyed by a parse tree?

Formal Definition of Context-Free Grammar

- A context-free grammar G is defined by four parameters: $\boldsymbol{N}, \boldsymbol{\Sigma}, \boldsymbol{R}, \boldsymbol{S}$
N a set of non-terminal symbols (or variables)
Σ a set of terminal symbols (disjoint from N)
R a set of rules or productions, each of the form $A \rightarrow \beta$, where A is a non-terminal, β is a string of symbols from the infinite set of strings $(\Sigma \cup N) *$
S a designated start symbol and a member of N
- The Kleene star means "zero or more occurrences of the immediately previous character or regular expression"

Syntactic Parsing

- The problem of mapping from a sentence (a string of words) to its parse tree

INPUT:

Boeing is located in Seattle.

OUTPUT:

Syntactic Parsing (cont.)

- The problem with parsing: ambiguity
- Each string in the language defined by a CFG may have more than one derivation ("ambiguity")

INPUT:
She announced a program to promote safety in trucks and vans

POSSIBLE OUTPUTS:

Syntactic Parsing (cont.)

- Sources of ambiguity
- Lexical ambiguity, e.g., multiple word senses, multiple parts-of-speech
- Structural ambiguity

Examples of ambiguous structures (cont.)

- Example 1:
"I saw her duck with a telescope"

Examples of ambiguous structures (cont.)

- Example 1:
"I saw her duck with a telescope"
- Part-of-Speech ambiguity

NN \rightarrow duck
Vi \rightarrow duck

Examples of ambiguous structures (cont.)

- Example 1:
"I saw her duck with a telescope"

a telescope

Examples of ambiguous structures (cont.)

- Example 2:
"I drove down the road in the car"

Examples of ambiguous structures (cont.)

- Example 2:

Examples of ambiguous structures (cont.)

- Example 3:
"the fast car mechanic"

Examples of ambiguous structures (cont.)

- Example 3:
- Noun premodifiers

Overview

$>$ An Introduction to Syntax

$>$ Constituency
> Context-Free Grammars (CFGs)
$>$ English Grammar in a Nutshell

- Some Grammar Rules
- Treebanks

Some Grammar Rules

- Sentence-level Constructions
- Declaratives
- Imperatives
- Yes-no questions
- Wh-questions

Some Grammar Rules (cont.)

- Declaratives
- Form: $\mathbf{S} \rightarrow \mathbf{N P}$ VP I prefer a morning flight
- Have a great number of uses
- Imperatives
- Form: $\mathbf{S} \rightarrow \mathbf{V P} \quad$ Show the lowest fare
- Used for commands and suggestions

Some Grammar Rules (cont.)

- Yes-no questions
- Form: S \rightarrow Aux NP VP

Do any of these flights have stops?

- Often used to ask questions
- Wh-questions
- Wh-subject-questions
- Form: $\mathbf{S} \rightarrow \mathbf{W h}-N P$ VP What airlines fly from Burbank to Denver?
- Identical to the declarative structure, except that the first NP contains some wh-word
- Wh-no-subject-questions
- Form: $\mathbf{S} \rightarrow \mathbf{W h}-\mathbf{N P}$ Aux NP VP

What flights do you have from Burbank to Tacoma Washington?

Some Grammar Rules (cont.)

- Clauses and Sentences
- The \mathbf{S} rules are intended to account for entire sentences that stand alone as fundamental units of discourse
- S can also occur on the right-hand side of grammar rules and can be embedded within larger sentences
- The S rules are some sense complete (i.e., forming a complete thought). They correspond to the notion of clause.

Some Grammar Rules (cont.)

- Noun Phrases
- Can be complicated
- Determiners
- Pre-modifiers
- Post-modifiers

Some Grammar Rules (cont.)

- Determiners
- Noun phrases can begin with determiners ...
- Determiners can be
- simple lexical items a, the, this, those, any, some, etc.
- simple possessives John's car
- complex recursive versions of that John's sister's husband's son's car

Some Grammar Rules (cont.)

- Premodifiers
- Come before the head
- Examples
- Cardinal numbers one, two, three
- Ordinal numbers first, next, other
- Quantifiers
many, (a) few, several
- Adjectives
first-class, longest, non-stop
- Ordering constraints
three large cars vs. large three cars

Some Grammar Rules (cont.)

- Postmodifiers
- Come after the head
- Three kinds
- Prepositional phrases from Seattle
- Non-finite clauses arriving before noon
- Relative clauses
that serve breakfast
- Similar recursive rules to handle these:
- Nominal \rightarrow Nominal PP
- Nominal \rightarrow Nominal GerundVP
- Nominal \rightarrow Nominal ReIClause

Some Grammar Rules (cont.)

- Agreement Issues
- Agreement: constraints that hold among various constituents
- For example, subjects must agree with their verbs on person and number:

I am cold.	You are cold.	He is cold.
* I are cold.	* You is cold.	* He am cold.

- Requires separate productions for each combination in CFG:
- S \rightarrow NP1stPersonSing VP1stPersonSing
- S \rightarrow NP2ndPersonSing VP2ndPersonSing
- NP1stPersonSing $\rightarrow \ldots$
- VP1stPersonSing $\rightarrow \ldots$
- NP2ndPersonSing $\rightarrow \ldots$
- VP2ndPersonSing $\rightarrow \ldots$

Some Grammar Rules (cont.)

- Other agreement Issues
- Pronouns have case (e.g. nominative, accusative) that must agree with their syntactic position.

I gave him the book.
He gave me the book.
*I gave he the book.

* Him gave me the book.
- Many languages have gender agreement.

Los Angeles
Las Vegas

* Las Angeles
* Los Vegas

Some Grammar Rules (cont.)

- Verb Phrases
- English verb phrases consists of
- Head verb
- Zero or more following constituents (called arguments)
- Sample rules

- VP \rightarrow Verb	disappear
- VP \rightarrow Verb NP	prefer a morning flight
- $\mathrm{VP} \rightarrow$ Verb NP PP	leave Boston in the morning
- VP \rightarrow Verb PP	leave on Thursday

Some Grammar Rules (cont.)

- Subcategorization Issues
- Specific verbs take some types of arguments but not others
- Transitive verb: "found" requires a direct object John found the ring. * John found.
- Intransitive verb: "disappeared" cannot take one John disappeared. * John disappeared the ring.
- "gave" takes both a direct and indirect object

John gave Mary the ring. * John gave Mary. *John gave the ring

- "want" takes an NP, or non-finite VP or S

John wants a car. John wants to buy a car.
John wants Mary to take the ring.

* John wants.

Some Grammar Rules (cont.)

- Subcategorization frames
- Specify the range of argument types that a given verb can take.

Frame	Verb	Example
\emptyset	eat, sleep	I ate
$N P$	prefer, find, leave	Find [$N P$ the flight from Pittsburgh to Boston]
$N P N P$	show, give	Show $[N P$ me] [$N P$ airlines with flights from Pittsburgh]
$P P_{\text {from }} P P_{\text {to }}$	fly, travel	I would like to fly [$P P$ from Boston] [$P P$ to Philadelphia]
$N P P P_{\text {with }}$	help, load	Can you help [$N P$ me] [$P P$ with a flight]
$V P t o$	prefer, want, need	I would prefer [VPto to go by United airlines]
$V P b r s t$	can, would, might	I can [VPbrst go from Boston]
S	mean	Does this mean [S AA has a hub in Boston]

Treebanks

- Data for parsing experiments
- Penn WSJ Treebank $=50,000$ sentences with associated trees
- Usual set-up: 40,000 training sentences, 2400 test sentences
- Example tree

Treebanks (cont.)

- Penn Treebank
- Treebanks implicitly define a grammar for the language
- Penn Treebank has 4500 different rules for VPs, including...
- VP \rightarrow BD PP
- VP \rightarrow VBD PP PP
- VP \rightarrow VBD PP PP PP
- VP \rightarrow VBD PP PP PP PP

exercise!

[^0]: *On September, I'd like to fly seventeenth from Atlanta to Denver
 *On I'd like to fly September seventeenth from Atlanta to Denver
 *I'd like to fly on September from Atlanta to Denver seventeenth

