machine translation 2: seq2seq / decoding / eval

CS 585, Fall 2018

Introduction to Natural Language Processing http://people.cs.umass.edu/~miyyer/cs585/

Mohit lyyer

College of Information and Computer Sciences University of Massachusetts Amherst

some slides adapted from Richard Socher and Marine Carpuat

questions from last time...

- info for project proposal? template now posted!
- teammates for project?
- HW2???
- recorded lecture audio not happening :(
- midterm???
 - will cover text classification / language modeling / word embeddings / sequence labeling / machine translation (including today's lecture)
 - will **not** cover CFGs / parsing.
 - 20% multiple choice, 80% short answer/computational qs
 - 1-page "cheat sheet" allowed, must be hand-written
- Mohit out next lecture and 11/1

limitations of IBM models

- *discrete* alignments
- all alignments equally likely (model 1 only)
- translation of each f word depends only on aligned e word!

Recap: The Noisy Channel Model

- ► Goal: translation system from French to English
- Have a model p(e | f) which estimates conditional probability of any English sentence e given the French sentence f. Use the training corpus to set the parameters.
- ► A Noisy Channel Model has two components:

p(e) the language model $p(f \mid e)$ the translation model

► Giving:

$$p(e \mid f) = \frac{p(e, f)}{p(f)} = \frac{p(e)p(f \mid e)}{\sum_{e} p(e)p(f \mid e)}$$

and

 $\operatorname{argmax}_{e} p(e \mid f) = \operatorname{argmax}_{e} p(e) p(f \mid e)$

phrase-based MT

• better way of modeling p(f|e): phrase alignments instead of word alignments

set of phrases in *f*

$$p(f|e) = \prod_{i=1}^{I} \phi(\bar{f}_i, \bar{e}_i) d(start_i - end_{i-1} - 1)$$
phrase translation probability
reordering probability

Phrase alignment from word alignment!

Phrase alignment from word alignment!

assumes / geht davon aus assumes that / geht davon aus , dass • Phrase translations for den Vorschlag learned from the Europarl corpus:

English	$\phi(\bar{e} \bar{f})$	English	$\phi(ar{e} ar{f})$
the proposal	0.6227	the suggestions	0.0114
's proposal	0.1068	the proposed	0.0114
a proposal	0.0341	the motion	0.0091
the idea	0.0250	the idea of	0.0091
this proposal	0.0227	the proposal,	0.0068
proposal	0.0205	its proposal	0.0068
of the proposal	0.0159	it	0.0068
the proposals	0.0159		

in general, we learn a *phrase table* to store these translation probabilities. what are some limitations of phrase-based MT?

today: neural MT

• instead of using the noisy channel model to decompose $p(e|f) \propto p(f|e)p(e)$, let's directly model p(e|f)

$$p(e | f) = p(e_1, e_2, ..., e_l | f)$$

= $p(e_1 | f) \cdot p(e_2 | e_1, f) \cdot p(e_3 | e_2, e_1, f) \cdot ...$
= $\prod_{i=1}^{L} p(e_i | e_1, ..., e_{i-1}, f)$

this is a *conditional language model*. how is this different than the LMs we saw in the IBM models?

seq2seq models

• use two different RNNs to model $\prod_{i=1}^{L} p(e_i | e_1, ..., e_{i-1}, f)$

- first we have the *encoder*, which encodes the foreign sentence *f*
- then, we have the *decoder*, which produces the English sentence e

12

Reminder: RNN language models!

output distribution

 $\hat{y} = \operatorname{softmax}(W_2 h^{(t)} + b_2)$

hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c_t + b_1)$$

h⁽⁰⁾ is initial hidden state!

word embeddings

 c_1, c_2, c_3, c_4

 $\hat{\boldsymbol{y}}^{(4)} = P(\boldsymbol{x}^{(5)}|\text{the students opened their})$

Neural Machine Translation (NMT)

The sequence-to-sequence model

Encoding of the source sentence. Provides initial hidden state for Decoder RNN.

Encoder RNN produces an encoding of the source sentence.

Neural Machine Translation (NMT)

Training a Neural Machine Translation system

Training a Neural Machine Translation system

- given that we trained a seq2seq model, how do we find the most probable English sentence?
- more concretely, how do we find $\arg \max \prod_{i=1}^{L} p(e_i | e_1, \dots, e_{i-1}, f)$
- can we enumerate all possible English sentences e?

- given that we trained a seq2seq model, how do we find the most probable English sentence?
- more concretely, how do we find $\arg \max \prod_{i=1}^{L} p(e_i | e_1, \dots, e_{i-1}, f)$
- can we enumerate all possible English sentences e?
- can we use the Viterbi algorithm like we did for HMMs?

- given that we trained a seq2seq model, how do we find the most probable English sentence?
- more concretely, how do we find $\arg \max \prod_{i=1}^{L} p(e_i | e_1, \dots, e_{i-1}, f)$
- can we enumerate all possible English sentences e?
- can we use the Viterbi algorithm like we did for HMMs?

- given that we trained a seq2seq model, how do we find the most probable English sentence?
- easiest option: greedy decoding

Beam search

- in greedy decoding, we cannot go back and revise previous decisions!
 - les pauvres sont démunis (the poor don't have any money)
 - \rightarrow the ____
 - \rightarrow the poor _____
 - \rightarrow the poor are ____
- fundamental idea of beam search: explore several different hypotheses instead of just a single one
 - keep track of k most probable partial translations at each decoder step instead of just one! the beam size k is usually 5-10

does beam search always produce the *best* translation (i.e., does it always find the argmax?)

how many probabilities do we need to evaluate at each time step with a beam size of *k*?

what are the termination conditions for beam search?

Advantages of NMT

Compared to SMT, NMT has many advantages:

- Better performance
 - More fluent
 - Better use of context
 - Better use of phrase similarities
- A single neural network to be optimized end-to-end
 - No subcomponents to be individually optimized
- Requires much less human engineering effort
 - No feature engineering
 - Same method for all language pairs

Disadvantages of NMT?

Compared to SMT:

- NMT is less interpretable
 - Hard to debug
- NMT is difficult to control
 - For example, can't easily specify rules or guidelines for translation

Sequence-to-sequence: the bottleneck problem

The solution: attention

- Attention mechanisms allow the decoder to focus on a particular part of the source sequence at each time step
 - Conceptually similar to *alignments*

Use the attention distribution to take a **weighted sum** of the encoder hidden states.

The attention output mostly contains information the hidden states that received high attention.

Concatenate attention output – with decoder hidden state, then use to compute \hat{y}_1 as before

Attention is great

- Attention significantly improves NMT performance
 - It's very useful to allow decoder to focus on certain parts of the source
- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with vanishing gradient problem
 - Provides shortcut to faraway states
- Attention provides some interpretability
 - By inspecting attention distribution, we can see what the decoder was focusing on
 - We get alignment for free!
 - This is cool because we never explicitly trained an alignment system
 - The network just learned alignment by itself

onto evaluation...

How good is a translation? Problem: no single right answer

这个 机场 的 安全 工作 由 以色列 方面 负责.

Israeli officials are responsible for airport security. Israel is in charge of the security at this airport. The security work for this airport is the responsibility of the Israel government. Israeli side was in charge of the security of this airport. Israel is responsible for the airport's security. Israel is responsible for safety work at this airport. Israel presides over the security of the airport. Israel took charge of the airport security. The safety of this airport is taken charge of by Israel. This airport's security is the responsibility of the Israeli security officials.

Evaluation

- How good is a given machine translation system?
- Many different translations acceptable
- Evaluation metrics
 - Subjective judgments by human evaluators
 - Automatic evaluation metrics
 - Task-based evaluation

Automatic Evaluation Metrics

- Goal: computer program that computes quality of translations
- Advantages: low cost, optimizable, consistent
- Basic strategy
 - Given: MT output
 - Given: human reference translation
 - Task: compute similarity between them

Precision and Recall of Words

Precision $\frac{correct}{output-length} = \frac{3}{6} = 50\%$

Recall
$$\frac{\text{correct}}{\text{reference-length}} = \frac{3}{7} = 43\%$$

F-measure
$$\frac{precision \times recall}{(precision + recall)/2} = \frac{.5 \times .43}{(.5 + .43)/2} = 46\%$$

Precision and Recall of Words

Metric	System A	System B
precision	50%	100%
recall	43%	100%
f-measure	46%	100%

flaw: no penalty for reordering

BLEU Bilingual Evaluation Understudy

N-gram overlap between machine translation output and reference translation

Compute precision for n-grams of size 1 to 4

Add brevity penalty (for too short translations)

$$\mathsf{BLEU} = \min\left(1, \frac{\text{output-length}}{\text{reference-length}}\right) \left(\prod_{i=1}^{4} \text{precision}_i\right)^{\frac{1}{4}}$$

Typically computed over the entire corpus, not single sentences

Multiple Reference Translations

To account for variability, use multiple reference translations

- n-grams may match in any of the references
- closest reference length used

Example

BLEU examples

SYSTEM A:	Israeli officials 2-GRAM MATCH	responsibility of airport safety 1-GRAM MATCH
REFERENCE:	Israeli officials ar	e responsible for airport security
SYSTEM B:	airport security	Israeli officials are responsible 4-GRAM MATCH

Metric	System A	System B	
precision (1gram)	3/6	6/6	
precision (2gram)	1/5	4/5	
precision (3gram)	0/4	2/4	
precision (4gram)	0/3	1/3	
brevity penalty	6/7	6/7	
BLEU	0%	52%	

neural MT usually > phrase-based MT!

Novel	PBSMT	NMT	Relative improvement
Auster's Sunset Park (2010)	0.3735	0.3851	3.11%
Collins' Hunger Games #3 (2010)	0.3322	0.3787	14.00%
Golding's Lord of the Flies (1954)	0.2196	0.2451	11.61%
Hemingway's The Old Man and the Sea (1952)	0.2559	0.2829	10.55%
Highsmith's Ripley Under Water (1991)	0.2485	0.2762	11.15%
Hosseini's A Thousand Splendid Suns (2007)	0.3422	0.3715	8.56%
Joyce's Ulysses (1922)	0.1611	0.1794	11.36%
Kerouac's On the Road (1957)	0.3248	0.3572	9.98%
Orwell's 1984 (1949)	0.2978	0.3306	11.01%
Rowling's Harry Potter #7 (2007)	0.3558	0.3892	9.39%
Salinger's The Catcher in the Rye (1951)	0.3255	0.3695	13.52%
Tolkien's The Lord of the Rings #3 (1955)	0.2537	0.2888	13.84%
Average	0.2909	0.3212	10.67%

English-to-Catalan novel translation

what are some drawbacks of BLEU?

what are some drawbacks of BLEU?

- all words/n-grams treated as equally relevant
- operates on local level
- scores are meaningless (absolute value not informative)
- human translators also score low on BLEU

Yet automatic metrics such as BLEU correlate with human judgement

Human Judgments

exercise!