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questions from last time…
• PMI vs covariance matrix? 
• why do we have two embedding matrices (W 

and C) in word2vec? 

• what distribution do we draw negative 
samples from? 

• HW 1 encoding issues?
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Goldberg & Levy, 2014

unigram ^ 0.75. why? *shrug*

see https://stats.stackexchange.com/questions/81659/mutual-information-versus-correlation

https://stats.stackexchange.com/questions/81659/mutual-information-versus-correlation
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Summary: How to learn word2vec 
(skip-gram) embeddings
Start with V random 300-dimensional vectors as 
initial embeddings
Use logistic regression, the second most basic 
classifier used in machine learning after naïve 
bayes
◦ Take a corpus and take pairs of words that co-occur as 

positive examples
◦ Take pairs of words that don't co-occur as negative 

examples
◦ Train the classifier to distinguish these by slowly adjusting 

all the embeddings to improve the classifier performance
◦ Throw away the classifier code and keep the embeddings.



qualitatively evaluating 
word embeddings: 

 nearest neighbors demo

 4

https://projector.tensorflow.org/



text classification

• input: some text x (e.g., sentence, document) 
• output: a label y (from a finite label set) 
• goal: learn a mapping function f from x to y
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the rise of deep learning in 
natural language processing



neural classification

• goal: avoid feature engineering… why? 
• general model architectures that work well for 

many different datasets (and tasks!) 
• for medium-to-large datasets, deep learning 

methods generally outperform naive Bayes / 
feature-based logistic regression
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what is deep learning?

(input) = outputf



what is deep learning?

output

input

Neural Network
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Logistic Regression by Another Name: Map inputs to output
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Logistic Regression by Another Name: Map inputs to output
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Logistic Regression by Another Name: Map inputs to output
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Logistic Regression by Another Name: Map inputs to output
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Logistic Regression by Another Name: Map inputs to output
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A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
If	we	feed	a	vector	of	inputs	through	a	bunch	of	logistic	regression	
functions,	then	we	get	a	vector	of	outputs	…

But	we	don’t	have	to	decide	
ahead	of	time	what	variables	
these	logistic	regressions	are	
trying	to	predict!

1/18/1840
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A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
…	which	we	can	feed	into	another	logistic	regression	function

It	is	the	loss	function	
that	will	direct	what	
the	intermediate	
hidden	variables	should	
be,	so	as	to	do	a	good	
job	at	predicting	the	
targets	for	the	next	
layer,	etc.

1/18/1841
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A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
Before	we	know	it,	we	have	a	multilayer	neural	network….

1/18/1842
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logistic regression is a linear classifier…  
its decision boundary is linear in x 

βx

1
1 + e−βx

sigmoid function



what is deep learning?

output

input

nonlinear transformation{Neural Network nonlinear transformation

nonlinear transformation



what is deep learning?

output

input

nonlinear transformation{Neural Network nonlinear transformation

nonlinear transformation

hn = f(Whn−1 + b)
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Better name: non-linearity

Ñ Logistic / Sigmoid
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is a multi-layer neural network with no nonlinearities  
(i.e., f is the identity f(x) = x) 

more powerful than a one-layer network?



No! You can just compile all of the layers into a single 
transformation!

y = f(W3 f(W2 f(W1x))) = Wx

is a multi-layer neural network with no nonlinearities  
(i.e., f is the identity f(x) = x) 

more powerful than a one-layer network?



why nonlinearities?

credit for figure: 
Christopher Olah
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Non-linearities (aka	“f”):	Why	they’re	needed

• Example:	function	approximation,	
e.g.,	regression	or	classification
• Without	non-linearities,	deep	neural	networks	
can’t	do	anything	more	than	a	linear	
transform

• Extra	layers	could	just	be	compiled	down	into	
a	single	linear	transform:	
W1	W2	x =	Wx

• With	more	layers,	they	can	approximate	more	
complex	functions!

1/18/1844

why nonlinearities?
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Learn the features and the function
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“neuron”
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Learn the features and the function
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Learn the features and the function
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Learn the features and the function
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Learn the features and the function
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we will be 
learning the x’s 
and the W’s!



in matrix-vector notation…
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Learn the features and the function
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hL2
= f(W1x + b)

hL3
= f(W2hL2

+ b)



Dracula is a really good book!

neural 
network

Positive



words as basic building blocks
• from last time: represent words with low-dimensional 

vectors called embeddings (Mikolov et al., NIPS 2013)

king = 
[0.23, 1.3, -0.3, 0.43]



composing embeddings
• neural networks compose word embeddings into 

vectors for phrases, sentences, and documents

 neural 
network ( ) = 

really good booka



deep averaging networks

really good book

predict Positive

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

affine transformation

nonlinear function

c1 c2 c3 c4

Iyyer et al., ACL 2015 :)



deep averaging networks

really good book

predict Positive

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

affine transformation

nonlinear function

c1 c2 c3 c4

let’s generalize to multi-
class classification!



softmax function
• let’s say I have 3 classes instead of 2 (e.g., 

positive, neutral, negative) 
• i want to compute probabilities for each 

class. for every class c, i have an associated 
weight vector    , and then i compute 

• sigmoid is a special case of softmax where 
number of classes = 2
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P(y = c |x) =
eβcx

∑3
k=1 eβkx

βc



 38

in practice, this computation is done more efficiently…

softmax(x) =
ex

∑j exj

x is a vector
xj is dimension j of x

each dimension j of the softmaxed output 
represents the probability of class j 



deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

affine transformation

nonlinear function

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)



deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

what are our model 
parameters (i.e., 

weights)?
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Training	with	softmax and	cross-entropy	error

• For	each	training	example	{x,y},	our	objective	is	to	maximize	the	
probability	of	the	correct	class	y

• Hence,	we	minimize	the	negative	log	probability	of	that	class:

1/18/187

L =
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Background:	Why	“Cross	entropy”	error

• Assuming	a	ground	truth	(or	gold	or	target)	probability	
distribution	that	is	1	at	the	right	class	and	0	everywhere	else:
p	=	[0,…,0,1,0,…0]	and	our	computed	probability	is	q,	then	the	
cross	entropy	is:	

• Because	of	one-hot	p,	the	only	term	left	is	the	negative	log	
probability	of	the	true	class

1/18/188



deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

how do i update 
these parameters 
given the loss L?

L = cross-entropy(out,  ground-truth)



deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
∂ci

= ???

how do i update 
these parameters 
given the loss L?

L = cross-entropy(out,  ground-truth)



deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
∂ci

=
∂L

∂out
∂out
∂z2

∂z2

∂z1

∂z1

∂av
∂av
∂ci

chain rule!!!



deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
∂W2

= ???

L = cross-entropy(out,  ground-truth)



deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
∂W2

=
∂L

∂out
∂out
∂z2

∂z2

∂W2

L = cross-entropy(out,  ground-truth)



backpropagation
• use the chain rule to compute partial 

derivatives w/ respect to each parameter 
• trick: re-use derivatives computed for higher 

layers to compute derivatives for lower layers!
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∂L
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=
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Rumelhart et al., 1986 



Deep Averaging Network

w1, . . . , wN

#
z0 =CBOW(w1, . . . , wN )
z1 =g (z1)
z2 =g (z2)
ŷ =softmax(z3)

Initialization
def __init__(self, n_classes, vocab_size, emb_dim=300,

n_hidden_units=300):
super(DanModel, self).__init__()
self.n_classes = n_classes
self.vocab_size = vocab_size
self.emb_dim = emb_dim
self.n_hidden_units = n_hidden_units
self.embeddings = nn.Embedding(self.vocab_size,

self.emb_dim)
self.classifier = nn.Sequential(

nn.Linear(self.n_hidden_units,
self.n_hidden_units),

nn.ReLU(),
nn.Linear(self.n_hidden_units,

self.n_classes))
self._softmax = nn.Softmax()

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 4 / 7

deep learning frameworks make 
building NNs super easy!

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2) set up the network



Deep Averaging Network

w1, . . . , wN

#
z0 =CBOW(w1, . . . , wN )
z1 =g (z1)
z2 =g (z2)
ŷ =softmax(z3)

Forward
def forward(self, batch, probs=False):

text = batch[’text’][’tokens’]
length = batch[’length’]
text_embed = self._word_embeddings(text)
# Take the mean embedding. Since padding results

# in zeros its safe to sum and divide by length

encoded = text_embed.sum(1)
encoded /= lengths.view(text_embed.size(0), -1)

# Compute the network score predictions

logits = self.classifier(encoded)
if probs:

return self._softmax(logits)
else:

return logits

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 5 / 7

deep learning frameworks make 
building NNs super easy!

do a forward pass to compute prediction

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2)



Deep Averaging Network

w1, . . . , wN

#
z0 =CBOW(w1, . . . , wN )
z1 =g (z1)
z2 =g (z2)
ŷ =softmax(z3)

Training
def _run_epoch(self, batch_iter, train=True):

self._model.train()
for batch in batch_iter:

model.zero_grad()
out = model(batches)
batch_loss = criterion(out,

batch[’label’])
batch_loss.backward()
self.optimizer.step()

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 6 / 7

deep learning frameworks make 
building NNs super easy!

do a backward pass to update weights

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2)
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for batch in batch_iter:
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deep learning frameworks make 
building NNs super easy!

do a backward pass to update weights

that’s it! no need to compute 
gradients by hand! 

however, you will have to do 
this in HW2 :( 

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2)
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Classification:	Regularization!

• Really	full	loss	function	in	practice	includes	regularization over	
all	parameters	*:

• Regularization	prevents	overfitting	when	we	have	a	lot	of	
features	(or	later	a	very	powerful/deep	model,++)

1/18/1811 model	power

overfitting

Regularization



L2 regularization
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Classification:	Regularization!

• Really	full	loss	function	in	practice	includes	regularization over	
all	parameters	*:

• Regularization	prevents	overfitting	when	we	have	a	lot	of	
features	(or	later	a	very	powerful/deep	model,++)

1/18/1811 model	power

overfitting

represents all of the model’s parameters!θ



L2 regularization
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Classification:	Regularization!

• Really	full	loss	function	in	practice	includes	regularization over	
all	parameters	*:

• Regularization	prevents	overfitting	when	we	have	a	lot	of	
features	(or	later	a	very	powerful/deep	model,++)

1/18/1811 model	power

overfitting

represents all of the model’s parameters!θ

penalizing their norm leads to smaller weights >  
we are constraining the parameter space >  

we are putting a prior on our model



dropout (for neural networks)
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Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201650

Regularization: Dropout
“randomly set some neurons to zero in the forward pass”

[Srivastava et al., 2014]

randomly set p% of neurons to 0 in the forward pass



why does this make sense?
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randomly set p% of neurons to 0 in the forward pass

has an ear

has a tail

is furry

has claws

mischievous look

X
X

X

p(cat)



why does this make sense?
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randomly set p% of neurons to 0 in the forward pass

has an ear

has a tail

is furry

has claws

mischievous look

p(cat)
X
X

X

network can’t just rely on one neuron!



exercise!
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