Logistic regression classifiers

CS 585, Fall 2018
Introduction to Natural Language Processing http://people.cs.umass.edu/~miyyer/cs585/
Mohit lyyer
College of Information and Computer Sciences
University of Massachusetts Amherst

[slides adapted from Brendan O'Connor \& Jordan Boyd-Graber]

get an exercise at the front!

questions from last class....

- what is add-1 smoothing again??????????????????
- how many hours will each assignment take?
- i'm gonna miss class because of <insert reason>, how can i make up the in-class exercise that i missed?
- can you post the in-class exercise answers?
- what python version should we use for the assignments?

Logistic regression

- Log Linear Model - a.k.a. Logistic regression classifier
- Kinda like Naive Bayes, but:
- Doesn't assume features are independent
- Correlated features aren't overcounted
- Discriminative training: optimize $p(y \mid$ text), not $p(y$, text $)$
- Tends to work better - state of the art for doc classification, widespread hard-to-beat baseline for many tasks
- Good off-the-shelf implementations (e.g. scikit-learn, vowpal wabbit)

Features

- Input document d (a string...)
- Engineer a feature function, $f(d)$, to generate feature vector \boldsymbol{x}


```
Typically these use feature templates:
Generate many features at once
for each word w:
    - ${w}_count
    - ${w}_log_1_plus_count
    - ${w}_with_NOT_before_it_count
    - ...
```

- Not just word counts. Anything that might be useful!
- Feature engineering: when you spend a lot of time trying and testing new features. Very important!!! This is a place to put linguistics in.

step 1: featurization

1. Given an input text \mathbf{X}, compute feature vector \mathbf{x}
$\mathbf{x}=<\operatorname{count}($ nigerian $)$, count(prince), count(nigerian prince) $>$

step 2: dot product w/ weights

1. Given an input text \mathbf{X}, compute feature vector \mathbf{x}
$\mathbf{x}=<\operatorname{count}($ nigerian $)$, count(prince), count(nigerian prince) $>$
2. Take dot product of \mathbf{x} with weights $\boldsymbol{\beta}$ to get \mathbf{z}

$$
\boldsymbol{\beta}=<-1,-1,4>\quad z=\sum_{i=0}^{|X|} \beta_{i} x_{i}
$$

step 3: compute class probability

1. Given an input text \mathbf{X}, compute feature vector \mathbf{x}
$\mathbf{x}=<\operatorname{count}($ nigerian $)$, count(prince), count(nigerian prince) $>$
2. Take dot product of \mathbf{x} with weights $\boldsymbol{\beta}$ to get \mathbf{z}

$$
\boldsymbol{\beta}=<-1,-1,4>\quad z=\sum_{i=0}^{|X|} \beta_{i} x_{i}
$$

3. Apply logistic function to \mathbf{z}

$$
P(z)=\frac{e^{z}}{e^{z}+1}=\frac{1}{1+e^{-z}}
$$

why dot product?

$$
z=\sum_{i=0}^{|X|} \beta_{i} x_{i}
$$

Intuition: weighted sum of features
All linear models have this form!

Logistic Function

$$
P(z)=\frac{e^{z}}{e^{z}+1}=\frac{1}{1+e^{-z}}
$$

What does this function look like?
What properties does it have?

Logistic Function

$$
P(z)=\frac{e^{z}}{e^{z}+1}=\frac{1}{1+e^{-z}}
$$

Logistic Function

- logistic function $P(z): \mathcal{R} \rightarrow[0,1]$
- decision boundary is dot product $=0$ (2 class)
- comes from linear log odds $\log \frac{P(x)}{1-P(x)}=\sum_{i=0}^{|X|} \beta_{i} x_{i}$

How to get class probabilities?

sigmoid / logistic function: $\sigma(x)=\frac{1}{1+e^{-x}}$

$$
\begin{aligned}
& p(Y=1 \mid X)=\frac{1}{1+e^{-\sum_{i} \beta_{i} x_{i}}}=\frac{1}{1+e^{-\beta x}}=\sigma(\beta x) \\
& p(Y=0 \mid X)=1-p(Y=1 \mid X)=\frac{e^{-\beta x}}{1+e^{-\beta x}}=1-\sigma(\beta x)
\end{aligned}
$$

examples!

feature	coefficient	weight
bias	β_{0}	0.1
"viagra"	β_{1}	2.0
"mother"	β_{2}	-1.0
"work"	β_{3}	-0.5
"nigeria"	β_{4}	3.0

labels:
$\mathrm{Y}=0$ (not spam)
$\mathrm{Y}=1$ (spam)

feature	coefficient	weight
bias	β_{0}	0.1
"viagra"	β_{1}	2.0
"mother"	β_{2}	-1.0
"work"	β_{3}	-0.5
"nigeria"	β_{4}	3.0

labels:

$$
\begin{aligned}
& Y=0(\text { not spam }) \\
& Y=1(\text { spam })
\end{aligned}
$$

input 1: empty document $X=\{ \}$

$$
\begin{aligned}
& p(Y=1)=? ? ? \\
& p(Y=0)=? ? ?
\end{aligned}
$$

feature	coefficient	weight
bias	β_{0}	0.1
"viagra"	β_{1}	2.0
"mother"	β_{2}	-1.0
"work"	β_{3}	-0.5
"nigeria"	β_{4}	3.0

labels:

$$
\begin{aligned}
& Y=0(\text { not spam }) \\
& Y=1(\text { spam })
\end{aligned}
$$

input 1: empty document $X=\{ \}$

our bias feature always fires!

$$
\begin{aligned}
& p(Y=1)=\frac{1}{1+e^{-0.1}}=0.52 \\
& p(Y=0)=\frac{e^{-0.1}}{1+e^{-0.1}}=0.48
\end{aligned}
$$

feature	coefficient	weight
bias	β_{0}	0.1
"viagra"	β_{1}	2.0
"mother"	β_{2}	-1.0
"work"	β_{3}	-0.5
"nigeria"	β_{4}	3.0

labels:

$$
\begin{aligned}
& Y=0(\text { not spam }) \\
& Y=1(\text { spam })
\end{aligned}
$$

input 1: empty document $X=\{ \}$

our bias feature always fires!

$$
\begin{aligned}
& p(Y=1)=\frac{1}{1+e^{-0.1}}=0.52 \\
& p(Y=0)=\frac{e^{-0.1}}{1+e^{-0.1}}=0.48
\end{aligned}
$$

bias encodes prior probabilities!

feature	coefficient	weight
bias	β_{0}	0.1
"viagra"	β_{1}	2.0
"mother"	β_{2}	-1.0
"work"	β_{3}	-0.5
"nigeria"	β_{4}	3.0

input 2:
$X=\{$ mother, nigeria $\}$

$$
\begin{aligned}
& p(Y=1)=? ? ? \\
& p(Y=0)=? ? ?
\end{aligned}
$$

labels:
$\mathrm{Y}=0$ (not spam)
$Y=1$ (spam)

feature	coefficient	weight
bias	β_{0}	0.1
"viagra"	β_{1}	2.0
"mother"	β_{2}	-1.0
"work"	β_{3}	-0.5
"nigeria"	β_{4}	3.0

labels:

$\mathrm{Y}=0$ (not spam)
$\mathrm{Y}=1$ (spam)
input 2:
$X=\{m o t h e r$, nigeria $\}$
$p(Y=1)=\frac{1}{1+e^{-(0.1-1.0+3)}}=0.89$
$p(Y=0)=0.11$

feature	coefficient	weight
bias	β_{0}	0.1
"viagra"	β_{1}	2.0
"mother"	β_{2}	-1.0
"work"	β_{3}	-0.5
"nigeria"	β_{4}	3.0

labels:

$Y=0$ (not spam)
$Y=1$ (spam)
input 2: $X=\{m o t h e r$, nigeria $\}$

$$
p(Y=1)=\frac{1}{1+e^{-(0.1-1.0+3)}}=0.89
$$

$$
p(Y=0)=0.11
$$

bias + sum of other weights!

feature	coefficient	weight
bias	β_{0}	0.1
"viagra"	β_{1}	2.0
"mother"	β_{2}	-1.0
"work"	β_{3}	-0.5
"nigeria"	β_{4}	3.0
\# tokens	β_{5}	4.5

what if i added a new feature for the \# of tokens in the input?

$$
\begin{aligned}
& \text { input } 2 \text { : } \\
& X=\{\text { mother, nigeria }\}
\end{aligned}
$$

labels:
Y = 0 (not spam)
$\mathrm{Y}=1$ (spam)

feature	coefficient	weight
bias	β_{0}	0.1
"viagra"	β_{1}	2.0
"mother"	β_{2}	-1.0
"work"	β_{3}	-0.5
"nigeria"	β_{4}	3.0
\# tokens	β_{5}	4.5

input 2:
 $X=\{$ mother, nigeria $\}$

what if i added a new feature for the \# of tokens in the input?

$$
p(Y=1)=\frac{1}{1+e^{-\left(0.1-1.0+3+2^{*} 4.5\right)}}
$$

labels:
Y = 0 (not spam)
$\mathrm{Y}=1$ (spam)

NB as Log-Linear Model

- What are the features in Naive Bayes?
- What are the weights in Naive Bayes?

NB as Log-Linear Model

$$
P(\text { spam } \mid D) \propto P(\text { spam }) \cdot \prod_{w_{i} \in D} P\left(w_{i} \text { |spam }\right)
$$

NB as Log-Linear Model

$$
\begin{gathered}
P(\operatorname{spam} \mid D) \propto P(\mathrm{spam}) \cdot \prod_{w_{i} \in D} P\left(w_{i} \mid \text { spam }\right) \\
P(\operatorname{spam} \mid D) \propto P(\operatorname{spam})+\prod_{w_{i} \in \mathrm{Vocab}} \cdot P\left(w_{i} \mid \operatorname{spam}\right)^{\mathbf{x}_{i}} \begin{array}{c}
\text { of wount in }
\end{array}
\end{gathered}
$$

NB as Log-Linear Model

$$
\mathbf{x}_{\mathbf{i}}=\text { count }
$$ of word in D

$$
P(\operatorname{spam} \mid D) \propto P(\mathrm{spam}) \cdot \prod_{w_{i} \in \mathrm{Vocab}} \cdot P\left(w_{i} \mid \mathrm{spam}\right)^{x_{i}}
$$

naive Bayes vs. logistic regression

- naive Bayes is easier to implement
- naive Bayes better on small datasets
- logistic regression better on medium-sized datasets
- on huge datasets, both perform comparably
- biggest difference: logistic regression allows arbitrary features

now you know everything about logistic regression except....

how do we learn the weights????

- in naive Bayes, we just counted to get conditional probabilities
- in logistic regression, we perform stochastic gradient ascent

Learning Weights

- given: a set of feature vectors and labels

- goal: learn the weights.

Learning Weights

We know:

$$
P(z)=\frac{e^{z}}{e^{z}+1}=\frac{1}{1+e^{-z}}
$$

So let's try to maximize probability of the entire dataset - maximum likelihood estimation

Learning Weights

So let's try to maximize probability of the entire dataset - maximum likelihood estimation

$$
\beta^{M L E}=\arg \max _{\beta} \log P\left(y_{0}, \ldots, y_{n} \mid \mathbf{x}_{\mathbf{0}}, \ldots, \mathbf{x}_{\mathbf{n}} ; \beta\right)
$$

$$
=\arg \max _{\beta} \sum_{i=0}^{|X|} \log P\left(y_{i} \mid \mathbf{x}_{\mathbf{i}} ; \beta\right)
$$

Learning Weights

So let's try to maximize probability of the entire dataset - maximum likelihood estimation

$$
\beta^{M L E}=\arg \max _{\beta} \log P\left(y_{0}, \ldots, y_{n} \mid \mathbf{x}_{\mathbf{0}}, \ldots, \mathbf{x}_{\mathbf{n}} ; \beta\right)
$$

$=$| $\arg \max _{\beta} \sum_{i=0}^{\|X\|} \log P\left(y_{i} \mid \mathbf{x}_{\mathbf{i}} ; \beta\right)$ |
| :--- |
| equivalent to minimizing |
| the negative log likelihood |
| as in your reading! |

gradient ascent (non-convex)

Goal

Optimize log likelihood with respect to variables β

gradient ascent (non-convex)

Goal

Optimize log likelihood with respect to variables β

gradient ascent (non-convex)

Goal

Optimize log likelihood with respect to variables β

gradient ascent (non-convex)

Goal

Optimize log likelihood with respect to variables β

gradient ascent (non-convex)

Goal

Optimize log likelihood with respect to variables β

gradient ascent (non-convex)

Goal

Optimize log likelihood with respect to variables β

gradient ascent (non-convex)

Goal

Optimize log likelihood with respect to variables β

gradient ascent (non-convex)

Goal

Optimize log likelinood with respect to variables β

good news! the log-likelihood in LR is concave, which means that it has just one local (and global) maximum

gradient ascent (non-convex)

Goal

Optimize log likelihood with respect to variables β

$$
\frac{\partial \mathscr{L}}{\partial \beta}=\text { gradient }
$$

Gradient for Logistic Regression

To ease notation, let's define

$$
\pi_{i}=\sigma\left(\beta \cdot x_{i}\right)
$$

Our objective function is

$$
\mathscr{L}=\sum_{i} \log p\left(y_{i} \mid x_{i}\right)=\sum_{i} \mathscr{L}_{i}=\sum_{i} \begin{cases}\log \pi_{i} & \text { if } y_{i}=1 \\ \log \left(1-\pi_{i}\right) & \text { if } y_{i}=0\end{cases}
$$

log likelihood!

Taking the Derivative

$$
\beta_{j}=j^{\text {th }} \text { dimension of } \beta
$$

$$
\frac{\partial}{\partial x} \log (x)=\frac{1}{x}
$$

Apply chain rule:

$$
\frac{\partial \mathscr{L}}{\partial \beta_{j}}=\sum_{i} \frac{\partial \mathscr{L}_{i}(\vec{\beta})}{\partial \beta_{j}}=\sum_{i} \begin{cases}\frac{1}{\pi_{i}} \frac{\partial \pi_{i}}{\partial \beta_{j}} & \text { if } y_{i}=1 \\ \frac{1}{1-\pi_{i}}\left(-\frac{\partial \pi_{i}}{\partial \beta_{j}}\right) & \text { if } y_{i}=0\end{cases}
$$

Taking the Derivative

$$
\beta_{j}=j^{\text {th }} \text { dimension of } \beta
$$

$$
\frac{\partial}{\partial x} \log (x)=\frac{1}{x}
$$

Apply chain rule:

$$
\frac{\partial \mathscr{L}}{\partial \beta_{j}}=\sum_{i} \frac{\partial \mathscr{L}_{i}(\vec{\beta})}{\partial \beta_{j}}=\sum_{i} \begin{cases}\frac{1}{\pi_{i}} \frac{\partial \pi_{i}}{\partial \beta_{j}} & \text { if } y_{i}=1 \\ \frac{1}{1-\pi_{i}}\left(-\frac{\partial \pi_{i}}{\partial \beta_{j}}\right) & \text { if } y_{i}=0\end{cases}
$$

If we plug in the derivative,

$$
\frac{\partial \pi_{i}}{\partial \beta_{j}}=\pi_{i}\left(1-\pi_{i}\right) x_{i_{j}} \quad \frac{\partial}{\partial x} \sigma(x)=\sigma(x)(1-\sigma(x))
$$

Taking the Derivative

$$
\beta_{j}=j^{\text {th }} \text { dimension of } \beta
$$

$$
\frac{\partial}{\partial x} \log (x)=\frac{1}{x}
$$

Apply chain rule:

$$
\frac{\partial \mathscr{L}}{\partial \beta_{j}}=\sum_{i} \frac{\partial \mathscr{L}_{i}(\vec{\beta})}{\partial \beta_{j}}=\sum_{i} \begin{cases}\frac{1}{\pi_{i}} \frac{\partial \pi_{i}}{\partial \beta_{j}} & \text { if } y_{i}=1 \\ \frac{1}{1-\pi_{i}}\left(-\frac{\partial \pi_{i}}{\partial \beta_{j}}\right) & \text { if } y_{i}=0\end{cases}
$$

If we plug in the derivative,

$$
\frac{\partial \pi_{i}}{\partial \beta_{j}}=\pi_{i}\left(1-\pi_{i}\right) x_{i_{j}}
$$

$$
\frac{\partial}{\partial x} \sigma(x)=\sigma(x)(1-\sigma(x))
$$

we can merge these two cases

$$
\frac{\partial \mathscr{L}_{i}}{\partial \beta_{j}}=\left(y_{i}-\pi_{i}\right) x_{i_{j}}
$$

Taking the Derivative

$$
\beta_{j}=j^{\text {th }} \text { dimension of } \beta
$$

$$
\frac{\partial}{\partial x} \log (x)=\frac{1}{x}
$$

Apply chain rule:

$$
\frac{\partial \mathscr{L}}{\partial \beta_{j}}=\sum_{i} \frac{\partial \mathscr{L}_{i}(\vec{\beta})}{\partial \beta_{j}}=\sum_{i} \begin{cases}\frac{1}{\pi_{i}} \frac{\partial \pi_{i}}{\partial \beta_{j}} & \text { if } y_{i}=1 \\ \frac{1}{1-\pi_{i}}\left(-\frac{\partial \pi_{i}}{\partial \beta_{j}}\right) & \text { if } y_{i}=0\end{cases}
$$

If we plug in the derivative,

$$
\frac{\partial \pi_{i}}{\partial \beta_{j}}=\pi_{i}\left(1-\pi_{i}\right) x_{i_{j}}
$$

$$
\frac{\partial}{\partial x} \sigma(x)=\sigma(x)(1-\sigma(x))
$$

we can merge these two cases

$$
\begin{gathered}
\frac{\partial \mathscr{L}_{i}}{\partial \beta_{j}}=\begin{array}{c}
y_{i}=\text { ground-truth label } \\
\left(y_{i}-\pi_{j}\right) x_{i_{j}} \\
\pi_{i}=\text { predicted probability }
\end{array}
\end{gathered}
$$

Gradient for Logistic Regression

Gradient

$$
\nabla_{\beta} \mathscr{L}(\vec{\beta})=\left[\frac{\partial \mathscr{L}(\vec{\beta})}{\partial \beta_{0}}, \ldots, \frac{\partial \mathscr{L}(\vec{\beta})}{\partial \beta_{n}}\right]
$$

gradient $=$ partial derivative of log likelihood WRT each weight

Update

$$
\begin{aligned}
& \Delta \beta \equiv \eta \nabla_{\beta} \mathscr{L}(\vec{\beta}) \\
& \beta_{i}^{\prime} \leftarrow \beta_{i}+\eta \frac{\partial \mathscr{L}(\vec{\beta})}{\partial \beta_{i}}
\end{aligned}
$$

LogReg Exercise

features: (count "nigerian", count "prince", count "nigerian prince")
$\beta^{(0)}=(1.0, \quad-3.0, \quad 2.0) \longrightarrow 63 \%$ accuracy

LogReg Exercise

features: (count "nigerian", count "prince", count "nigerian prince")
$\beta^{(0)}=\left(\begin{array}{lll}1.0, & -3.0, & 2.0\end{array}\right) \longrightarrow 63 \%$ accuracy
$\beta^{(1)}=\left(\begin{array}{lll}0.5, & -1.0, & 3.0\end{array}\right)$
75\% accuracy

LogReg Exercise

features: (count "nigerian", count "prince", count "nigerian prince")
$\beta^{(0)}=(1.0, \quad-3.0, \quad 2.0) \longrightarrow 63 \%$ accuracy
$\beta^{(1)}=(0.5, \quad-1.0, \quad 3.0)$
$\beta^{(2)}=(-1.0, \quad-1.0, \quad 4.0)$

Regularized Conditional Log Likelihood

Unregularized

$$
\beta^{*}=\arg \max _{\beta} \ln \left[p\left(y^{(j)} \mid x^{(j)}, \beta\right)\right]
$$

Regularized

$$
\beta^{*}=\arg \max _{\beta} \ln \left[p\left(y^{(j)} \mid x^{(j)}, \beta\right)\right]-\mu \sum_{i} \beta_{i}^{2}
$$

μ is "regularization" parameter that trades off between likelihood and having small parameters

exercise!

