## Logistic regression classifiers

CS 585, Fall 2018 Introduction to Natural Language Processing http://people.cs.umass.edu/~miyyer/cs585/

Mohit lyyer College of Information and Computer Sciences University of Massachusetts Amherst

[slides adapted from Brendan O'Connor & Jordan Boyd-Graber]

# get an exercise at the front!

## questions from last class...

- how many hours will each assignment take?
- i'm gonna miss class because of <insert reason>, how can i make up the in-class exercise that i missed?
- can you post the in-class exercise answers?
- what python version should we use for the assignments?

# Logistic regression

- Log Linear Model a.k.a. Logistic regression classifier
- Kinda like Naive Bayes, but:
  - Doesn't assume features are independent
    - Correlated features aren't overcounted
  - Discriminative training: optimize  $p(y \mid text)$ , not p(y, text)
  - Tends to work better state of the art for doc classification, widespread hard-to-beat baseline for many tasks
  - Good off-the-shelf implementations (e.g. scikit-learn, vowpal) wabbit)

# Features

- Input document **d** (a string...)
- Engineer a feature function, f(d), to generate feature vector **x**



- Not just word counts. Anything that might be useful!
- Feature engineering: when you spend a lot of time trying and testing new features. Very important!!! This is a place to put linguistics in.

```
Typically these use <u>feature templates</u>:
Generate many features at once
for each word w:
 - ${w}_count
 - ${w}_log_1_plus_count
 - ${w}_with_NOT_before_it_count
```

## step 1: featurization

1. Given an input text **X**, compute feature vector **x**  $\mathbf{x} = \langle count(nigerian), count(prince), count(nigerian prince) >$ 

# step 2: dot product w/ weights

1. Given an input text **X**, compute feature vector **x** 

 $\mathbf{x} = \langle count(nigerian), count(prince), count(nigerian prince) >$ 

2. Take dot product of **x** with weights  $\boldsymbol{\beta}$  to get **z** 

$$z = \sum_{i=0}^{|X|}$$



# step 3: compute class probability

1. Given an input text **X**, compute feature vector **x** 

 $\mathbf{x} = \langle count(nigerian), count(prince), count(nigerian prince) >$ 

2. Take dot product of **x** with weights  $\boldsymbol{\beta}$  to get **z** 



3. Apply logistic function to z

$$P(z) = \frac{e^z}{e^z + 1} =$$



# why dot product?



# Intuition: weighted sum of features All linear models have this form!

$$\beta_i x_i$$

# Logistic Function

 $P(z) = \frac{e^z}{e^z + 1} = \frac{1}{1 + e^{-z}}$ 

# What does this function look like? What properties does it have?





# Logistic Function logistic function $P(z): \mathcal{R} \to [0, 1]$

## decision boundary is dot product = 0 (2 class)

• comes from linear log odds  $\log \frac{P(x)}{1 - P(x)} = \sum_{i=0}^{|X|} \beta_i x_i$ 

# How to get class probabilities?

sigmoid / logistic function:

# $p(Y = 1 | X) = \frac{1}{1 + e^{-\sum_{i} \beta_{i} x_{i}}}$

p(Y = 0 | X) = 1 - p(Y = 1)

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$- = \frac{1}{1 + e^{-\beta x}} = \frac{\sigma(\beta x)}{\sigma(\beta x)}$$

$$|X| = \frac{e^{-\beta x}}{1 + e^{-\beta x}} = \frac{1 - \sigma(\beta x)}{1 - \sigma(\beta x)}$$

# examples!

| feature   | coefficient | weight |
|-----------|-------------|--------|
| bias      | $\beta_0$   | 0.1    |
| "viagra"  | $\beta_1$   | 2.0    |
| "mother"  | $\beta_2$   | -1.0   |
| "work"    | $\beta_3$   | -0.5   |
| "nigeria" | $\beta_4$   | 3.0    |

labels: Y = 0 (not spam) Y = 1 (spam)

| feature   | coefficient | weight |
|-----------|-------------|--------|
| bias      | $\beta_0$   | 0.1    |
| "viagra"  | $\beta_1$   | 2.0    |
| "mother"  | $\beta_2$   | -1.0   |
| "work"    | $\beta_3$   | -0.5   |
| "nigeria" | $\beta_4$   | 3.0    |

labels: Y = 0 (not spam) Y = 1 (spam)

# input 1: empty document X = {}

p(Y = 1) = ???p(Y = 0) = ???

| feature   | coefficient | weight |
|-----------|-------------|--------|
| bias      | $\beta_0$   | 0.1    |
| "viagra"  | $\beta_1$   | 2.0    |
| "mother"  | $\beta_2$   | -1.0   |
| "work"    | $\beta_3$   | -0.5   |
| "nigeria" | $\beta_4$   | 3.0    |

labels: Y = 0 (not spam) Y = 1 (spam)

# input 1: empty document X = {}

our bias feature always fires!



| feature   | coefficient | weight |
|-----------|-------------|--------|
| bias      | $\beta_0$   | 0.1    |
| "viagra"  | $\beta_1$   | 2.0    |
| "mother"  | $\beta_2$   | -1.0   |
| "work"    | $\beta_3$   | -0.5   |
| "nigeria" | $\beta_4$   | 3.0    |

labels: Y = 0 (not spam) Y = 1 (spam)

# input 1: empty document X = {}

our bias feature always fires!

$$p(Y = 1) = \frac{1}{1 + e^{-0.1}} = 0.52$$
$$p(Y = 0) = \frac{e^{-0.1}}{1 + e^{-0.1}} = 0.48$$

bias encodes prior probabilities!

| feature   | coefficient | weight |
|-----------|-------------|--------|
| bias      | $\beta_0$   | 0.1    |
| "viagra"  | $\beta_1$   | 2.0    |
| "mother"  | $\beta_2$   | -1.0   |
| "work"    | $\beta_3$   | -0.5   |
| "nigeria" | $\beta_4$   | 3.0    |

labels: Y = 0 (not spam) Y = 1 (spam)

#### input 2: X = {mother, nigeria}

p(Y = 1) = ???p(Y = 0) = ???

| feature   | coefficient | weight |
|-----------|-------------|--------|
| bias      | $\beta_0$   | 0.1    |
| "viagra"  | $\beta_1$   | 2.0    |
| "mother"  | $\beta_2$   | -1.0   |
| "work"    | $\beta_3$   | -0.5   |
| "nigeria" | $\beta_4$   | 3.0    |

labels: Y = 0 (not spam) Y = 1 (spam)

p

input 2:  
X = {mother, nigeria}  

$$(Y = 1) = \frac{1}{1 + e^{-(0.1 - 1.0 + 3)}} = 0.89$$

p(Y = 0) = 0.11

| feature   | coefficient | weight |
|-----------|-------------|--------|
| bias      | $\beta_0$   | 0.1    |
| "viagra"  | $\beta_1$   | 2.0    |
| "mother"  | $\beta_2$   | -1.0   |
| "work"    | $\beta_3$   | -0.5   |
| "nigeria" | $\beta_4$   | 3.0    |

labels: Y = 0 (not spam) Y = 1 (spam)

p

$$P(Y=1) = \frac{1}{1 + e^{-(0.1 - 1.0 + 3)}} = 0.89$$

#### p(Y = 0) = 0.11

#### bias + sum of other weights!

| feature   | coefficient | weight |
|-----------|-------------|--------|
| bias      | $\beta_0$   | 0.1    |
| "viagra"  | $\beta_1$   | 2.0    |
| "mother"  | $\beta_2$   | -1.0   |
| "work"    | $\beta_3$   | -0.5   |
| "nigeria" | $\beta_4$   | 3.0    |
| # tokens  | $\beta_5$   | 4.5    |

labels:

Y = 0 (not spam)Y = 1 (spam)

what if i added a new feature for the # of tokens in the input?

| feature   | coefficient | weight |
|-----------|-------------|--------|
| bias      | $\beta_0$   | 0.1    |
| "viagra"  | $\beta_1$   | 2.0    |
| "mother"  | $\beta_2$   | -1.0   |
| "work"    | $\beta_3$   | -0.5   |
| "nigeria" | $eta_4$     | 3.0    |
| # tokens  | $\beta_5$   | 4.5    |

labels:

Y = 0 (not spam)Y = 1 (spam)

what if i added a new feature for the # of tokens in the input?



# NB as Log-Linear Model What are the features in Naive Bayes?

What are the weights in Naive Bayes?

# NB as Log-Linear Model $P(\text{spam}|D) \propto P(\text{spam}) \cdot \prod_{w_i \in D} P(w_i|\text{spam})$

## NB as Log-Linear Model $P(\text{spam}|D) \propto P(\text{spam}) \cdot | P(w_i|\text{spam})$ $X_i = COUNT$ $w_i \in D$ of word in D $P(\text{spam}|D) \propto P(\text{spam}) + \cdot P(w_i|\text{spam})^{x_i}$ $w_i \in \text{Vocab}$

## NB as Log-Linear Model $P(\text{spam}|D) \propto P(\text{spam}) \cdot | P(w_i|\text{spam})$ Xi = Count $w_i \in D$ of word in D $P(\text{spam}|D) \propto P(\text{spam}) \cdot P(w_i|\text{spam})^{x_i}$ $w_i \in \text{Vocab}$

 $\log[P(\text{spam}|D)] \propto \log[P(\text{spam})] + \sum x_i \cdot \log[P(w_i|\text{spam})]$ 

 $w_i \in \text{Vocab}$ log probs are weights! x<sub>i</sub> are features

# naive Bayes vs. logistic regression

- naive Bayes is easier to implement
- naive Bayes better on small datasets
- logistic regression better on medium-sized datasets
- on huge datasets, both perform comparably
- biggest difference: logistic regression allows arbitrary features

# now you know everything about logistic regression except....

## how do we learn the weights????

- in naive Bayes, we just counted to get conditional probabilities
- in logistic regression, we perform stochastic gradient ascent

to get conditional probabilities In stochastic gradient ascent

# Learning Weights given: a set of feature vectors and labels

### • goal: learn the weights.

# Learning Weights

### We know:

 $P(z) = \frac{e^z}{e^z + 1}$ 

# So let's try to maximize probability of the entire dataset - maximum likelihood estimation

$$=\frac{1}{1+e^{-z}}$$

# Learning Weights So let's try to maximize probability of the entire dataset - maximum likelihood estimation



$$,\ldots,y_n|\mathbf{x_0},\ldots,\mathbf{x_n};eta)$$

$$P(y_i|\mathbf{x_i};\beta)$$

# Learning Weights So let's try to maximize probability of the entire dataset - maximum likelihood estimation



$$,\ldots,y_n|\mathbf{x_0},\ldots,\mathbf{x_n};eta)$$

$$P(y_i | \mathbf{x_i}; \beta)$$

equivalent to minimizing the negative log likelihood as in your reading!

#### Goal







#### Goal

Optimize log likelihood with respect to variables  $\beta$ 





#### Parameter

#### Goal

Optimize log likelihood with respect to variables  $\beta$ 





#### Parameter

#### Goal

Optimize log likelihood with respect to variables  $\beta$ 





#### Parameter

#### Goal







#### Goal





#### Goal





#### Goal





# good news! the log-likelihood in LR is *concave*, which means that it has just one local (and global) maximum



#### Goal

Optimize log likelihood with respect to variables  $\beta$ 



# $\frac{\partial \mathscr{L}}{\partial \beta} = \text{gradient}$

#### **Gradient for Logistic Regression**

#### To ease notation, let's define

$$\pi_i = \sigma(\beta \cdot x_i)$$

Our objective function is

$$\mathscr{L} = \sum_{i} \log p(y_i | x_i) = \sum_{i} \mathscr{L}_i = \sum_{i}$$
  
log likelihood!

# $\sum_{i=1}^{n} \begin{cases} \log \pi_{i} & \text{if } y_{i} = 1 \\ \log(1 - \pi_{i}) & \text{if } y_{i} = 0 \end{cases}$



Apply chain rule:

$$\frac{\partial \mathscr{L}}{\partial \beta_{j}} = \sum_{i} \frac{\partial \mathscr{L}_{i}(\vec{\beta})}{\partial \beta_{j}} = \sum_{i} \begin{cases} \frac{1}{\pi_{i}} \\ \frac{\partial \beta_{j}}{\partial \beta_{j}} \end{cases}$$

 $\frac{\partial}{\partial x} log(x) =$  $\frac{1}{x}$ 

 $\frac{1}{\pi_i} \frac{\partial \pi_i}{\partial \beta_j} \qquad \text{if } y_i = 1$  $\frac{1}{1 - \pi_i} \left( -\frac{\partial \pi_i}{\partial \beta_i} \right) \qquad \text{if } y_i = 0$ 



Apply chain rule:

$$\frac{\partial \mathscr{L}}{\partial \beta_{j}} = \sum_{i} \frac{\partial \mathscr{L}_{i}(\vec{\beta})}{\partial \beta_{j}} = \sum_{i} \begin{cases} \frac{1}{\pi} \\ \frac{1}{\pi} \end{cases}$$

If we plug in the derivative,

$$\frac{\partial \pi_i}{\partial \beta_j} = \pi_i (1 - z)$$

 $\frac{\partial}{\partial x} log(x) = \frac{1}{x}$ 

 $\frac{1}{\pi_i} \frac{\partial \pi_i}{\partial \beta_j} \qquad \text{if } y_i = 1$  $\frac{1}{1 - \pi_i} \left( -\frac{\partial \pi_i}{\partial \beta_i} \right) \qquad \text{if } y_i = 0$ 

 $(\pi_i) x_{i_j}$ 

 $\frac{\partial}{\partial x}\sigma(x) = \sigma(x)(1 - \sigma(x))$ 



Apply chain rule:

$$\frac{\partial \mathscr{L}}{\partial \beta_{j}} = \sum_{i} \frac{\partial \mathscr{L}_{i}(\vec{\beta})}{\partial \beta_{j}} = \sum_{i} \begin{cases} \frac{1}{\pi} \\ \frac{1}{\pi} \end{cases}$$

If we plug in the derivative,

$$\frac{\partial \pi_i}{\partial \beta_j} = \pi_i (1 - z)$$

we can merge these two cases

$$\frac{\partial \mathscr{L}_i}{\partial \beta_j} = (y_i - z_i)$$

 $\frac{\partial}{\partial x} log(x) = \frac{1}{x}$ 

 $\frac{1}{\pi_i} \frac{\partial \pi_i}{\partial \beta_j} \qquad \text{if } y_i = 1$  $\frac{1}{1 - \pi_i} \left( -\frac{\partial \pi_i}{\partial \beta_i} \right) \qquad \text{if } y_i = 0$ 

 $(\pi_i) x_{i_i}$ 

 $\frac{\partial}{\partial x}\sigma(x) = \sigma(x)(1 - \sigma(x))$ 

 $(\pi_i) X_{i_i}$ 



Apply chain rule:

$$\frac{\partial \mathscr{L}}{\partial \beta_j} = \sum_{i} \frac{\partial \mathscr{L}_i(\vec{\beta})}{\partial \beta_j} = \sum_{i} \begin{cases} \frac{1}{\pi_i} \frac{\partial \pi_i}{\partial \beta_j} & \text{if } y_i = \\ \frac{1}{1-\pi_i} \left(-\frac{\partial \pi_i}{\partial \beta_j}\right) & \text{if } y_i = \end{cases}$$

If we plug in the derivative,

 $\frac{\partial \pi_i}{\partial \beta_i} = \pi_i (1 - \pi_i) x_{i_j}$ 

we can merge these two cases



on of 
$$\beta$$

$$\frac{\partial}{\partial x} log(x) = \frac{1}{x}$$

$$\frac{\partial}{\partial x}\sigma(x) = \sigma(x)(1 - \sigma(x))$$

0

 $\frac{\partial \mathcal{L}_i}{\partial \beta_j} = (y_i - \pi_i) x_{i_j}$  $\frac{\pi_i = \text{predicted probability}}$ 

#### **Gradient for Logistic Regression**

#### Gradient

 $\nabla_{\beta} \mathscr{L}(\vec{\beta}) = \left| \frac{\partial \mathscr{L}(\beta)}{\partial \beta_{0}}, \dots, \frac{\partial \mathscr{L}(\beta)}{\partial \beta_{n}} \right|$ 

#### Update

 $\Delta \beta \equiv \eta \nabla_{\beta} \mathscr{L}(\vec{\beta})$  $\beta'_{i} \leftarrow \beta_{i} + \eta \frac{\partial \mathscr{L}(\vec{\beta})}{\partial \beta_{i}}$ 



gradient = partial derivative of log likelihood WRT each weight



 $\eta$  is the *learning rate* 

# LogReg Exercise

#### features: (count "nigerian", count "prince", count "nigerian prince")





# LogReg Exercise

#### features: (count "nigerian", count "prince", count "nigerian prince")

$$\beta^{(0)} = (1.0, -3.0, 2.0)$$

$$\beta^{(1)} = (0.5, -1.0, 3.0)$$



# LogReg Exercise

#### features: (count "nigerian", count "prince", count "nigerian prince")

$$\beta^{(0)} = (1.0, -3.0, 2.0)$$

$$\beta^{(1)} = (0.5, -1.0, 3.0)$$

$$\beta^{(2)} = (-1.0, -1.0, 4.0)$$



#### **Regularized Conditional Log Likelihood**

Unregularized

$$\beta^* = \arg \max_{\beta} \ln \left[ p(y^{(j)} | x^{(j)}, \beta) \right]$$
$$\arg \max_{\beta} \ln \left[ p(y^{(j)} | x^{(j)}, \beta) \right] - \mu \sum_{i} \beta_i^2$$

#### Regularized

$$\beta^* = \arg \max_{\beta} \ln \left[ p(y^{(j)} | x^{(j)}, \beta) \right]$$
$$\beta^* = \arg \max_{\beta} \ln \left[ p(y^{(j)} | x^{(j)}, \beta) \right] - \mu \sum_{i} \beta_i^2$$

 $\mu$  is "regularization" parameter that trades off between likelihood and having small parameters

exercise!