text classification 1: naive Bayes

CS 585, Fall 2018

Introduction to Natural Language Processing http://people.cs.umass.edu/~miyyer/cs585/

Mohit lyyer

College of Information and Computer Sciences University of Massachusetts Amherst

questions after last class...

- can you post LaTeX source of the HW?
- in HW0 q4, what is meant by dimensionality?
- what is the course load like? how often will you be giving out HWs and what will be the usual split of theoretical / coding questions?

text classification

- input: some text **x** (e.g., sentence, document)
- output: a label **y** (from a finite label set)
- goal: learn a mapping function *f* from **x** to **y**

problem	X	У
sentiment analysis	text from reviews (e.g., IMDB)	{positive, negative}
topic identification	documents	{sports, news, health,}
author identification	books	{Tolkien, Shakespeare,}
spam identification	emails	{spam, not spam}

... many more!

input **x**:

From European Union <info@eu.org>☆</info@eu.org>	
Subject	
Reply to	

Please confirm to us that you are the owner of this very email address with your copy of identity card as proof.

YOU EMAIL ID HAS WON \$10,000,000.00 ON THE ONGOING EUROPEAN UNION COMPENSATION FOR SCAM VICTIMS. CONTACT OUR EMAIL: CONTACT US NOW VIA EMAIL:

label space: **spam** or **not spam**

we'd like to learn a mapping *f* such that $f(\mathbf{x}) = \mathbf{spam}$

f can be hand-designed rules

• if "won \$10,000,000" in **x**, **y** = **spam**

• if "CS585 Fall 2018" in **x**, **y** = **not spam**

what are the drawbacks of this method?

f can be learned from data

- given training data (already-labeled x,y pairs) learn f by maximizing the likelihood of the training data
- this is known as supervised learning

probability review

- random variable *X* takes value *x* with probability p(X = x); shorthand p(x)
- joint probability: p(X = x, Y = y)
- conditional probability: p(X = x | Y = y)

$$=\frac{p(X=x, Y=y)}{p(Y=y)}$$

• when does $p(X = x, Y = y) = p(X = x) \cdot p(Y = y)$?

probability of some input text

- goal: assign a probability to a sentence
 - sentence: sequence of *tokens* p(w₁, w₂, w₃, ..., w_n)
 p(the cat sleeps) > p(cat sleeps the)
 - $w_i \in V$ where V is the vocabulary (types)
- some constraints:

non-negativity for any $w \in V$, $p(w) \ge 0$

probability distribution, sums to 1

$$\sum_{w \in V} p(w) = 1$$

how to estimate p(sentence)?

$p(w_1, w_2, w_3, \dots, w_n)$

we could count all occurrences of the sequence

 $W_1, W_2, W_3, \dots, W_n$

in some large dataset and normalize by the number of sequences of length *n* in that dataset

how many parameters would this require?

chain rule

 $p(w_1, w_2, w_3, \dots, w_n)$ = $p(w_1) \cdot p(w_2 | w_1) \cdot p(w_3 | w_1, w_2) \dots \cdot p(w_n | w_{1 \dots n-1})$

in naive Bayes, the probability of generating a word is independent of all other words

$$= p(w_1) \cdot p(w_2) \cdot p(w_3) \dots \cdot p(w_n)$$

this is called the unigram probability. what are its limitations?

toy sentiment example

- vocabulary V: {i, hate, love, the, movie, actor}
- reviews:
 - i hate the movie
 - i love the movie
 - i hate the actor
 - the movie i love
 - i love love love love love the movie
 - hate movie
 - i hate the actor i love the movie

labels: positive negative

bag-of-words representation

i hate the actor i love the movie

word	count
i	2
hate	1
love	1
the	2
movie	1
actor	1

equivalent representation to: actor i i the love the movie hate

naive Bayes

- represents input text as a bag of words
- assumption: each word is independent of all other words
- given labeled data, we can use naive Bayes to estimate probabilities for unlabeled data
- **goal:** infer probability distribution that generated the labeled data for each label

which of the below distributions most likely generated the positive reviews?

logs to avoid underflow

 $p(w_1) \cdot p(w_2) \cdot p(w3) \dots \cdot p(w_n)$ can get really small esp. with large *n*

$$\log \prod p(w_i) = \sum \log p(w_i)$$

why is working in log space valid?

 $p(i) \cdot p(love)^{5} \cdot p(the) \cdot p(movie) = 5.95374181e-7$ $\log p(i) + 5 \log p(love) + \log p(the) + \log p(movie)$ = -14.3340757538

class conditional probabilities

Bayes rule (ex: x = sentence, y = label in {pos, neg})

posterior

$$p(y \mid x) = \frac{p(y) \cdot P(x \mid y)}{p(x)}$$
derive!

our predicted label is the one with the highest posterior probability, i.e.,

$$\hat{y} = \arg \max_{y \in Y} p(y) \cdot P(x | y)$$

remember the independence assumption!

$$\hat{y} = \arg \max_{y \in Y} p(y) \cdot P(x \mid y)$$

$$= \arg \max_{y \in Y} p(y) \cdot \prod_{w \in x} P(w \mid y)$$

$$= \arg \max_{y \in Y} \log p(y) + \sum_{w \in x} \log P(w \mid y)$$

computing the prior...

- i hate the movie
- i love the movie
- i hate the actor
- the movie i love
- i love love love love love the movie
- hate movie
- i hate the actor i love the movie

p(y) lets us encode inductive bias about the labels we can estimate it from the data by simply counting...

label y	count	p(Y=y)	log(p(Y=y))
positive	3	0.43	-0.84
negative	4	0.57	-0.56

computing the likelihood...

p(X | y=positive)

p(X | y=negative)

word	count	p(wly)	word	count	p(wly)
i	3	0.19	i	4	0.22
hate	0	0.00	hate	4	0.22
love	7	0.44	love	1	0.06
the	3	0.19	the	4	0.22
movie	3	0.19	movie	3	0.17
actor	0	0.00	actor	2	0.11
total	16		total	18	

p(X | y=positive)

p(X | y=negative)

word	count	p(wly)	word	count	p(wly)
i	3	0.19	i	4	0.22
hate	0	0.00	hate	4	0.22
love	7	0.44	love	1	0.06
the	3	0.19	the	4	0.22
movie	3	0.19	movie	3	0.17
actor	0	0.00	actor	2	0.11
total	16		total	18	

new review X_{new}: love love the movie

$$\log p(X_{\text{new}} | \text{positive}) = \sum_{w \in X_{\text{new}}} \log p(w | \text{positive}) = -4.96$$
$$\log p(X_{\text{new}} | \text{negative}) = -8.91$$

posterior probs for Xnew

$p(y|x) \propto \arg \max_{y \in Y} p(y) \cdot P(X_{new}|y)$

 $log p(positive | X_{new}) \propto log P(positive) + log p(X_{new} | positive)$ = -0.84 - 4.96 = -5.80

 $\log p(\text{negative} | X_{\text{new}}) \propto -0.56 - 8.91 = -9.47$

Naive Bayes predicts a positive label!

what if we see no positive training documents containing the word "awesome"?

p(awesome | positive) = 0

any review that contains "awesome" will have zero probability for the positive class!

Laplace (add-1) smoothing for Naïve Bayes

$$\hat{P}(w_i \mid c) = \frac{\text{count}(w_i, c)}{\sum_{w \in V} (\text{count}(w, c))}$$

$$= \frac{COUNT(W_i, C) + 1}{\left(\sum_{w \in V} COUNT(W, C)\right) + |V|}$$

what happens if we do add-*n* smoothing as *n* increases?

exercise!