text classification 1: naive Bayes

CS 585, Fall 2018

Introduction to Natural Language Processing http://people.cs.umass.edu/~miyyer/cs585/

Mohit lyyer

College of Information and Computer Sciences
University of Massachusetts Amherst

questions after last class...

- can you post LaTeX source of the HW?
- in HWO q4, what is meant by dimensionality?
- what is the course load like? how often will you be giving out HWs and what will be the usual split of theoretical / coding questions?

text classification

- input: some text \mathbf{x} (e.g., sentence, document)
- output: a label \mathbf{y} (from a finite label set)
- goal: learn a mapping function from \mathbf{x} to \mathbf{y}

problem	\mathbf{x}	\mathbf{y}
sentiment analysis	text from reviews (e.g., IMDB)	\{positive, negative\}
topic identification	documents	\{sports, news, health, $\ldots\}$
author identification	books	$\{$ Tolkien, Shakespeare, ..\}
spam identification	emails	\{spam, not spam\}
... many more!		

input \mathbf{x} :

From European Union info@eu.org§
Subject
Reply to

Please confirm to us that you are the owner of this very email address with your copy of identity card as proof.

YOU EMAIL ID HAS WON $\$ 10,000,000.00$ ON THE ONGOING EUROPEAN UNION COMPENSATION FOR SCAM VICTIMS. CONTACI OUR EMAIL: CONTACT US NOW VIA EMAIL: NOW TO CLAIM YOUR COMPENSATION
label space: spam or not spam

> we'd like to learn a mapping f such that $$
f(\mathbf{x})=\mathbf{s p a m}
$$

f can be hand-designed rules

- if "won \$10,000,000" in $\mathbf{x}, \mathbf{y}=$ spam
- if "CS585 Fall 2018" in $\mathbf{x}, \mathbf{y}=$ not spam
what are the drawbacks of this method?

f can be learned from data

- given training data (already-labeled $\mathbf{x , y}$ pairs) learn f by maximizing the likelihood of the training data
- this is known as supervised learning

probability review

- random variable X takes value x with probability $p(X=x)$; shorthand $p(x)$
- joint probability: $p(X=x, Y=y)$
- conditional probability: $p(X=x \mid Y=y)$

$$
=\frac{p(X=x, Y=y)}{p(Y=y)}
$$

- when does $p(X=x, Y=y)=p(X=x) \cdot p(Y=y)$?

probability of some input text

- goal: assign a probability to a sentence
- sentence: sequence of tokens

$$
\begin{aligned}
& p\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right) \\
& p(\text { the cat sleeps })>p(\text { cat sleeps the })
\end{aligned}
$$

- $w_{i} \in V$ where V is the vocabulary (types)
- some constraints:
non-negativity for any $w \in V, p(w) \geq 0$
$\begin{gathered}\begin{array}{c}\text { probability } \\ \text { distribution, } \\ \text { sums to 1 }\end{array}\end{gathered} \quad \sum_{w \in V} p(w)=1$

how to estimate p(sentence)?

$$
p\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)
$$

we could count all occurrences of the sequence

$$
w_{1}, w_{2}, w_{3}, \ldots, w_{n}
$$

in some large dataset and normalize by the number of sequences of length n in that dataset
how many parameters would this require?

chain rule

$$
\begin{gathered}
p\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right) \\
=p\left(w_{1}\right) \cdot p\left(w_{2} \mid w_{1}\right) \cdot p\left(w_{3} \mid w_{1}, w_{2}\right) \ldots \cdot p\left(w_{n} \mid w_{1 \ldots n-1}\right)
\end{gathered}
$$

in naive Bayes, the probability of generating a word is independent of all other words

$$
=p\left(w_{1}\right) \cdot p\left(w_{2}\right) \cdot p(w 3) \ldots \cdot p\left(w_{n}\right)
$$

this is called the unigram probability. what are its limitations?

toy sentiment example

- vocabulary V: \{i, hate, love, the, movie, actor\}
- reviews:
- i hate the movie
- i love the movie
- i hate the actor
- the movie i love
- i love love love love love the movie
- hate movie
- i hate the actor i love the movie

bag-of-words representation

i hate the actor i love the movie

word	count
i	2
hate	1
love	1
the	2
movie	1
actor	1

equivalent representation to: actor i i the love the movie hate

naive Bayes

- represents input text as a bag of words
- assumption: each word is independent of all other words
- given labeled data, we can use naive Bayes to estimate probabilities for unlabeled data
- goal: infer probability distribution that generated the labeled data for each label

which of the below distributions most likely generated the positive reviews?

... back to our reviews

p (i love love love love love the movie)
$=p(\mathrm{i}) \cdot p(\text { love })^{5} \cdot p$ (the) $\cdot p($ movie $)$

$$
=5.95374181 \mathrm{e}-7 \quad=1.4467592 \mathrm{e}-4
$$

logs to avoid underflow

$p\left(w_{1}\right) \cdot p\left(w_{2}\right) \cdot p(w 3) \ldots \cdot p\left(w_{n}\right)$
can get really small esp. with large n
$\log \prod p\left(w_{i}\right)=\sum \log p\left(w_{i}\right)$
why is working in log space valid?
$p\left(\right.$ (i) $\cdot p(\text { love })^{5} \cdot p$ (the) $\cdot p$ (movie) $=5.95374181 \mathrm{e}-7$ $\log p$ (i) $+5 \log p$ (love) $+\log p$ (the) $+\log p$ (movie)

$$
=-14.3340757538
$$

class conditional probabilities

Bayes rule (ex: $x=$ sentence, $y=$ label in $\{p o s$, neg\})

$$
\begin{aligned}
& \text { posterior } \\
& p(y \mid x)=\frac{\begin{array}{l}
\text { prior } \quad \text { likelihood } \\
p(y) \cdot P(x \mid y)
\end{array}}{p(x)} \text { derive! }
\end{aligned}
$$

our predicted label is the one with the highest posterior probability, i.e.,

$$
\hat{y}=\arg \max _{y \in Y} p(y) \cdot P(x \mid y)
$$

remember the independence assumption!

computing the prior...

- i hate the movie
- i love the movie
- i hate the actor
- the movie i love
- i love love love love love the movie
- hate movie
- i hate the actor i love the movie
$p(y)$ lets us encode inductive bias about the labels we can estimate it from the data by simply counting...

label y	count	$p(Y=y)$	$\log (p(Y=y))$
positive	3	0.43	-0.84
negative	4	0.57	-0.56

computing the likelihood...

$p(X \mid y=p o s i t i v e)$

word	count	$\mathrm{p}(\mathrm{w} \operatorname{ly})$
i	3	0.19
hate	0	0.00
love	7	0.44
the	3	0.19
movie	3	0.19
actor	0	0.00
total	$\mathbf{1 6}$	

$p(X \mid y=$ negative $)$

word	count	$p(w \mid y)$
i	4	0.22
hate	4	0.22
love	1	0.06
the	4	0.22
movie	3	0.17
actor	2	0.11
total	$\mathbf{1 8}$	

$p(X \mid y=p o s i t i v e)$
$p(X \mid y=$ negative $)$

word	count	$p(w \mid y)$	word	count	$p(w \mid y)$
i	3	0.19	i	4	0.22
hate	0	0.00		hate	4
love	7	0.44		0.22	
the	3	0.19	love	1	0.06
movie	3	0.19	the	4	0.22
actor	0	0.00	movie	3	0.17
total	$\mathbf{1 6}$		actor	2	0.11

new review $X_{\text {new: }}$: love love the movie
$\log p\left(X_{\text {new }} \mid\right.$ positive $)=\sum_{w \in X_{\text {new }}} \log p(w \mid$ positive $)=-4.96$
$\log p\left(X_{\text {new }} \mid\right.$ negative $)=-8.91$

posterior probs for $\mathrm{X}_{\text {new }}$

$p(y \mid x) \propto \arg \max p(y) \cdot P\left(X_{\text {new }} \mid y\right)$
 $$
y \in Y
$$

$\log p\left(\right.$ positive $\left.\mid X_{\text {new }}\right) \propto \log P($ positive $)+\log p\left(X_{\text {new }} \mid\right.$ positive $)$

$$
=-0.84-4.96=-5.80
$$

$\log p\left(\right.$ negative $\left.\mid X_{\text {new }}\right) \propto-0.56-8.91=-9.47$

Naive Bayes predicts a positive label!
what if we see no positive training documents containing the word "awesome"?

$p($ awesome \mid positive $)=0$

any review that contains "awesome" will have zero probability for the positive class!

Laplace (add-1) smoothing for Naïve Bayes

$$
\begin{aligned}
\hat{P}\left(w_{i} \mid c\right) & =\frac{\operatorname{count}\left(w_{i}, c\right)}{\sum_{w \in V}(\operatorname{count}(w, C))} \\
& =\frac{\operatorname{count}\left(w_{i}, c\right)+1}{\left(\sum_{w \in V} \operatorname{count}(w, c)\right)+|V|}
\end{aligned}
$$

what happens if we do add- n smoothing as n increases?

exercise!

