Homework 0: Math Review

CS 585, UMass Amherst, Fall 2018

Note

Wikipedia is a useful resource for basic probability and linear algebra.

Make a PDF file of your answers, and upload it to Gradescope by the end of Tues Sep 11. We will only accept PDF format.

1 Domain of a joint distribution

1.1

A and *B* are discrete random variables. *A* can take on one of 10 possible values. *B* can take on one of 32 possible values. (In other words, the size of domain(*A*) is 10, and the size of domain(*B*) is 32.) How many possible outcomes does the joint distribution P(A, B) define probabilities for?

1.2

Say we have a sequence of *n* binary random variables $A_1, A_2, \ldots A_n$. How many possible outcomes does the joint distribution $P(A_1, A_2, \ldots A_n)$ define probabilities for?

2 Independence versus Basic Definitions

Say we have three random variables A and B and C. Note that we're using standard probability theory notation where P(A, B) = P(B, A), which simply means the joint probability of both A and B occurring.

2.1

Which of the following statements is always true?

1.
$$P(A|B) = P(B|A)$$

- **2.** P(A, B) = P(A|B)P(B)
- 3. P(A, B) = P(A)P(B)
- 4. P(A|B) = P(A)
- 5. P(A, B, C) = P(A)P(C)
- 6. P(A, B, C) = P(A)P(B)P(C)

7. P(A, B, C) = P(A)P(B|A)P(C|A, B)8. $P(A) = \sum_{b \in \text{domain}(B)} P(A, B = b)$ 9. $P(A) = \sum_{b \in \text{domain}(B)} P(A|B = b)P(B = b)$ 10. $\log(P(A)P(B)) = \log P(A) + \log P(B)$

2.2

Now assume that *A*, *B*, and *C* are all independent of each other. Which of the above statements are now true?

3 Logarithms

3.1 Log-probs

Let *p* be a probability, so it is bounded to [0, 1] (between 0 and 1, inclusive). What is the range of possible values for $\log(p)$? Please be specific about open versus closed intervals.

3.2 Prob ratios

Let *p* and *q* both be probabilities. What is the range of possible values for p/q?

3.3 Log prob ratios

What is the range of possible values for $\log(p/q)$?

4 Linear algebra review

 \boldsymbol{x} is a 6-d real-valued vector (i.e., $\boldsymbol{x} \in \mathbb{R}^6$). \boldsymbol{y} is another vector of the same dimensionality ($\boldsymbol{y} \in \mathbb{R}^6$). \boldsymbol{W}_1 is a 6 × 6 real-valued matrix, and \boldsymbol{W}_2 is a 12 × 6 real-valued matrix.

Answer the following questions. Feel free to look at online resources such as Wikipedia for help, and/or additionally test out your answers programmatically using libraries such as numpy.

- 1. what is the dimensionality of the element-wise product x * y?
- 2. what is the dimensionality of the dot product of x and y (i.e., $x \cdot y$, or $x^{T}y$ in matrix notation)?
- 3. what is the dimensionality of the matrix-vector product $\mathbf{W}_1 \mathbf{x}$?
- 4. what is the dimensionality of $\mathbf{W}_2 \boldsymbol{y}$?
- 5. assume the magnitude of *x* is 1 (i.e., ||x|| = 1). what is $x \cdot x$?
- 6. assume x and y are orthogonal, and ||x|| = ||y|| = 1. what is $x \cdot y$?