Homework 0: Math Review

CS 585, UMass Amherst, Fall 2018

Note

Wikipedia is a useful resource for basic probability and linear algebra.
Make a PDF file of your answers, and upload it to Gradescope by the end of Tues Sep 11. We will only accept PDF format.

1 Domain of a joint distribution

1.1

A and B are discrete random variables. A can take on one of 10 possible values. B can take on one of 32 possible values. (In other words, the size of domain (A) is 10 , and the size of domain (B) is 32.) How many possible outcomes does the joint distribution $P(A, B)$ define probabilities for?

1.2

Say we have a sequence of n binary random variables $A_{1}, A_{2}, \ldots A_{n}$. How many possible outcomes does the joint distribution $P\left(A_{1}, A_{2}, \ldots A_{n}\right)$ define probabilities for?

2 Independence versus Basic Definitions

Say we have three random variables A and B and C. Note that we're using standard probability theory notation where $P(A, B)=P(B, A)$, which simply means the joint probability of both A and B occurring.

2.1

Which of the following statements is always true?

1. $P(A \mid B)=P(B \mid A)$
2. $P(A, B)=P(A \mid B) P(B)$
3. $P(A, B)=P(A) P(B)$
4. $P(A \mid B)=P(A)$
5. $P(A, B, C)=P(A) P(C)$
6. $P(A, B, C)=P(A) P(B) P(C)$
7. $P(A, B, C)=P(A) P(B \mid A) P(C \mid A, B)$
8. $P(A)=\sum_{b \in \operatorname{domain}(B)} P(A, B=b)$
9. $P(A)=\sum_{b \in \operatorname{domain}(B)} P(A \mid B=b) P(B=b)$
10. $\log (P(A) P(B))=\log P(A)+\log P(B)$

2.2

Now assume that A, B, and C are all independent of each other. Which of the above statements are now true?

3 Logarithms

3.1 Log-probs

Let p be a probability, so it is bounded to $[0,1]$ (between 0 and 1 , inclusive). What is the range of possible values for $\log (p)$? Please be specific about open versus closed intervals.

3.2 Prob ratios

Let p and q both be probabilities. What is the range of possible values for p / q ?

3.3 Log prob ratios

What is the range of possible values for $\log (p / q)$?

4 Linear algebra review

\boldsymbol{x} is a 6 -d real-valued vector (i.e., $\boldsymbol{x} \in \mathbb{R}^{6}$). \boldsymbol{y} is another vector of the same dimensionality ($\boldsymbol{y} \in \mathbb{R}^{6}$). \mathbf{W}_{1} is a 6×6 real-valued matrix, and \mathbf{W}_{2} is a 12×6 real-valued matrix.

Answer the following questions. Feel free to look at online resources such as Wikipedia for help, and/or additionally test out your answers programmatically using libraries such as numpy.

1. what is the dimensionality of the element-wise product $\boldsymbol{x} * \boldsymbol{y}$?
2. what is the dimensionality of the dot product of \boldsymbol{x} and \boldsymbol{y} (i.e., $\boldsymbol{x} \cdot \boldsymbol{y}$, or $\boldsymbol{x}^{\top} \boldsymbol{y}$ in matrix notation)?
3. what is the dimensionality of the matrix-vector product $\mathbf{W}_{1} \boldsymbol{x}$?
4. what is the dimensionality of $\mathbf{W}_{2} \boldsymbol{y}$?
5. assume the magnitude of \boldsymbol{x} is 1 (i.e., $\|\boldsymbol{x}\|=1$). what is $\boldsymbol{x} \cdot \boldsymbol{x}$?
6. assume \boldsymbol{x} and \boldsymbol{y} are orthogonal, and $\|\boldsymbol{x}\|=\|\boldsymbol{y}\|=1$. what is $\boldsymbol{x} \cdot \boldsymbol{y}$?
