Learning in log-linear language models

Mohit Iyyer
College of Information and Computer Sciences
University of Massachusetts Amherst

CS 585, Fall 2019
Introduction to Natural Language Processing
http://people.cs.umass.edu/~miyyer/cs585/

[some slides adapted from Richard Socher]
stuff from last class….

• group assignments due by this Thursday Sep 19th at the end of the day, otherwise you’ll be randomly assigned!
• HW1 bug fixed, recopy the notebook for those who already started!
• more readings that are research papers? ok
• talk about state-of-the-art models? later
• code libraries for project?
where we left off:
so we have some input text from which we have computed feature vector \mathbf{x}.

$x(...$Hence, in any statistical$) = 10010010110101$

$\phi_0 = \begin{cases} 1, & \text{if } w_{i-1} = \text{statistical}, \\ 0, & \text{otherwise}. \end{cases}$

$\phi_1 = \begin{cases} 1, & \text{if } w_{i-1} = \text{animal}, \\ 0, & \text{otherwise}. \end{cases}$

$\phi_2 = \begin{cases} 1, & \text{if } \text{pos}(w_{i-1}) = \text{adj}, \\ 0, & \text{otherwise}. \end{cases}$
given features \mathbf{x}, how do we predict the next word y?

$$s = W\mathbf{x} + b$$

- score vector $s \in \mathbb{R}^{|V|}$
- features $\mathbf{x} \in \mathbb{R}^m$
- weight matrix $W \in \mathbb{R}^{|V| \times m}$

Each row of W contains weights for a (word y, \mathbf{x}) pair
how do we obtain probabilities?

\[s = Wx + b \]

score vector \(s \in \mathbb{R}^{|V|} \)

weight matrix \(W \in \mathbb{R}^{|V| \times m} \)

features \(x \in \mathbb{R}^m \)

\[p_i = \frac{e^{s_i}}{\sum_j e^{s_j}} ; p = \text{softmax}(s) \]
colab demo!
what do we have left?

• how do we find the optimal values of \(W \) and \(b \) for our language modeling problem?

• gradient descent! this involves computing:
 1. a *loss function*, which tells us how good the current values of \(W \) and \(b \) are on our training data
 2. the partial derivatives \(\frac{\partial L}{\partial W} \) and \(\frac{\partial L}{\partial b} \)
what do we have left?

• how do we find the optimal values of \mathbf{W} and \mathbf{b} for our language modeling problem?

• gradient descent! this involves computing:
 1. a loss function, which tells us how good the current values of \mathbf{W} and \mathbf{b} are on our training data
 2. the partial derivatives $\frac{\partial L}{\partial W}$ and $\frac{\partial L}{\partial b}$ kinda like we did in HW0!
first, an aside: what is the bias b?

- Let’s say we have a feature that is always set to 1 regardless of what the input text is.
- This is clearly not an informative feature. However, let’s say it was the only one I had…
first, an aside: what is the bias b?

• Let’s say we have a feature that is always set to 1 regardless of what the input text is.

• This is clearly not an informative feature. However, let’s say it was the only one I had…

first, how many weights do I need to learn for this feature?
first, an aside: what is the bias \(b \)?

- Let’s say we have a feature that is always set to 1 regardless of what the input text is.
- This is clearly not an informative feature. However, let’s say it was the only one I had…

 first, how many weights do I need to learn for this feature?

 okay… what is the best set of weights for it?
Training with softmax and cross-entropy error

• For each training example \(\{x,y\} \), our objective is to maximize the probability of the correct class \(y \)

• Hence, we minimize the negative log probability of that class:

\[
L = - \log p(y|x, W) = - \log \left(\frac{e^{Wy,x}}{\sum_{y' \in V} e^{W_{y',x}}} \right)
\]
Training with softmax and cross-entropy error

• For each training example \(\{x, y\}\), our objective is to maximize the probability of the correct class \(y\).

• Hence, we minimize the negative log probability of that class:

\[
L = - \log p(y | x, W) = - \log \left(\frac{e^{W_y x}}{\sum_{y' \in V} e^{W_{y'} x}} \right)
\]

why not just maximize the log probability?
Background: Why “Cross entropy” error

• Assuming a ground truth (or gold or target) probability distribution that is 1 at the right class and 0 everywhere else: \(p = [0, \ldots, 0, 1, 0, \ldots, 0] \) and our computed probability is \(q \), then the cross entropy is:

\[
H(p, q) = - \sum_{w \in V} p(w) \log q(w)
\]

• Because of one-hot \(p \), the only term left is the negative log probability of the true class
let’s say I also have the derivatives

\[
\frac{\partial L}{\partial W} \quad \frac{\partial L}{\partial b}
\]

- the partial derivatives tell us how the loss changes given a change in the corresponding parameter

- we can thus take steps in the negative direction of the gradient to minimize the loss function
draw on paper
derivation on paper