Logistic regression classifiers

CS 585, Fall 2018
Introduction to Natural Language Processing
http://people.cs.umass.edu/~miyyer/cs585/

Mohit Iyyer
College of Information and Computer Sciences
University of Massachusetts Amherst

[slides adapted from Brendan O’Connor & Jordan Boyd-Graber]
get an exercise at the front!
questions from last class....

• what is add-1 smoothing again??????????????????????
• how many hours will each assignment take?
• i’m gonna miss class because of <insert reason>, how can i make up the in-class exercise that i missed?
• can you post the in-class exercise answers?
• what python version should we use for the assignments?
Logistic regression

- Log Linear Model - a.k.a. Logistic regression classifier
- Kinda like Naive Bayes, but:
 - Doesn’t assume features are independent
 - Correlated features aren’t overcounted
 - Discriminative training: optimize $p(y \mid text)$, not $p(y, text)$
 - Tends to work better - state of the art for doc classification, widespread hard-to-beat baseline for many tasks
 - Good off-the-shelf implementations (e.g. scikit-learn, vowpal wabbit)
Features

• Input document \(d \) (a string...)
• Engineer a feature function, \(f(d) \), to generate feature vector \(\mathbf{x} \)

\[
f(d) = \begin{pmatrix}
 \text{Count of “happy”}, \\
 (\text{Count of “happy”}) / (\text{Length of doc}), \\
 \log(1 + \text{count of “happy”}), \\
 \text{Count of “not happy”}, \\
 \text{Count of words in my pre-specified word list, “positive words according to my favorite psychological theory”}, \\
 \text{Count of “of the”}, \\
 \text{Length of document}, \\
 ... \\
\end{pmatrix}
\]

Typically these use feature templates:
Generate many features at once
for each word \(w \):
- \${w}_\text{count}
- \${w}_\log_1\text{plus}_\text{count}
- \${w}_\text{with}_\text{NOT}_\text{before}_\text{it}_\text{count}
-

• Not just word counts. Anything that might be useful!
• **Feature engineering**: when you spend a lot of time trying and testing new features. Very important!!! This is a place to put linguistics in.
step 1: featurization

1. Given an input text X, compute feature vector x

$$x = <\text{count(nigerian)}, \text{count(prince)}, \text{count(nigerian prince)}>$$
step 2: dot product w/ weights

1. Given an input text \mathbf{X}, compute feature vector \mathbf{x}

 $\mathbf{x} = \langle \text{count(nigerian)}, \text{count(prince)}, \text{count(nigerian prince)} \rangle$

2. Take dot product of \mathbf{x} with weights $\mathbf{\beta}$ to get z

 $\mathbf{\beta} = \langle -1, -1, 4 \rangle$

 $z = \sum_{i=0}^{\mid \mathbf{X} \mid} \beta_i x_i$
step 3: compute class probability

1. Given an input text \(X \), compute feature vector \(x \)
\[
x = \langle \text{count(nigerian)}, \text{count(prince)}, \text{count(nigerian prince)} \rangle
\]

2. Take dot product of \(x \) with weights \(\beta \) to get \(z \)
\[
\beta = \langle -1, -1, 4 \rangle
\]
\[
z = \sum_{i=0}^{\mid X \mid} \beta_i x_i
\]

3. Apply logistic function to \(z \)
\[
P(z) = \frac{e^z}{e^z + 1} = \frac{1}{1 + e^{-z}}
\]
why dot product?

Intuition: weighted sum of features

All linear models have this form!
Logistic Function

\[P(z) = \frac{e^z}{e^z + 1} = \frac{1}{1 + e^{-z}} \]

What does this function look like?
What properties does it have?
Logistic Function

\[P(z) = \frac{e^z}{e^z + 1} = \frac{1}{1 + e^{-z}} \]
Logistic Function

- logistic function $P(z) : \mathcal{R} \rightarrow [0, 1]$

- decision boundary is dot product = 0 (2 class)

- comes from linear log odds $\log \frac{P(x)}{1 - P(x)} = \sum_{i=0}^{|X|} \beta_i x_i$
How to get class probabilities?

sigmoid / logistic function:

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

\[p(Y = 1 \mid X) = \frac{1}{1 + e^{-\sum_i \beta_i x_i}} = \frac{1}{1 + e^{-\beta x}} = \sigma(\beta x) \]

\[p(Y = 0 \mid X) = 1 - p(Y = 1 \mid X) = \frac{e^{-\beta x}}{1 + e^{-\beta x}} = 1 - \sigma(\beta x) \]
examples!
feature coefficient weight

<table>
<thead>
<tr>
<th>feature</th>
<th>β</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>“viagra”</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>“mother”</td>
<td>β_2</td>
<td>-1.0</td>
</tr>
<tr>
<td>“work”</td>
<td>β_3</td>
<td>-0.5</td>
</tr>
<tr>
<td>“nigeria”</td>
<td>β_4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

labels:
Y = 0 (not spam)
Y = 1 (spam)
labels:

- **Y = 0** (not spam)
- **Y = 1** (spam)

Feature Coefficients

<table>
<thead>
<tr>
<th>feature</th>
<th>coefficient</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>“viagra”</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>“mother”</td>
<td>β_2</td>
<td>-1.0</td>
</tr>
<tr>
<td>“work”</td>
<td>β_3</td>
<td>-0.5</td>
</tr>
<tr>
<td>“nigeria”</td>
<td>β_4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

input 1: empty document

$$X = \{\}$$

$$p(Y = 1) = ???$$

$$p(Y = 0) = ???$$
### feature	coefficient	weight
bias | β_0 | 0.1
“viagra” | β_1 | 2.0
“mother” | β_2 | -1.0
“work” | β_3 | -0.5
“nigeria” | β_4 | 3.0

input 1: empty document

$X = \{}$

our bias feature always fires!

\[
p(Y = 1) = \frac{1}{1 + e^{-0.1}} = 0.52
\]

\[
p(Y = 0) = \frac{e^{-0.1}}{1 + e^{-0.1}} = 0.48
\]

labels:

$Y = 0$ (not spam)

$Y = 1$ (spam)
<table>
<thead>
<tr>
<th>feature</th>
<th>coefficient</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>“viagra”</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>“mother”</td>
<td>β_2</td>
<td>-1.0</td>
</tr>
<tr>
<td>“work”</td>
<td>β_3</td>
<td>-0.5</td>
</tr>
<tr>
<td>“nigeria”</td>
<td>β_4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

labels:

Y = 0 (not spam)

Y = 1 (spam)

input 1: empty document

$$X = \{\}$$

our bias feature always fires!

$$p(Y = 1) = \frac{1}{1 + e^{-0.1}} = 0.52$$

$$p(Y = 0) = \frac{e^{-0.1}}{1 + e^{-0.1}} = 0.48$$

bias encodes prior probabilities!
<table>
<thead>
<tr>
<th>feature</th>
<th>coefficient</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>“viagra”</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>“mother”</td>
<td>β_2</td>
<td>-1.0</td>
</tr>
<tr>
<td>“work”</td>
<td>β_3</td>
<td>-0.5</td>
</tr>
<tr>
<td>“nigeria”</td>
<td>β_4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

labels:

$Y = 0$ (not spam)

$Y = 1$ (spam)

input 2:

$X = \{\text{mother, nigeria}\}$

$p(Y = 1) = ???$

$p(Y = 0) = ???$
<table>
<thead>
<tr>
<th>feature</th>
<th>coefficient</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>“viagra”</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>“mother”</td>
<td>β_2</td>
<td>-1.0</td>
</tr>
<tr>
<td>“work”</td>
<td>β_3</td>
<td>-0.5</td>
</tr>
<tr>
<td>“nigeria”</td>
<td>β_4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

input 2:

\[
X = \{\text{mother, nigeria}\}
\]

\[
p(Y = 1) = \frac{1}{1 + e^{-(0.1 - 1.0 + 3)}} = 0.89
\]

\[
p(Y = 0) = 0.11
\]

labels:

Y = 0 (not spam)
Y = 1 (spam)
<table>
<thead>
<tr>
<th>feature</th>
<th>coefficient</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>“viagra”</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>“mother”</td>
<td>β_2</td>
<td>-1.0</td>
</tr>
<tr>
<td>“work”</td>
<td>β_3</td>
<td>-0.5</td>
</tr>
<tr>
<td>“nigeria”</td>
<td>β_4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

input 2:
$X = \{\text{mother, nigeria}\}$

\[
p(Y = 1) = \frac{1}{1 + e^{-(0.1-1.0+3)}} = 0.89
\]

\[
p(Y = 0) = 0.11
\]

labels:
Y = 0 (not spam)
Y = 1 (spam)
<table>
<thead>
<tr>
<th>feature</th>
<th>coefficient</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>“viagra”</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>“mother”</td>
<td>β_2</td>
<td>-1.0</td>
</tr>
<tr>
<td>“work”</td>
<td>β_3</td>
<td>-0.5</td>
</tr>
<tr>
<td>“nigeria”</td>
<td>β_4</td>
<td>3.0</td>
</tr>
<tr>
<td># tokens</td>
<td>β_5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

labels:

Y = 0 (not spam)
Y = 1 (spam)

input 2:

X = \{mother, nigeria\}

what if i added a new feature for the # of tokens in the input?
<table>
<thead>
<tr>
<th>feature</th>
<th>coefficient</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>“viagra”</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>“mother”</td>
<td>β_2</td>
<td>-1.0</td>
</tr>
<tr>
<td>“work”</td>
<td>β_3</td>
<td>-0.5</td>
</tr>
<tr>
<td>“nigeria”</td>
<td>β_4</td>
<td>3.0</td>
</tr>
<tr>
<td># tokens</td>
<td>β_5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

labels:

- $Y = 0$ (not spam)
- $Y = 1$ (spam)

input 2:

$X = \{\text{mother, nigeria}\}$

what if i added a new feature for the # of tokens in the input?

$$p(Y = 1) = \frac{1}{1 + e^{-(0.1 - 1.0 + 3 + 2 \times 4.5)}}$$
NB as Log-Linear Model

- What are the **features** in Naive Bayes?
- What are the **weights** in Naive Bayes?
NB as Log-Linear Model

\[P(\text{spam}|D) \propto P(\text{spam}) \cdot \prod_{w_i \in D} P(w_i|\text{spam}) \]
NB as Log-Linear Model

\[P(\text{spam}|D) \propto P(\text{spam}) \cdot \prod_{w_i \in D} P(w_i|\text{spam}) \]

\[P(\text{spam}|D) \propto P(\text{spam}) + \prod_{w_i \in \text{Vocab}} \cdot P(w_i|\text{spam})^{x_i} \]

\(x_i = \text{count of word in D} \)
NB as Log-Linear Model

\[P(\text{spam}|D) \propto P(\text{spam}) \cdot \prod_{w_i \in D} P(w_i|\text{spam}) \]

\[P(\text{spam}|D) \propto P(\text{spam}) \cdot \prod_{w_i \in \text{Vocab}} P(w_i|\text{spam})^x_i \]

\[\log[P(\text{spam}|D)] \propto \log[P(\text{spam})] + \sum_{w_i \in \text{Vocab}} x_i \cdot \log[P(w_i|\text{spam})] \]

- **x_i = count of word in D**
- **x_i are features**
- **log probs are weights!**
naive Bayes vs. logistic regression

- naive Bayes is easier to implement
- naive Bayes better on small datasets
- logistic regression better on medium-sized datasets
- on huge datasets, both perform comparably
- **biggest difference:** logistic regression allows arbitrary features
now you know everything about logistic regression except....

how do we learn the weights???

- in naive Bayes, we just counted to get conditional probabilities
- in logistic regression, we perform stochastic gradient ascent
Learning Weights

- given: a set of feature vectors and labels
- goal: learn the weights.
Learning Weights

We know:

\[P(z) = \frac{e^z}{e^z + 1} = \frac{1}{1 + e^{-z}} \]

So let’s try to maximize probability of the entire dataset - **maximum likelihood estimation**
Learning Weights

So let’s try to maximize probability of the entire dataset - **maximum likelihood estimation**

\[
\beta^{MLE} = \arg \max_{\beta} \log P(y_0, \ldots, y_n | x_0, \ldots, x_n; \beta)
\]

\[
= \arg \max_{\beta} \sum_{i=0}^{\lvert X \rvert} \log P(y_i | x_i; \beta)
\]
Learning Weights

So let’s try to maximize probability of the entire dataset - **maximum likelihood estimation**

\[\beta_{MLE} = \arg \max_{\beta} \log P(y_0, \ldots, y_n|x_0, \ldots, x_n; \beta) \]

\[= \arg \max_{\beta} \sum_{i=0}^{\mid X \mid} \log P(y_i|x_i; \beta) \]

equivalent to minimizing the negative log likelihood as in your reading!
gradient ascent (non-convex)

Goal

Optimize log likelihood with respect to variables β
gradient ascent (non-convex)

Goal
Optimize log likelihood with respect to variables β
Gradient Descent (non-convex)

Goal
Optimize log likelihood with respect to variables β
gradient ascent (non-convex)

Goal
Optimize log likelihood with respect to variables β
Gradient Descent (non-convex)

Goal
Optimize log likelihood with respect to variables β

Diagram:
- Objective axis
- Parameter axis
- Gradient ascent path
- Starting point 0
- Intermediate point 1
- Objective function landscape
- Non-convex optimization path
gradient ascent (non-convex)

Goal

Optimize log likelihood with respect to variables β
gradient ascent (non-convex)

Goal

Optimize log likelihood with respect to variables β
gradient ascent (non-convex)

Goal
Optimize log likelihood with respect to variables β
good news! the log-likelihood in LR is **concave**, which means that it has just one local (and global) maximum.
gradient ascent (non-convex)

Goal

Optimize log likelihood with respect to variables β

\[
\frac{\partial L}{\partial \beta} = \text{gradient}
\]
Gradient for Logistic Regression

To ease notation, let’s define

\[\pi_i = \sigma(\beta \cdot x_i) \]

Our objective function is

\[\mathcal{L} = \sum_i \log p(y_i | x_i) = \sum_i \mathcal{L}_i = \sum_i \begin{cases}
\log \pi_i & \text{if } y_i = 1 \\
\log(1 - \pi_i) & \text{if } y_i = 0
\end{cases} \]

log likelihood!
Taking the Derivative

\[\beta_j = j^{th} \text{ dimension of } \beta \]

Apply chain rule:

\[
\frac{\partial L}{\partial \beta_j} = \sum_i \frac{\partial L_i(\hat{\beta})}{\partial \beta_j} = \sum_i \begin{cases}
\frac{1}{\pi_i} \frac{\partial \pi_i}{\partial \beta_j} & \text{if } y_i = 1 \\
\frac{1}{1-\pi_i} \left(-\frac{\partial \pi_i}{\partial \beta_j}\right) & \text{if } y_i = 0
\end{cases}
\]
Taking the Derivative

\(\beta_j = j^{th} \text{ dimension of } \beta \)

Apply chain rule:

\[
\frac{\partial L}{\partial \beta_j} = \sum_i \frac{\partial L_i(\hat{\beta})}{\partial \beta_j} = \sum_i \left\{ \frac{1}{\pi_i} \frac{\partial \pi_i}{\partial \beta_j} \right\} \frac{1}{1 - \pi_i} \left(- \frac{\partial \pi_i}{\partial \beta_j} \right) \text{ if } y_i = 1
\]

\[
\frac{\partial \pi_i}{\partial \beta_j} = \pi_i (1 - \pi_i) x_{ij} \text{ if } y_i = 0
\]

If we plug in the derivative,

\[
\frac{\partial \pi_i}{\partial x} = \frac{1}{x}
\]

\[
\frac{\partial \log(x)}{\partial x} = \frac{1}{x}
\]

\[
\frac{\partial \sigma(x)}{\partial x} = \sigma(x)(1 - \sigma(x))
\]
Taking the Derivative

Apply chain rule:

\[
\frac{\partial \mathcal{L}}{\partial \beta_j} = \sum_i \frac{\partial \mathcal{L}_i(\hat{\beta})}{\partial \beta_j} = \sum_i \left\{ \begin{array}{ll}
\frac{1}{\pi_i} \frac{\partial \pi_i}{\partial \beta_j} & \text{if } y_i = 1 \\
\frac{1}{1-\pi_i} \left(-\frac{\partial \pi_i}{\partial \beta_j} \right) & \text{if } y_i = 0
\end{array} \right.
\]

If we plug in the derivative,

\[
\frac{\partial \pi_i}{\partial \beta_j} = \pi_i (1 - \pi_i)x_{ij}
\]

we can merge these two cases

\[
\frac{\partial \mathcal{L}_i}{\partial \beta_j} = (y_i - \pi_i)x_{ij}
\]
Taking the Derivative

\[\beta_j = j^{th} \text{ dimension of } \beta \]

Apply chain rule:

\[
\frac{\partial \mathcal{L}}{\partial \beta_j} = \sum_i \frac{\partial \mathcal{L}_i(\hat{\beta})}{\partial \beta_j} = \sum_i \left\{ \begin{array}{ll}
\frac{1}{\pi_i} \frac{\partial \pi_i}{\partial \beta_j} & \text{if } y_i = 1 \\
\frac{1}{1-\pi_i} \left(- \frac{\partial \pi_i}{\partial \beta_j}\right) & \text{if } y_i = 0
\end{array} \right.
\]

If we plug in the derivative,

\[
\frac{\partial \pi_i}{\partial \beta_j} = \pi_i(1 - \pi_i) x_{ij}
\]

we can merge these two cases

\[
\frac{\partial \mathcal{L}_i}{\partial \beta_j} = (y_i - \pi_i) x_{ij}
\]

\[\frac{\partial}{\partial x} \log(x) = \frac{1}{x} \]

\[\frac{\partial}{\partial x} \sigma(x) = \sigma(x)(1 - \sigma(x)) \]

\[\pi_i = \text{predicted probability} \]

\[y_i = \text{ground-truth label} \]
Gradient for Logistic Regression

Gradient

\[
\nabla_{\beta} \mathcal{L}(\tilde{\beta}) = \left[\frac{\partial \mathcal{L}(\tilde{\beta})}{\partial \beta_0}, ..., \frac{\partial \mathcal{L}(\tilde{\beta})}{\partial \beta_n} \right]
\]

Update

\[
\Delta \beta \equiv \eta \nabla_{\beta} \mathcal{L}(\tilde{\beta})
\]

\[
\beta_i' \leftarrow \beta_i + \eta \frac{\partial \mathcal{L}(\tilde{\beta})}{\partial \beta_i}
\]

\(\eta\) is the learning rate

gradient = partial derivative of log likelihood WRT each weight
LogReg Exercise

features: (count “nigerian”, count “prince”, count “nigerian prince”)

\[\beta^{(0)} = (1.0, -3.0, 2.0) \]

63% accuracy
LogReg Exercise

features: \((\text{count “nigerian”}, \text{count “prince”}, \text{count “nigerian prince”})\)

- \(\beta^{(0)} = (1.0, -3.0, 2.0)\) \quad \text{63% accuracy}
- \(\beta^{(1)} = (0.5, -1.0, 3.0)\) \quad \text{75% accuracy}
LogReg Exercise

features: (count “nigerian”, count “prince”, count “nigerian prince”)

\[\beta^{(0)} = (1.0, -3.0, 2.0) \rightarrow 63\% \text{ accuracy} \]

\[\beta^{(1)} = (0.5, -1.0, 3.0) \rightarrow 75\% \text{ accuracy} \]

\[\beta^{(2)} = (-1.0, -1.0, 4.0) \rightarrow 81\% \text{ accuracy} \]
Regularized Conditional Log Likelihood

Unregularized

\[\beta^* = \arg \max_\beta \ln \left[p(y^{(j)} | x^{(j)}, \beta) \right] \]

Regularized

\[\beta^* = \arg \max_\beta \ln \left[p(y^{(j)} | x^{(j)}, \beta) \right] - \mu \sum_i \beta_i^2 \]

\(\mu \) is “regularization” parameter that trades off between likelihood and having small parameters.
exercise!