
Managing Integrity for Data Exchanged on the Web

Gerome Miklau Dan Suciu
University of Washington

{gerome, suciu}@cs.washington.edu

ABSTRACT
The World Wide Web is a medium for publishing data
used by collaborating groups and communities of shared
interest. This paper proposes mechanisms to support
the accuracy and authenticity of published data. In our
framework, publishers annotate data with virtually un-
forgeable evidence of authorship. Intermediaries may
query, restructure, and integrate this data while propa-
gating the annotations. Final recipients of the data may
then derive useful conclusions about the authenticity of
the data they receive.

1. INTRODUCTION
The emergence of diverse networked data sources has

created new opportunities for the sharing and exchange
of data. In particular, the Web has become a medium
for publishing data used by collaborating groups and
communities of shared interest. Once published, it is
common for other parties to combine, transform, or
modify the data, and then republish it.

In such distributed settings there are few mechanisms
to support users in trusting the accuracy and authen-
ticity of data they receive from others. To address this
problem, we investigate guarantees of data integrity for
exchanged data. Integrity is an assurance that unau-
thorized parties are prevented from modifying data1.
Integrity benefits both the authors of data (who need
to make sure data attributed to them is not modified)
and the consumers of data (who need guarantees that
the data they use has not been tampered-with).

After publication, the owner of data can never directly
prevent modification of the published data by recipients.
But it is possible to annotate published data with vir-
tually unforgeable evidence of its authenticity that can
be verified by recipients. Data authors need techniques
which allow them to annotate data with claims of au-
thenticity. These claims should be difficult to forge or
transfer, and must be carried along with the data as it
is exchanged and transformed. Subsequent users must
then be able to derive useful integrity guarantees from

1We adopt the meaning of integrity common to infor-
mation security (not databases).

Copyright is held by the author/owner. Eighth International Workshop
on the Web and Databases (WebDB 2005), June 16-17, 2005, Baltimore,
Maryland.
.

query results containing these claims. We explore here
techniques to accomplish these goals.

To illustrate the importance of integrity in data ex-
change, we describe two applications: scientific data ex-
change and personal identity databases.

Scientific data exchange.As a representative scien-
tific domain we consider the field of molecular biology.
From primary sources containing original experimental
data, hundreds of secondary biological sources [2] are de-
rived. The secondary sources export views over primary
sources and/or other secondary sources, and usually add
their own curatorial comments and modifications [23].
These databases are often published on the Web, as
structured text files – not stored in proprietary systems
or servers that can provide security guarantees. The
data consumers are scientists, and a significant fraction
of research takes place in so-called “dry” laboratories
using data collected and curated by others. An illustra-
tion of this scenario is provided in Figure 1.

The threat of malicious tampering with the data is
usually not a primary security concern in this setting.
Instead, the main issues are attributing and retaining
authorship and avoiding the careless modification of data.
To the best of our knowledge, security properties are
rarely provided in scientific data exchange. Although in
some cases authorship is traced, there is little evidence
or verification of authorship.

Personal identity databases.A large class of databases,
which we call personal identity databases, have in com-
mon the fact that they contain personally identifying
information about individuals (e.g. census data, medi-
cal databases, organizations’ member lists, business cus-
tomer data). Such databases can be viewed as interme-
diate sources that collect data from primary source in-
dividuals donating their personal data. The secondary
sources may disseminate or further integrate this iden-
tity data. For example, individuals present their per-
sonal data to a hospital database when admitted. Hos-
pitals add treatment data and send patient records to
an insurance company that integrates it with data of
patients from other hospitals.

Integrity is critical as the data migrates between or-
ganizations: only authorized parties should be able to
modify data, or create new records, and those parties
should be identifiable after the fact. If an individual

A

C

B

D

E

F
Primary
Sources

Intermediate integrators,
contributors, publishers

Research
scientists

Lab

Lab

Lab

Figure 1: Data publishing and exchange scenarios for scientific data management.

applies for insurance coverage, the insurance company
will evaluate the cost of insuring the individual based
on the data in its database. An individual should have
the right to verify the accuracy of that data. This can
be accomplished if the data carries integrity metadata,
and the insurance company is required to present the
data and its evidence of integrity. To continue the ex-
ample, some of the individual’s personal data will be
signed by the individual himself, some will be signed
by individual’s doctors, etc. Regulations need to be in
place that make it illegal for the insurance company to
base coverage decisions on data that is not verifiably
authentic.

Origin authenticity and Origin-critical data
Our particular focus is an aspect of data integrity called
origin authenticity: an assurance that data comes from
an attributed source (and that it has not been modified
from its original state) [16].

There are two important threats to origin authentic-
ity. The first is the threat of copying data published by
an author Alice. For example, an adversary, Mallory,
may duplicate the data received from Alice, remove the
original evidence of attribution and claim himself as the
author. This threat, while important, is not our focus
here. (It requires substantially different techniques like
watermarking [1], or legal measures [13].)

Instead we focus on the threat of an adversary tam-
pering with data authored by Alice. This can happen in
two related ways. Alice may author some data, which
is properly attributed to her, but Mallory changes the
data while keeping the attribution. Or more directly,
Mallory forges the attribution itself, applying it to data
of his choosing. To justify our focus on this threat, we
describe next origin-critical data, for which tampering
is the primary concern.

Origin-critical data is data whose value or utility de-
pends critically on its authenticity or the authority of its
source2. A table of stock recommendations like {(IBM,
buy), (MSFT, sell)} is an example of origin-critical data.
The raw data can easily be fabricated or duplicated and
therefore is worth little if its source is unknown or the
claim of its origin is untrusted. For instance, proof that
the author of the data is an expert equity analyst makes
the data valuable. If authored by a high-school invest-
ment club however, the stock ratings are substantially
less useful. Therefore, its origin is critically important.
An mp3 file is an example of data whose origin is not

2Some of these ideas were inspired by [5].

critical. The utility of the mp3 file seems to consist
solely in the contents of the file. Its source, and the au-
thenticity of its attributed source, are usually not rele-
vant to the listener who is happy to download the file
from an unknown party on the Internet.

Many kinds of digital data are origin-critical, and a
primary integrity concern is to maintain and manage
verifiable claims of authorship. For example, in scien-
tific data management the consumers of data (the sci-
entists) are reluctant to use data that does not come
from a reputable source. In e-business transactions, a
party may not be willing to act on data received if it
is not verifiably authentic. For origin-critical data it
is usually in the interest of the participants to retain
evidence of origin authenticity.

Our goal is therefore to develop a framework to (1)
allow authors to annotate data with evidence of author-
ship, (2) allow recipients to query, restructure, and in-
tegrate this data while propagating the evidence, and
(3) enable recipients to derive useful conclusions about
the authenticity of the data they receive. In support
of these goals, first a pair of integrity annotations are
proposed, which are applied to data to represent use-
ful claims of origin authenticity. Then cryptographic
techniques are described that can be used to support
these annotations so that the claims are not forgeable
or transferable. Finally, we assess the requirements and
challenges of managing data with integrity annotations.

2. INTEGRITY ANNOTATIONS
Annotations are applied to fragments of a database.

For relational data, a fragment may be an individual
attribute, a tuple, or a set of tuples. For XML data,
a fragment may be a complex subtree, or a forest of
subtrees. We propose in this section two related forms
of annotation – signature and citation – which are used
by data authors to represent claims of origin authentic-
ity. We describe the semantics of these annotations and
their use. In the next section we describe cryptographic
techniques to implement these forms of annotation.

Signatures.On paper, signatures are intended as proof
of authorship or an indication of agreement with the
contents of a document. Signatures serve their purpose
because they have some or all of the following prop-
erties [27]: the signature is unforgeable, the signature
cannot be reused on another document, and the signed
document is unalterable. For the present discussion we
will assume a basic signature primitive possessing these

IBM TechnologyBUY
MSFT TechnologyHOLD
WFMI ConsumerHOLD
JPM FinancialSELL

A

B

C D E

Stock (ticker, rating, industry)
Stock

Buy Hold Sell

IBM MSFT WFMI JPM

Tech ConsumerTech Financial

Stock.xml
F

G

Figure 2: A relational table of stock recommendations (left), the same data represented as XML
(right), and an illustration of fragments of the data to be signed.

properties that can be applied to any fragment of data.
Realization of the signature primitive is discussed in the
next section.

The author signs data to ensure that others cannot
modify it. The granularity of signatures can vary: an
author can sign an entire table, a tuple, a single column
value.3 Usually signatures are used to associate some
data in an unmodifiable way, as shown in the next ex-
ample. In what follows we use stock recommendations
as a simple example of origin critical data, however the
intended application domains remain those described in
Section 1.

Example 2.1 Figure 2 shows stock recommendations
represented as a relational table Stock(ticker, rating, in-
dustry) and as an XML document. The dotted regions
illustrate portions of the data that are signed, called the
target fragment of a signature. Signature sig(A) is ap-
plied to target A, i.e. the entire table, and sig(F) is sim-
ilarly applied to the entire document. If the user wanted
to compare the performance of the recommended port-
folio represented by Stock, then these signatures provide
integrity: poorly performing stocks cannot be removed
and outperforming stocks cannot be added after signing.
Signature sig(B) and sig(G) are applied to ticker-rating
pairs. This associates the ticker name with the rating
in an unmodifiable way, however a collection of such
signed tuples does not prevent deletions, rearranging or
additions to the collection. Signatures sig(C), sig(D),
and sig(E) are applied to individual attribute targets.
By themselves, these three are probably not useful sig-
natures since they do not authenticate the association
between ticker and rating, which is of primary impor-
tance here.

The choice of signature granularity is application de-
pendent. The signature of an entire database protects
against all possible changes, but may be inefficient since
verification must be performed on the entire database.
In practice authors sometimes want to authorize smaller
pieces of data. In many contexts, the author may wish
to publish data signed in more than one way, with vary-
ing granularity. This allows a recipient to republish the
data in various forms, retaining its evidence of authen-
ticity. For example:

1. In Example 2.1, an author may wish to sign all
subsets of tuples by sector, so that the data con-

3Although the main focus for data exchange is XML, we
present some examples in relational form for simplicity
of presentation.

sumer can extract authenticated data for any rel-
evant industry sectors, and omit others.

2. Consider a college transcript represented as a struc-
tured document, and signed by a academic ad-
ministrator. The original form of the transcript
may include fields the student wishes to hide when
the transcript is submitted to a potential employer
(e.g. date of birth). The administrator may wish
to provide two signed versions of the document –
one with the date of birth, and one without. (The
administrator would not however, want to grant
the student signed versions of the transcript that
omit bad grades.)

3. If the order of elements is critical for an XML
document, then a signature must secure the or-
der. For other data, the author may wish to sign
an unordered collection, allowing any ordering to
be authenticated. In this case, the author would
need to sign all possible orderings, or use a signa-
ture primitive that is order insensitive (we return
to this in the next section).

Citations. We propose another integrity annotation that
allows for the citation of signed data. We define a cita-
tion to be an annotation of a data fragment (the derived
data), with a query and a reference to some signed data
(the target). A citation represents a claim of authen-
ticity: the derived data is the result of evaluating the
query on the target fragment. The following examples
provide some intuition, and an illustration of the flexi-
bility of citations.

Example 2.2 Consider again the stock recommenda-
tions in Figure 2. Table 1 presents four examples of
citations. For each, the first column is a derived frag-
ment (tuples or sets of tuples in this case). The second
column is the citation query which is expressed as a con-
junctive query over the signed target fragment. Here A
refers to the fragment signed by sig(A). The last col-
umn indicates that the target is backed by a signature.
We describe the meaning of each:

1. Citation (1) has derived data consisting of two tu-
ples. Its citation claims that the fragment is the
result of evaluating query C1 on the target (the
entire Stock table) which is signed by signature
sig(A).

2. Citation (2) is very similar with a different selec-
tion condition in the citation query.

3. Citation (3) consists of the same derived data as
(2), however its citation query is different: it claims
that the derived data is contained in the result of
query C3. Clearly this citation provides a different
authenticity guarantee than citation (2).

4. The target data of a citation was signed in each
of the examples above, but in other cases may in-
stead be cited, resulting in a composition of ci-
tations. Assume that the derived fragment from
Citation 1 is called T1. Citation 4 therefore refers
to a fragment that is itself cited. The claim of au-
thenticity here is the composition of the individ-
ual claims. That is, the citation claims that tuple
(MSFT, HOLD) is the result of query C4 evaluated
on table T1 which itself is the result of citation
query C1 on the original data signed with sig(A).

Since a citation is merely a claim, it must be verified
by checking the signature of the cited source, and veri-
fying that the cite fragment is in fact the result of the
citation query evaluated on the citation source. (In the
next section we mention techniques to make this verifi-
cation procedure more efficient.) It is worth noting that
a citation is a generalization of a signature. A citation
whose query is the identity query is precisely a signature
as described above.

Citations are useful because they do not require the
compliance of the author, and provide additional flexi-
bility if the signature on the source data does not permit
the extraction a user desires. Citations are also useful
for representing the relationship of an aggregation to
its contributing values. However, citations may not of-
fer the same level of integrity guarantee as a signature,
and as the example shows, the same data may be cited
using more than one citation query resulting in different
authenticity conditions. Notice that Citations (2) and
(3), as well as Sig(B) from Example 2.1, are each anno-
tations representing a claim of integrity about the target
(WFMI, HOLD). Each of these integrity annotations has
a different meaning. The distinction may be important,
and careful reasoning about integrity semantics may be
required.

3. CRYPTOGRAPHIC TECHNIQUES
Our objective is not merely to carry claims of au-

thenticity along with data, but to propagate virtually
unforgeable evidence of authenticity, verifiable by recip-
ients. To do this we must employ cryptographic tech-
niques. The most basic is the digital signature, which
can be used to implement the basic signature annota-
tion above. We then describe more advanced techniques
which support extensibility. We show how Merkle hash
trees can be used to design a signature primitive per-
mitting controlled removal of elements from a signed
collection. We then give an overview of more advanced
techniques from the cryptographic literature that can be
used to implement extensible signatures and citations.

Digital signatures
Digital signatures [11] are the basic tool for supporting
origin authenticity. Digital signature schemes are gener-
ally based on public-key cryptography [11], and consist

t1=(IBM, buy) t2=(MSFT, hold) t3=(WFMI, hold) t4=(JPM, sell)

h00=f(t1) h01=f(t2) h10=f(t3) h11=f(t4)

h0=f(h00 || h01) h1=f(h10 || h11)

hϵ=f(h0 || h1)

Figure 3: Merkle hash tree over stock tuples.

of two operations: signing and verification. Alice signs
a piece of data by computing the one-way hash of the
data and then encrypting the hash with her private key.
The result is the signature value, and accompanies the
data element when published. RSA [25] and SHA-1 [26]
are examples of public key encryption and hash func-
tions, respectively, from which a signature scheme can
be built. Bob verifies a signature by retrieving Al-
ice’s public key, using it to decrypt the signature, and
checking that the result is equal to the hash of the data
element purportedly signed.

A verified digital signature provides extremely strong
evidence of origin authenticity. The digital signature
therefore provides the basic implementation for our sig-
nature annotation described above. Publishers generate
public/private key pairs, add signature values to their
data, and references to public key resources. Recipients
verify signatures and propagate signatures to versions
they in turn publish (as long as they publish the data
in precisely the form it is signed).

Extensible signature techniques
As mentioned above, it is often necessary to sign data
in more than one way, or to sign data in such a way
that certain modifications are permitted without inval-
idating the signature. The naive way to support this
flexibility is for the author to publish many signatures
along with the data. This can be very inefficient since,
for example, providing signatures for every possible or-
der in a collection would require an exponential number
of signatures. We hope to avoid this by employing the
techniques described next.

Merkle trees to allow authorized deletions.Suppose
Alice wants to sign a collection of data items so that
Bob can delete items but not add new items. If Carol
receives a modified collection from Bob, she should be
able to verify that each item was indeed authored by
Alice, although some items may be missing. Alice’s sig-
nature permits authorized deletions in this case, and
this effect can be implemented using Merkle trees [17].
Note that signing each item in the original collection in-
dividually allows unauthorized mixing of items if Alice
signs more than one collection over a period of time.

We illustrate how Alice would sign the collection of
stock recommendations by building the hash tree illus-
trated in Fig. 3. Alice uses a collision-resistant hash
function f to build a binary tree of hash values as fol-
lows. First, she computes the hash for each tuple ti.
Then she pairs these values, computing the hash of their

Table 1: Citations, referring to the relational data in Figure 2.

Derived fragment Citation query Target Signature /
fragment Citation

(1) (IBM, BUY) C1(t, r) :- A(t, r, “Technology”) A Sig A
(MSFT, HOLD)

(2) (WFMI, HOLD) C2(t, r) :- A(t, r, “Consumer”) A Sig A

(3) (WFMI, HOLD) C3(t, r) ⊆ A(t, “HOLD”, i) A Sig A

(4) (MSFT, HOLD) C4(t, r) :- T1(t, ”HOLD”) T1 Cit T1

concatenation (denoted || in the figure) and storing it
as the parent. She continues bottom-up, pairing values
and hashing their combination until a root hash value hε

is formed. Note that hε is a hash value that depends on
all tuples in her database. Alice publishes a description
of f along with hε signed with her private key.

If Bob would like to delete t3 from the collection, he
will publish to Carol tuples t1, t2, t4 along with h10 and
the root hash signed by Alice. Carol will verify the au-
thenticity of the data by recomputing the Merkle tree
up to the root hash, and verifying Alice’s signature on
it. We assume a fixed order for the tuples and some
specified structural information allowing Carol to deter-
ministically reproduce the hash tree. Bob cannot add
tuples not in the original collection without finding a
collision in f , which is computationally infeasible. Note
that, using this construction, Carol can tell how many
items have been removed and from which positions in
Alice’s original data. This may be considered a feature
and not a limitation for many applications.

The construction above is vulnerable to dictionary
attacks by Carol, who can guess values for the omit-
ted tuples and check them efficiently by hashing. In
[14] a more secure signature scheme supporting con-
trolled deletions is presented that avoids this vulner-
ability, along with other controlled operations includ-
ing a version of deletion that does not reveal positions
deleted.

The study of these extensible signature schemes is an
active research area in cryptography, with a number of
open problems mentioned in [24], and interesting exten-
sibility features realized in [14, 19]. Our future goal is to
adapt these techniques to our setting, as they provide
an important efficiency improvement: when an exten-
sible signature scheme exists for a useful operation, an
author can effectively authorize many data elements by
providing a single extensible signature. Naturally, ex-
tensible operations must be chosen carefully to avoid
unintended forged signatures.

Query certification
The naive strategy for verification of a citation is to
retrieve the original signed target data, compute the
citation query and compare the result with the anno-
tated data. This may be inefficient or impossible in a
data exchange setting. Research into consistent query
protocols [15, 22, 10, 9] can provide a more efficient
verification process in some cases. These techniques al-
low a citation to carry proof that the derived data is
the result of the citation query, relative to the summary
signature on the original database. In particular, the
techniques are again based on Merkle trees [17, 18] and

allow signing of a database D such that given a query Q
and an possible answer x to Q, a verification object can
be constructed which proves that x = Q(D). We omit
further discussion of these techniques for lack of space;
please see [20] for further details.

4. MANAGING ANNOTATED DATA
Managing data that contains annotations requires rep-

resenting the annotated data, expressing queries over
the data, propagating annotations through queries, and
interpreting the data and annotations that result.

We are motivated by data exchange scenarios, and
therefore focus on semistructured data enhanced with
integrity annotations. The W3C Recommendation for
XML digital signature syntax [12] can provide a basis
for data representation and supports the signing of ar-
bitrary fragments of an XML document. It is easy to
support multiple signatures over the same document,
overlapping signatures, and signatures by multiple au-
thors. To this basic signature schema, we wish to add
metadata for extensible signatures and citations.

Querying integrity-annotated data.A query over an-
notated data results in output data with integrity anno-
tations. Queries must include selection conditions over
the annotations (which for instance assert that certain
data elements must be signed and verified) and propa-
gation rules which determine how signatures should be
propagated from the input to the output. For example,
if data in the input has multiple signatures it may be
sufficient to propagate just one, or it may be necessary
to carry all signatures into the output. Further, because
of the flexibility of citations, a wide variety of annota-
tions could be propagated to the output, and the choice
will depend on the setting. Recent work in data prove-
nance provides some techniques for annotation propa-
gation. In addition users should be able to query the
integrity of data declaratively, without resorting to calls
to low-level cryptographic routines.

A formal model of data authenticity.A number of
challenges in this area call for a formal model to ana-
lyze claims of authenticity. First, it may not be clear
in all applications how an author should sign data. For
instance, in Example 2.1 we considered the case where
signatures of stock recommendations were applied to
tickers and ratings separately, and did not secure their
association. In such a simple example this flaw was im-
mediately evident. In a more complex setting the ques-
tion of what to sign – and especially what extension
semantics to permit for extensible signatures – could be

a difficult issue for a data source. Second, decisions on
propagation rules should be guided by the authenticity
assertions that users want to verify. Finally, interpreting
the meaning of multiple, possibly nested, signatures or
complex citations may be very difficult. A formal model
of authenticity will serve each of these issues. We have
begun to address these issues by relating the authen-
ticity guarantees of signatures to conventional database
constraints [21].

5. RELATED WORK AND CONCLUSION
The authors of [4] use conventional digital signatures

to implement “content extraction signatures” which al-
low an author to sign a document along with a defi-
nition of permissible operations of blinding (similar to
redaction) and extraction. Recipients can extract data
freely, but the verification procedure requires contact-
ing the original author. The authors of [3] propose a
framework of cooperative updates to a document by pre-
determined recipients constrained by integrity controls.
In both cases, integrity properties are provided at the
expense of flexible data exchange.

A number of projects [8, 6, 7] have studied data prove-
nance, or lineage, which involves tracing and recording
the origin of data and its movement among databases.
These results provide important tools for managing in-
tegrity annotations, including complexity results for de-
cision problems related to provenance and a background
for propagation rules [6]. However, the emphasis of this
work is not integrity, and we are concerned not just with
carrying annotations, but providing cryptographic evi-
dence of source attribution. Please see [20] for a full
description of related research.

Conclusion.Today’s web publishing applications re-
quire guarantees of integrity not provided by current
technology. We have proposed primitives for expressing
claims of origin, cryptographic techniques to implement
these primitives, and have identified key problems in
managing claims of integrity in the course of querying
and restructuring of data. Solutions to these problems
require formalizing the integrity guarantees of crypto-
graphic primitives, and integrating these with query lan-
guages used for data management. We have tried to
highlight the compelling challenge of preventing unau-
thorized modification of data while at the same time al-
lowing innocuous modifications performed in the course
of common collaboration and data integration.

6. REFERENCES
[1] R. Agrawal, P. J. Haas, and J. Kiernan. Watermarking

relational data: framework, algorithms and analysis.
The VLDB Journal, 12(2):157–169, 2003.

[2] Andreas D. Baxevanis. Molecular biology database
collection. Nucleic Acids Research, available at
www3.oup.co.uk/nar/database/, 2003.

[3] E. Bertino, G. Mella, G. Correndo, and E. Ferrari. An
infrastructure for managing secure update operations
on xml data. In Symposium on Access control models
and technologies, pages 110–122. ACM Press, 2003.

[4] L. Bull, P. Stanski, and D. M. Squire. Content
extraction signatures using xml digital signatures and

custom transforms on-demand. In Conference on
World Wide Web, pages 170–177. ACM Press, 2003.

[5] P. Buneman. Curated databases, November 2003.
personal communication.

[6] P. Buneman, S. Khanna, and W. C. Tan. Why and
where: A characterization of data provenance. In
ICDT, pages 316–330, 2001.

[7] P. Buneman, S. Khanna, and W. C. Tan. On
propagation of deletions and annotations through
views. In PODS ’02, pages 150–158, 2002.

[8] Y. Cui and J. Widom. Practical lineage tracing in data
warehouses. In ICDE, pages 367–378, 2000.

[9] P. Devanbu, M. Gertz, A. Kwong, C. Martel,
G. Nuckolls, and S. G. Stubblebine. Flexible
authentication of xml documents. In ACM Computer
and Communications Security, pages 136–145, 2001.

[10] P. T. Devanbu, M. Gertz, C. Martel, and S. G.
Stubblebine. Authentic third-party data publication.
In IFIP Workshop on Database Security, pages
101–112, 2000.

[11] W. Diffie and M. E. Hellman. New directions in
cryptography. IEEE Transactions on Information
Theory, IT-22(6):644–654, 1976.

[12] D. Eastlake, J. Reagle, and D. Solo. Xml signature
syntax and processing.
http://www.w3.org/TR/xmldsig-core, February 12
2002. W3C Recommendation.

[13] H.r. 3261, to prohibit the misappropriation of certain
databases. Introduced in the House, 108th Congress,
available at http://frwebgate.access.gpo.gov, 2003.

[14] R. Johnson, D. Molnar, D. X. Song, and D. Wagner.
Homomorphic signature schemes. In RSA Conference
on Topics in Cryptology, pages 244–262, 2002.

[15] J. Killian. Efficiently committing to databases.
Technical report, NEC Research Institute, February
1998.

[16] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1997.

[17] R. C. Merkle. Protocols for public key cryptosystems.
In IEEE Symposium on Security and Privacy, pages
122–134, 1980.

[18] R. C. Merkle. A certified digital signature. In
CRYPTO, pages 218–238, 1989.

[19] S. Micali and R. L. Rivest. Transitive signature
schemes. In RSA Conference on Topics in Cryptology,
pages 236–243. Springer-Verlag, 2002.

[20] G. Miklau. Research problems in secure data exchange.
Univ. of Washington Tech Report 04-03-01, Mar 2003.
Available at www.cs.washington.edu /homes/gerome.

[21] G. Miklau and D. Suciu. Modeling integrity in data
exchange. In Proceedings of VLDB 2004 Workshop on
Secure Data Management, August 2004.

[22] R. Ostrovsky, C. Rackoff, and A. Smith. Efficient
consistency proofs on a committed database.

[23] Peter Buneman and Sanjeev Khanna and Wang-Chiew
Tan. Data Provenance: Some Basic Issues. In
Foundations of Software Technology and Theoretical
Computer Science, 2000.

[24] R. Rivest. Two new signature schemes. Presented at
Cambridge seminar, March 2001. See
http://www.cl.cam.ac.uk/Research/Security/seminars/
2000/rivest-tss.pdf.

[25] R. L. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public-key
cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[26] Secure hash standard. Federal Information Processing
Standards Publication (FIPS PUB), 180(1), April
1995.

[27] B. Schneier. Applied Cryptography, Second Edition.
John Wiley and Sons, Inc., 1996.

