
Confidentiality and Integrity in Distributed Data Exchange

Gerome Miklau

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

University of Washington

2005

Program Authorized to Offer Degree: Computer Science and Engineering

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Gerome Miklau

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Chair of Supervisory Committee:

Dan Suciu

Reading Committee:

Alon Halevy

Dan Suciu

John Zahorjan

Date:

In presenting this dissertation in partial fulfillment of the requirements for the doctoral

degree at the University of Washington, I agree that the Library shall make its copies

freely available for inspection. I further agree that extensive copying of this dissertation is

allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S.

Copyright Law. Requests for copying or reproduction of this dissertation may be referred to

Proquest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346, to

whom the author has granted “the right to reproduce and sell (a) copies of the manuscript

in microform and/or (b) printed copies of the manuscript made from microform.”

Signature

Date

University of Washington

Abstract

Confidentiality and Integrity in Distributed Data Exchange

Gerome Miklau

Chair of the Supervisory Committee:
Associate Professor Dan Suciu

Computer Science and Engineering

The distributed exchange of structured data has emerged on the World Wide Web be-

cause it promises efficiency, easy collaboration, and—through the integration of diverse

data sources—the discovery of new trends and insights. Along with these benefits, however,

there is also the danger that exchanged data will be disclosed inappropriately or modified by

unauthorized parties. This dissertation provides conceptual and practical tools for ensuring

the confidentiality and integrity of data that is exchanged across heterogeneous systems.

Securing data in such settings is challenging because participants may behave mali-

ciously, and because their remote systems are outside the control of the data owner. This

dissertation addresses these challenges, first by developing a precise analysis of the informa-

tion disclosure that may result from publishing relational data. This is a critical prerequisite

to forming a policy for permitting or denying access to data. The novel notion of informa-

tion disclosure presented here can capture leaks that may result from collusion by multiple

parties, or from prior knowledge they may possess. This dissertation then addresses the

practical problems of safely and efficiently guaranteeing security properties for distributed

data. To provide confidentiality, a flexible fine-grained encryption framework is proposed

which allows data owners to construct, from a set of access policies, a single encrypted

database that can be stored and exchanged by all parties. Access is granted by separately

disseminating keys. To provide integrity, an efficient authentication mechanism is described

which can be used to detect tampering when data is stored by an untrusted database. To-

gether these techniques can significantly advance the security of distributed data exchange.

TABLE OF CONTENTS

List of Figures iii

List of Tables iv

Chapter 1: Introduction 1

1.1 Problem setting . 2

1.2 Overview of the solution space . 4

1.3 Overview of contributions . 5

Chapter 2: Background 10

2.1 Security properties and threats . 10

2.2 Access controls . 11

2.3 Limitations of access controls . 15

2.4 Cryptographic Techniques . 17

2.5 Disclosure Analysis . 22

Chapter 3: Managing Disclosure 30

3.1 Introduction . 30

3.2 Background and Notation . 33

3.3 Query-View Security . 35

3.4 Modeling Prior Knowledge . 47

3.5 Relaxing the definition of security . 53

3.6 Encrypted Views . 55

3.7 Related Work . 55

i

Chapter 4: Confidentiality in data exchange 58

4.1 Introduction and Overview . 58

4.2 Policy query examples . 63

4.3 The Tree Protection . 66

4.4 Generating Encrypted XML . 74

4.5 Security Discussion . 76

4.6 Policy queries: syntax and semantics . 79

4.7 Data Processing . 86

4.8 Performance Analysis . 87

4.9 Related Work . 90

Chapter 5: Integrity in Data Exchange 95

5.1 Introduction . 95

5.2 Background . 103

5.3 The relational hash tree . 106

5.4 Optimizations . 117

5.5 Performance evaluation . 119

5.6 Multiple party integrity . 124

5.7 Related work . 124

Chapter 6: Conclusion 127

6.1 Review of contributions . 127

6.2 Future directions . 128

Bibliography 132

ii

LIST OF FIGURES

Figure Number Page

1.1 Distributed data exchange . 2

4.1 The protected data publishing framework. 62

4.2 A Tree protection, before and after normalization 67

4.3 Typical usage patterns of tree protections . 69

4.4 Various access semantics for a tree protection node. 71

4.5 Protection rewritings for logical optimization 72

4.6 Rewriting formula conjunction and disjunction 73

4.7 Encrypted XML . 77

4.8 Queries for checking consistency statically. 86

4.9 Size of protected documents, with and without compression. 88

4.10 Processing time for generation and decryption of protected documents. 89

5.1 Fragments of signed data, relational and XML 96

5.2 Alternative uses for integrity mechanisms. 101

5.3 Hash tree example . 104

5.4 Domain and value tree examples . 108

5.5 Table, index, and function definitions . 114

5.6 Query definitions . 114

5.7 Processing diagram for authenticated QUERY and INSERT 119

5.8 Impact of bundling on execution times . 122

5.9 Impact of inlining, and the scalability of queries and inserts 123

iii

LIST OF TABLES

Table Number Page

2.1 The Employee table . 24

2.2 The Employee table, under block encryption. 24

2.3 The Employee table, under attribute-value encryption 25

2.4 Two relational views . 26

2.5 Two statistical views . 27

3.1 Spectrum of disclosure . 31

5.1 Citation examples . 99

iv

ACKNOWLEDGMENTS

This work would not have been possible without the guidance and insight of

Dan Suciu. He is a gifted teacher, a patient and generous advisor, and a brilliant

researcher. He has taught me precision and rigor, and he has shaped my graduate

experience by working closely with me and sharing the process of research. I hope

to bring these gifts to my teaching and research in the future.

I am also grateful to Alon Halevy for first sparking my interest in databases,

as well as for the ongoing support of my research. I thank Phil Bernstein for his

excellent advice and thorough feedback throughout the process, and I am grateful to

John Zahorjan for his participation on my committee.

My work has benefitted greatly from the support of my colleagues in the UW

database group Anhai Doan, Zack Ives, Rachel Pottinger, Igor Tatarinov, Peter

Mork, Jayant Madhavan, Ashish Gupta, Nilesh Dalvi, and Xin Luna Dong, as well

as my friends Don Patterson and Luke McDowell. Many of the positive professional

relationships mentioned above are a consequence of the unique supportive environ-

ment of the University of Washington Computer Science department. The faculty

and staff of the department, each of whom contribute to that environment, therefore

also deserve my thanks.

My parents have provided unending support and encouragement, for which I

will always be grateful. In addition, my grandfather, Fred F. Tirella, valued higher

education and instilled that value in his children and grandchildren. He has made

a great contribution to this work by supporting my education financially, in his life,

and after his death in 1999. I am also grateful to my aunt and uncle, Eileen and

Edward Kostiner for their support.

v

1

Chapter 1

INTRODUCTION

The technological advances of the past two decades have resulted in an unprecedented

availability of data. This is largely the consequence of continuous improvements in computer

hardware, the rapid evolution data management technologies, and the attendant explosion

in data collection. Hardware advances have provided massive persistent storage, extremely

fast networks, and powerful processors. Fundamental advances in data management have

provided systems to manage massive data sets and millions of transactions. And impor-

tantly, technologies for the integration of data sources and distributed data exchange have

allowed the combination of information sources and the collaboration across geographic and

organizational boundaries.

These increased technical capabilities have in turn enabled an explosion of data collec-

tion. There are now stored electronic records of many events, actions, and relationships in

the real world. For example, data about individuals is collected through traces of financial

transactions, phone calls, web browsing histories, library loans and video rentals. Environ-

mental monitoring systems collect and store data about the physical world and, in some

cases, the location of individuals.

The unprecedented availability of data undoubtedly offers a great promise. Information

we need is often easy to find, and conveniently accessible. We can combine and integrate

data to derive new insights and discover new trends. We can share and exchange information

to enable collaboration between distant parties.

But along with the promise, these capabilities also present a possible peril. The peril

results from the fact that the misuse of data can cause harm, and that despite recent data

management advances, there is the danger that we will lose control of information about

2

A

C

B

D

E

F

Primary
Sources Intermediate sources

(integrators, contributors,
re-publishers)

End users

Figure 1.1: Distributed data exchange

us, or information owned by us. For example, in the first half of 2005 alone, nearly 50

million records containing sensitive data about individuals have been lost or stolen from

corporations, government agencies, or academic institutions [31]. A more subtle example

of the possible peril of current data management practices was demonstrated by a privacy

researcher who integrated two public databases, each deemed safe for release in isolation,

to reveal the medical diagnosis of a prominent politician [127].

The guiding objective of this dissertation is to provide conceptual and practical tools

to enable the safe exchange and sharing data—that is, to avoid the peril and achieve the

promise.

1.1 Problem setting

In many modern applications, the classical client-server processing architecture has been

supplanted by more distributed architectures, characterized by many parties interacting

across heterogeneous systems. The distributed data exchange scenario that is the setting

for this thesis is illustrated in Figure 1.1. It may include many primary sources, many

intermediate publishers, and many end-users. The primary sources publish data, the inter-

mediate participants combine, transform, and modify the data, and the end-users consume

the data. Examples of applications where data is published and exchanged in this man-

3

ner include scientific data management, e-business, and medical information management,

among many others.

The data exchanged in such settings is often sensitive—that is, its misuse could cause

harm. For example, social security numbers are considered sensitive data in the United

States because they can be used by a malicious party to open a false bank or credit card

account. The results of a medical exam performed on a patient constitute sensitive data—

not only because the information should remain secret, but also because the exam results

may be used to make critical medical decisions. Modification of the exam results could

therefore have harmful consequences by impacting those decisions. The types of misuse

considered here fall into two broad categories: unauthorized disclosure and unauthorized

modification. These correspond to two classical security properties of confidentiality and

integrity.

A data owner has two competing goals (roughly corresponding to the promise and peril

mentioned above). First, the data owner wants to permit legitimate use of the data by

a potentially large group of authorized users, for example to satisfy business need and

enable collaboration. Second, the data must be protected from unauthorized disclosure and

unauthorized modification. Recipients of data are interested in efficient access to data they

are permitted to see, and are also concerned with the authenticity of that data.

The fundamental challenge of providing safe and secure data management in such sce-

narios stems from the fact that they are built upon heterogeneous systems, owned and

administered by different parties. These systems may consist of conventional relational

database management systems, web servers, and middleware systems. Although we assume

a data source has trusted systems used to store and process the data, they have no control

over how the data will be processed once it is published.

This thesis focuses on two of the classical problems of security research: secrecy of

data and integrity of data. However, there are a number of distinguishing challenges faced

here. First, the data is managed in a fine-grained manner. The types of data managed

include collections, relations and structured documents, whose constituent parts must be

managed safely. In other settings, security research considers uniform blocks of data and

some problems are simplified. Secondly, as mentioned above, when data is exchanged, it

4

leaves the centralized, trusted domain of the data owner, and will be processed by client

systems.

1.2 Overview of the solution space

The ultimate solution to the data security challenges outlined above is likely to require

a wide range of technologies and societal conventions, including contributions from the

following domains:

• Physical security The first line of defense is physical security: protecting data storage

devices from theft, loss, or destruction by using locks, alarm systems, etc. Approxi-

mately 60% of the personal data mentioned above was lost because of breakdowns in

physical security.

• Secure systems, networks, and protocols Security engineering of systems and net-

works aims to protect resources in a multi-user environment, including identifying

authorized parties, negotiating access to resources, and rights to perform operations.

The security of a database management system depends on the security of the under-

lying operating system, and also presents its own challenges and vulnerabilities.

• Cryptography Cryptography has been informally described as a means for “taking

trust from where it exists to where it’s needed” [92], and it plays an important role

in meeting our challenges, since we cannot trust recipients’ systems. Cryptographic

techniques are used here to provide secrecy of data and to detect tampering when

data is released outside the data owner’s realm of control.

• Modeling the adversary Securing data depends on accurately modeling the capabil-

ities of adversaries, which includes understanding the resources (money, time, com-

putation) an adversary may have. Further, the adversary’s knowledge is one of the

most difficult “resources” to model, as is the adversary’s ability to infer new facts

from known facts.

5

• Regulation Legislation and government regulation has an enormous impact on how

data is stored, processed, and exchanged, and can mitigate the risks of security

breaches. In some cases the need for enforcement by technical means may be avoided.

For example, the Health Insurance Portability and Accountability Act (HIPAA) [77]

controls by legal means how data can be collected and used, and under what condi-

tions it can be released to medical professionals. Such policy enforcement across the

medical community would be virtually impossible using security technology alone.

Successfully securing distributed data depends on the careful integration of each of the

factors above. Physical security and regulation are beyond the scope of this thesis. The tech-

niques explored here include system and protocol design, cryptography, and also database

theory and logic for understanding disclosure and inference by the adversary. A thorough

background discussion on these and related topics is provided in Chapter 2.

1.3 Overview of contributions

Managing disclosure

Chapter 3 addresses the problem of determining what data can safely be published. The

answer to this question is a critical prerequisite to forming a policy for permitting or denying

access, and requires a precise understanding of the information disclosure that may result

from publishing data. Analyzing disclosure is difficult because confidential facts may be

unexpectedly inferred from published data, and also because authorized recipients may

collude to make unauthorized discoveries.

Our analysis of disclosure is applied to data stored in relational form, prior to publishing.

In such systems, the basic object of protection is the relational view. To formulate the

disclosure problem, we assume the data owner has a sensitive query, the answer to which

must remain secret. We propose and analyze a new theoretical standard for determining

when it is safe to publish the view without disclosing information about a sensitive query.

As an example, a simple view over medical data might include patient name, age, and

gender for those patients treated by a particular physician (omitting other attributes such

6

as disease and blood-type). This view can be used to derive some query answers about the

original database, but not others. The use of a view for answering queries has been studied

extensively in the database community. However, the extent to which the view may leak

information about a sensitive query has not been well understood. In particular, although

the user (or an adversary) may not be able to compute the exact query answer from the

view, the answer may be inferred with high likelihood, or other partial information may be

revealed.

Chapter 3 describes a novel standard of query-view security. When a view and a privi-

leged query are secure, the view contains no information about the answer to the query, and

the user will have no advantage in computing or guessing the answer. Intuitively, a query

and view are deemed secure if the user’s a priori knowledge about the query is the same

as the user’s knowledge about the query having seen the view and its answer. To measure

and compare knowledge, we assume a probability distribution over possible databases and

query answers.

For simple relational queries and views, we show that it is possible to decide query-view

security, and provide tight bounds for the decision problem. The definition of query-view

security has some surprising consequences. For example, it shows that simply removing

sensitive columns from a relational table—a common strategy in practice—does not totally

protect the sensitive data. These results can also account for some forms of knowledge

the user may already have, resulting in a notion of relative query-view security. This work

originally appeared in the proceedings of the Conference on Management of Data, 2004 [104]

and has been accepted for publication in the Journal of Computer and System Sciences.

Confidentiality in data exchange

Chapter 4 addresses the problem of how to efficiently distribute data while adhering to

access control policies. Having determined which views are safe for publication, there may

be many users whose authorized views are highly overlapping. For example, the view of

patient data above may be defined for each physician in the hospital. It may be inefficient to

transmit separate views to each user. Additionally, once published, the data owner typically

7

relinquishes all control over the user’s further processing of data.

Chapter 4 describes a framework in which the data owner begins with an access control

policy, specifying which parties shall have access to which data. A single partially-encrypted

version of the database—to be used by all users—is automatically generated to enforce the

access control policy. The encrypted output is represented as a structured XML document.

As a simple example, in the case of hospital data, a single database instance could be

constructed that includes all patient data. It could be published and disseminated freely,

but would be encrypted so that physicians could only access data for patients under their

care. In this framework, control of the data is accomplished by transmitting sets of keys to

users. Key transmission can be done all at once, or in more complex interactive protocols

as users meet requirements (e.g. payment for access), or satisfy threshold constraints (e.g.

fewer than 5 items accessed).

Using these techniques, data owners can efficiently publish their data with more control

over its use. The framework is also important because it is an automated way to generate

encrypted data with precise access semantics, while not requiring the user to directly in-

voke cryptographic routines. Before encryption, the access control policy is resolved into

a logical model of data protection, where keys “guard” access to parts of the structured

document. The logical model has precise semantics, and can be optimized to improve the

efficiency of the output while respecting the declared access policy. This work appeared in

the proceedings of the Conference on Very Large Databases, 2003 [102].

Integrity in data exchange

In Chapter 5 we turn from confidentiality concerns to integrity, and address the problem of

how recipients of data can be assured of its authenticity. We present a vision for managing

the integrity of data in distributed settings using cryptographic annotations that offer strong

evidence of origin authenticity.

Hash trees are a key technology for supporting such annotations, and can also be used

to provide integrity of data in conventional database systems that may be vulnerable or

untrusted. Although hash tree techniques are well-known, they do not always permit ef-

8

ficient operations, particularly in a database system. The emphasis of this chapter is on

implementation techniques which demonstrate the feasibility of hash trees in databases. We

show that relations can be used to store the hash tree so that verified queries and updates

can be performed efficiently, while preserving the other benefits of a relational database.

Using novel strategies for data representation and indexing, we show that data integrity

can be verified with modest computational overhead in a client-server setting. In addition,

the architecture of the system makes this a versatile solution—it can be easily adapted to

provide integrity guarantees for any relational database system.

Together, the techniques developed here can significantly advance the security of data shared

and exchanged in modern distributed settings. The sequel is organized as follows. In the

next chapter a thorough background of related topics is presented including access control,

cryptographic tools, and disclosure analysis. The major contributions described above are

included in the subsequent three chapters, followed by concluding remarks in Chapter 6.

A note on data models

A data model is the high-level, organizing representation for information stored in a database.

This dissertation focuses on two data models: the classical relational data model, as well

as a semi-structured data model where data is represented in XML form. Addressing both

data models is critical for distributed data exchange. Prior to publishing, data is likely

to reside in relational systems since these are the best-performing systems for large scale

data management. But when relational data is published it is often represented as XML

[120]. Intermediate storage in data exchange settings may use either relational or native

XML systems. The native storage of XML is an active research area [42, 66, 81], with

several commercial products availabile [137, 128, 8]. Nevertheless, relational systems are

much more common, and XML data is often decomposed and stored in relational systems

[65, 121]. (See [117] for a recent survey of how XML data is managed in relational systems.)

Each of the problems addressed in this dissertation is posed in terms of the most rele-

9

vant data model. The analysis of disclosure is applied to relational data. The protection

mechanisms using cryptography focus on XML data. Although managing integrity for data

exchange is most appropriate for XML data, we addresss in Chapter 5 a particular imple-

mentation problem assuming that intermediate storage is relational.

10

Chapter 2

BACKGROUND

This chapter is a background discussion of three areas of security research that underlie

the contributions of this thesis: access control, cryptographic techniques, and disclosure

analysis. Access control is the starting point for security in computer systems. Below we

review general concepts of access control, and describe the standard capabilities of access

control in databases. In distributed data exchange, access control has two basic limitations.

First, it requires enforcement by a trusted authority. Second, while it protects direct access

to data, it does not necessarily prevent partial disclosures and inferences. Both limitations

are investigated in this chapter, with an emphasis on how cryptographic techniques can be

used to address the problem of trusted enforcement, and a discussion of the importance of

disclosure analysis to understanding the real consequences of data publishing. We preface

the background discussion with a brief overview of security properties.

2.1 Security properties and threats

The goal of this dissertation is to provide the two classical security properties of confiden-

tiality and integrity. We define these notions below, and relate them to the more complex

notion of personal privacy.

Confidentiality is a guarantee that data has not been disclosed to an unauthorized party.

Threats to confidentiality include the direct release of sensitive data values, approximate

disclosures, and leaks resulting from inferences and outside knowledge. One way to provide

confidentiality is to enforce access controls, which permit or deny access to data items.

Another way to provide confidentiality is through encryption, often used to protect data on

insecure networks or storage devices.

Integrity is a guarantee that data has not been modified from its original state by an

unauthorized party. This requires both that data come from an original source, and that

11

it be unaltered from its original state. Data authenticity is a closely related term, but does

not always include freshness: a guarantee that a message or data item is current, and is not

being re-used outside its original context. Throughout the discussion we use integrity as

the most general term (including both data authenticity and freshness) and we distinguish

between these particular properties where necessary. Threats to data integrity include

tampering, message replay, and accidental data loss. Tampering can include modification

or deletion of existing data, or insertion of new data items. Once again, data integrity

can be provided though access control, and also by cryptographic means. Access control

protects data integrity by limiting who can alter data. Digital signatures and cryptographic

hash functions can protect against the threat of tampering (but not data deletion).

Data privacy is a term used synonymously with data confidentiality. Personal privacy,

however, is a more complex notion with no single definition. Legal conceptions of privacy

have been grounded in the right to be left alone [133], and the freedom from being brought to

the attention of others [70]. Most relevant to our discussion is the concept of informational

privacy [38], described by Westin as the ability to “determine for ourselves when, how, and to

what extent information about us is communicated to others” [134]. Clearly mechanisms for

data confidentiality are required to protect an individual’s informational privacy. Integrity

of data is also critical to informational privacy, since there is little use in controlling the

information communicated to others if that information can be tampered with. While

this dissertation is focused strictly on data confidentiality and integrity, our contributions

support informational privacy when they are applied to personal data.

2.2 Access controls

Access controls are a basic tool of computer security. Because this dissertation addresses two

fundamental limitations of access control for data exchange, we review here basic notions of

access control relevant to all computer systems, and then focus on database access control,

for both relational and XML data.

12

2.2.1 Access control in computer systems

Access controls regulate direct access to resources in a computer system. An access control

policy consists of rules referring to subjects, objects, and the privileges granted to subjects

on objects. Subjects are the active parties, usually users identified by name, or by role.

Objects are system resources. In general, they may include network access, processor time,

or memory, but the objects of concern here are data items of varying granularity. In file

systems, data objects are files and directories. In relational databases, objects may be tables,

columns, attributes, or defined views. For semi-structured data in XML form, objects may

be elements, attributes, or subtrees. Privileges over data objects typically include operations

like create, read, modify or delete. Ensuring that only authorized subjects have read access

to objects provides confidentiality. Ensuring that only authorized subjects have create,

modify and delete privileges is central to data integrity.

An access control policy can be represented using a matrix which stores for each subject

and object a set of privileges. A column in the matrix (typically called an access control

list) refers to one object and lists each subject and their privileges. Limited access control

lists are stored with files in the Unix operating system. A row in the access matrix refers to

one subject, and lists all objects and privileges held by that subject. Such a list is typically

called a capability list [40, 136]. In some systems a capability is an electronic token naming

an object and a set of privileges. Possession of the capability authorizes a subject to perform

the indicated operations on the named object. (The access control mechanism for distributed

data, described in Chapter 4, is conceptually similar to a capability-based system since the

cryptographic keys granting access to select portions of an XML tree act like capabilities.)

An access control policy must be carefully enforced. Subjects must be authenticated1 and

their requests for access to objects permitted or denied by a monitoring process. This access

monitor is a trusted system component: its failure can break the security policy. Therefore,

the code for the access monitor must be tested and verified. In addition, privileged users

(e.g. system administrators or database administrators) responsible for configuring access

policies, act as trusted parties in the system.

1An entity is authenticated if, by providing evidence, the system is convinced of its true identity. [94]

13

2.2.2 Access control in database systems

We review below the conventional capabilities of access control in databases for relational

data, XML data, and statistical databases. In the relational model, the objects protected

may be tables, columns of tables, or derived tables that are defined using logical conditions

(i.e., views). For XML data, protection is often negotiated at even finer granularity, at the

level of individual data items, or elements. Modern relational systems implement their own

access control mechanisms. File system access controls provided by the operating system are

generally insufficient because one or more tables may be stored as a large file, and database

access control must be applied at a finer granularity.

Relational database systems implement access control in the SQL language, using the

GRANT and REVOKE commands, which were heavily influenced by the authorization mecha-

nism in System R [74]. The GRANT command is used to give privileges to users. It has the

following syntax:

GRANT privileges ON object TO users [WITH GRANT OPTION]

In SQL, object may be a base table (or a view, see below) and a list of column names.

The privileges include SELECT, allowing read access to the named columns of the indicated

table, as well as INSERT, UPDATE, DELETE, with expected meanings. The users parameter

may refer to a single user or a group of users. The REVOKE command is used to remove

previously-granted privileges.

Once authenticated, clients can submit SQL statements to retrieve or update data. The

database system parses the query and checks the client’s permissions. If they are insufficient,

an error message will be returned. The database administrator is often responsible for

managing users in the system, maintaining the schema of the database, and defining initial

access control policy. The confidentiality and integrity of stored data depends on the proper

functioning of the access control mechanism and proper behavior of the administrator.

Views and access control

A view is a virtual table whose rows are determined by a view definition referencing stored

tables (and possibly other views). A view definition is an expression in SQL that can com-

14

bine information from multiple tables, apply logical selection conditions, remove columns,

compute aggregates, etc. Views can be used like base tables when querying the database,

and in some cases can also be updated.

View creation and view access is controlled by the GRANT and REVOKE statements. Views

add an important dimension to the access control mechanism in databases. For confiden-

tiality, views can be defined to include precisely the data that should be permitted for a

user, hiding other sensitive data items. Not all views can be unambiguously updated, so the

SQL standard (as well as all commercial systems) restrict the updates that may be applied

to views, independent of access controls. When views are updatable, the ability to perform

updates can be mediated using GRANT, which can be a useful mechanism for ensuring data

integrity.

While views increase the flexibility and power of the access control mechanism in databases,

they also complicate policy definition and reasoning about what data is actually protected.

We provide an example of these complications in Section 2.5, and study the issue in detail

in Chapter 3.

Semi-structured data

Access control for semi-structured data is a less mature topic and lacks widely-accepted

conventions. It typically offers fine-grained control over individual data items and requires

some special features to cope with hierarchical data and uncertain structure.

Many languages [37, 69, 86, 108, 106, 68] have been proposed for describing access policies

over XML documents. XML access control rules roughly follow the structure outlined above,

specifying a subject, a set of objects (XML elements, attributes, or entire subtrees), an effect

(usually grant or deny), and an operation (such as read, write, modify, or delete). A

policy may consist of multiple rules with common or overlapping objects and it is therefore

necessary to specify a conflict resolution policy for the rules. For example, rules denying

access commonly take precedence over rules granting access. In addition, a default semantics

usually denies access to all XML elements that are not the target of any rule.

Virtually all proposed access control languages use path languages derived from XPath

15

[30] to specify the target objects of a rule. An XPath expression returns a sets of target

elements from the document. Some access control rules include features that specify local

application (to the target element itself, and perhaps its attributes) or recursive application

(to the target element and all its descendants). In Chapter 4 we describe our own model

for expressing access control policies, which is based on well-established XML manipulation

languages (XPath [30] and XQuery [18]) and we provide techniques for enforcing these

policies using cryptography. Also, in Section 4.9 we review other work related to XML

access control.

Access control in statistical databases

A statistical database is one which permits access only to views consisting of aggregate

statistics for subsets of records in the database [3, 39]. Statistics include counts, sums, and

averages, computed over subsets of records in a database. Much of the research on statistical

databases has been motivated by the need to publish features of a population of individuals

without revealing attributes of individuals. Note that the distinction between a conventional

relational database and a statistical database is tenuous. Statistical databases are defined

in terms of the type of data stored and the kind of queries permitted. Statistical data is

very often stored in conventional relational database systems (along with other data that

is not statistical in nature) and statistical queries can easily be defined using a relational

query language.

Managing disclosure in such settings is a difficult problem because facts about individuals

may be inferred or disclosed but with some uncertainty. Specialized techniques are required

which are not the central focus of this dissertation. We do however return to disclosure

analysis in statistical databases in Section 2.5.

2.3 Limitations of access controls

For our goal of securing distributed data exchange, access control mechanisms have two

fundamental limitations, which constitute the founding motivations for the work of this

dissertation. First, trusted enforcement of access control policies is required—a challenge

16

in a distributed setting because data owners do not control client systems. The goal of

Chapters 4 and 5 is to relieve the need for trusted enforcement of access control by relying

on cryptography. Second, controlling direct access to data objects is not always sufficient

for protecting information. Despite a properly-enforced access control policy, unexpected

disclosures may occur and inferences on the part of an adversary may be possible. In

Chapter 3 we address the problem of unexpected disclosures by presenting a novel technique

for analyzing the disclosure of basic relational views. We provide more background on the

challenges of disclosure analysis shortly in Section 2.5. Below we review responses to the

need for trusted enforcement.

The need for trusted enforcement

The advantages of distributed data exchange arise from the ability of peers in the system

to provide storage and processing functions for other peers. Since peers are not trusted, we

can only permit them to store data they themselves are permitted to access, threatening

the utility of distributed data exchange. There are a two main ways to address the need for

trusted enforcement in a distributed setting. The first relies on cryptography. The second

makes remote systems trustworthy using special hardware.

Cryptography can be used to enforce access controls by storing data in encrypted form

and disseminating keys to permit access. This has been referred to as a passive protection

mechanism [72], as opposed to an active protection mechanism that has a trusted monitor

determining access. This is the strategy followed in Chapter 4, using standard encryption

so that data stored in encrypted form at a peer is not accessible and cannot be processed

by that peer. It is worth noting that there are other encryption techniques that attempt to

permit processing on encrypted data. These include homomorphic encryption [114, 49, 115]

(which allows certain mathematical operations to be performed on encrypted data) and

secure multiparty computation [140, 141, 119] (which allows a group of contributing parties

to compute a function without revealing their input values to one another). Secure homo-

morphic encryption functions exist only for very limited operations, and secure multiparty

computation has extremely high computational overhead for most applications. As a result,

17

we do not pursue complex processing of encrypted data in this dissertation.

A second approach to the problem posed by untrusted peers uses an architecture where

a trusted computing base is installed at client sites. Since the data owner is not in physical

control of these sites, some tamper-resistant hardware would be required. This has been

proposed [22, 21, 20] in the context of data exchange using smartcards to provide very

limited trusted resources at untrusted peers. The special hardware required makes this a

significant departure from the goals of distributed data exchange, aimed at convenient and

open access to data. We do not pursue this direction further.

A final response to the need for trusted enforcement shares some qualities of each of the

above. It splits data across peers in such a way that collusion amongst some large number

of peers is required in order for significant disclosures to take place. This strategy was

proposed recently [4]. While promising, it still requires the combination of cryptographic

techniques and a careful analysis of disclosure, two of the topics which are the subject of

this dissertation.

2.4 Cryptographic Techniques

We review below basic concepts of cryptography relevant to Chapters 4 and 5, adopting

Stinson’s notation [126]. In addition, we provide a brief background on the security analysis

of cryptographic algorithms and protocols. In particular, the notion of perfect secrecy,

developed by Shannon for the analysis of cryptosystems, is relevant because it inspired our

analysis of disclosure in Chapter 3.

2.4.1 Cryptographic primitives for confidentiality

A cryptosystem is a five-tuple (P, C,K, E ,D) where P is a set of possible plaintexts, C is

a set of possible ciphertexts, and K is the set of possible keys, the keyspace. E and D are

sets of encryption and decryption functions, parameterized by keys. For each k ∈ K, there

is an encryption function ek ∈ E and a corresponding decryption function dk ∈ D such that

dk(ek(x)) = x for every plaintext x ∈ P.

For confidentiality, it should be (i) computationally infeasible for an adversary to deter-

18

mine the decryption function dk from observed ciphertext, even if the corresponding plain-

text is known, and (ii) computationally infeasible to systematically determine the plaintext

from observed ciphertext [39]. Examples of cryptosystems in common use are DES [56] and

AES [59, 34].

Classical cryptosystems, are called symmetric key cryptosystems because dk and ek are

either identical, or are easily derived from one another. These cryptosystems require prior

secure transmission of the key before any enciphered communication begins. In a public key

cryptosystem [48, 115], it should be computationally infeasible to derive dk from ek. In this

case the encryption algorithm ek is considered a public rule, which can be published freely,

while the decryption algorithm is the private rule, kept secret.

2.4.2 Cryptographic primitives for integrity

Encryption does not by itself provide integrity. In public key cryptosystems, the encryption

algorithm is available to anyone, and there is no protection against tampering with encrypted

data. Even with symmetric key cryptosystems, where the encryption key is secret, integrity

is not guaranteed. It is possible to modify certain blocks of ciphertext, without knowledge

of the key, resulting in meaningful modification of the data when it is decrypted by the

recipient. Integrity is ensured by using cryptographic hash functions and digital signatures.

Cryptographic hash functions

Cryptographic hash functions (also called message digests) are modeled after one-way func-

tions, which are functions that can be efficiently computed but not inverted. A crypto-

graphic hash function produces a short sequence of bytes when computed on its input. If

the input is altered, the result of the hash function will change. For example, if h is a

hash function, x a message and y = h(x), then y can be considered an authentication tag

[126]. Suppose y is stored securely, but x is vulnerable to tampering. When a message x′

(purported to be x) is received, its hash h(x′) can be compared with y. If they are equal

(and h is collision-free) then x = x′ and integrity is verified.

It may be the case that the message x is large, and made of constituent pieces (a file made

19

of blocks, or a set of data items). In this case, the technique above has the disadvantage

that the entire message must be available for verification, and even small updates require

re-computation of the hash function over the entire message. A Merkle hash tree [95, 96]

addresses these limitations, defining an authenticated dictionary structure which permits

efficient verification of elements of x and efficient updates to the message. Merkle trees are

described in detail in Section 5.2. Their implementation in a relational database system is

a main focus of Chapter 5.

A secure hash function should have the following properties. It should be computation-

ally infeasible to find: a preimage (given y find x such that h(x) = y); a second preimage

(given x, find x′ such that x′ 6= x and h(x′) = h(x); a collision (given just h, find any x, x′

such that x 6= x and h(x′) = h(x). Common cryptographic hash functions have included

MD5 [116], and the SHA [58] family of functions, however MD5 and SHA-1 have been bro-

ken in the recent past, and are now considered insecure. SHA-256 and other SHA variants

are believed to be secure [113].

Digital signatures

On paper, signatures are intended as proof of authorship or an indication of agreement with

the contents of a document. Paper signatures serve their purpose because they have some

or all of the following properties [118]: the signature is unforgeable, the signature cannot be

reused on another document, and the signed document is unalterable. A digital signature

scheme is a pair of cryptographic algorithms: a protected signing algorithm applied to data

to produce a short output string (the signature), and a public verification algorithm that is

executed on the signed data and the signature to test authenticity.

Formally, a signature scheme is a five-tuple (P,A,K,S,V) where P is a set of possible

messages, A is a set of possible signatures, and K is again the keyspace. S and V are

families of signing and verification algorithms, respectively, that are parameterized by keys.

For each k ∈ K, signk : P → A and verifyk : P × A → {true,false}. For every message

x ∈ P and every signature y ∈ A, verify(x, y) = true if y = sign(x) and verify(x, y) = false

if y 6= sign(x).

20

The signing algorithm is private, and the verification algorithm is public. It therefore

must be computationally infeasible to derive the signing rule, given the verification rule. It

should also be computationally infeasible for an adversary to forge signatures, even given a

set of signed messages. Common signature schemes include those based on the RSA [115]

public key cryptosystem and the dedicated signature algorithm DSA [57].

2.4.3 Enforcing access control using cryptography

As we mentioned above, one of our goals is to provide access control in a distributed setting

using cryptography. Gifford proposed the first such “passive protection mechanism” [72],

designed to protect both confidentiality and integrity of data stored at a client, in the

absence of a trusted protection system. In that work, cryptography is used to provide

secrecy and integrity of data blocks or files, and access is granted by sharing an appropriate

key set. The work presented in Chapters 4 and 5 shares the goal of ensuring confidentiality

and integrity in an untrusted setting. It differs in its treatment of a very general data model

protected at a fine granularity.

2.4.4 Security of cryptosystems

Shannon’s notion of perfect secrecy [123] evaluates the information about the plaintext that

is present in published ciphertext. Perfect secrecy, described below, inspired the definition

of disclosure presented in Chapter 3 for information published using relational views.

The model for perfect secrecy of a cryptosystem assumes a probability distribution over

the plaintext space P. The plaintext message defines a random variable x. The probability

that a plaintext x ∈ P occurs is the a priori probability, P [x = x]. The key k ∈ K is

also chosen with a probability, P [k = k]. These two probability distributions induce a

probability distribution over the space of ciphertexts C. The probability that a ciphertext

y ∈ C will occur is denoted P [y = y], and can be easily computed from the a priori plaintext

probabililities and the keyspace probabilities. A cryptosystem is perfectly secret if:

P [x] = P [x|y] for all x ∈ P, y ∈ C

The term on the right is the conditional probability of the plaintext x occuring, given the

21

occurrence of a ciphertext y. Perfect secrecy asserts that the uncertainty about the plaintext

message should be unchanged having seen the ciphertext, for all possible plaintexts and

ciphertexts.

A simple example of a cryptosystem that is perfectly secure is the one-time pad. To

encrypt a b-bit message x, a random b-bit key k is generated. Encryption and decryption

consist of XOR with the key: ek(x) = x ⊕ k and dk(y) = y ⊕ k. A new key must be

generated for each plaintext encrypted. If keys are generated at random, and never reused,

the ciphertext contains no information about the plaintext – perfect secrecy is satisfied.

For perfect secrecy to hold, the size of the keyspace K must be at least as large as the

plaintext space P [122]. This means that the size of the key must be at least as large as the

message encrypted. Since, in addition, keys cannot be reused, this is a major limitation,

requiring that at least one bit of key material be communicated securely for each bit of

encrypted data. Cryptosystems used in practice today are not perfectly secure. Further, it

is impossible for a public-key cryptosystem to be unconditionally secure. This is because

the encryption rule is public, so an adversary with unlimited resources can, given ciphertext

y, always encrypt each plaintext in P until y is found [126].

There are many weaker notions of security studied by the cryptographic community [126].

For example, computational security measures the computational effort required to break

a cryptosystem. It is very difficult to prove commonly-used cryptosystems computationally

secure because it must be shown that the best algorithm for breaking the cryptosystem

requires some large number of operations. Provable security does not provide an absolute

guarantee of security, but instead asserts that breaking the cryptosystem is at least as hard

as solving another well-studied problem believed to be computationally hard.

2.4.5 Protocol and application security

We discuss the security of encryption functions in the next section. It is worth noting here,

however, that when encryption functions are used in protocols, or applied to collections of

data items, proofs of security of the cryptosystems alone are not sufficient, as other disclo-

sures may take place. There is a large body of work on the formal analysis of protocols

22

[93] which have been applied to authentication protocols, as in the BAN logic [27] (among

others), and to data protection schemes, where the soundness of complex cryptographic

expressions has been analyzed formally [1, 88, 9, 99, 100]. Protocol security is most relevant

to the work presented in Chapter 4 where complex, nested encryption is applied to hierar-

chical data. Although the techniques of formal protocol analysis are beyond the scope of

this thesis, Abadi and Warinschi have recently [2] provided a formal analysis of the protocol

presented in Chapter 4. Further discussion is provided in Section 4.5.

2.5 Disclosure Analysis

Whenever data is derived from sensitive data and published, there is the possibility of

disclosure. When the derived data is the result of applying encryption, disclosures may

result from a weakness in the cryptographic function or from the way the function is applied

to data. When the derived data is a view (statistical, or conventional) it may hide some

sensitive data items, but it also may contain subtle clues about those hidden data items.

The goals of disclosure analysis include classifying, measuring, and auditing disclosures, and

may require modeling the prior knowledge of an adversary.

In this section we unify the analysis of disclosure as it is applied to cryptography and

data publishing. We begin with basic concepts from disclosure analysis in databases. Then

we present a series of examples, explaining informally some subtleties of disclosure. In the

last part of this section we relate the notions of perfect secrecy and entropy to disclosure in

databases.

Disclosure in databases

It is common practice in databases to study disclosure with respect to some sensitive prop-

erty or query Q. (Naturally, this does not lose generality since Q could be the identity

query on the database). An exact disclosure occurs when the answer to Q is revealed with

certainty. An approximate disclosure occurs when Q is not determined exactly, but infor-

mation is nevertheless revealed. Three types of approximate disclosure were identified by

Dalenius [35] in the context of statistical databases. A disclosure may reveal bounds of

23

an ordered attribute, for example that the answer to query Q lies in the range [l1, l2]. A

probabilistic disclosure reveals that the answer to Q is in the range [l1, l2], but only with

some probability p, called the confidence. Finally, a negative disclosure reveals that the

answer to Q is not value x.

The adversary’s knowledge

A user’s starting knowledge, sometimes called a priori knowledge, or working knowledge

[39], consists of facts known by the user prior to any interaction with the database. For

example, a user may know, a priori, the set of possible medical conditions that might be

contained in the database. Such knowledge is often assumed to include the schema of the

database itself as well as common sense facts about the domain. Such prior knowledge is

information that is not contained in the database, but may be acquired through external

sources or simply assumed as fact. In the model of perfect secrecy, the adversary’s prior

knowledge about the plaintext is represented by the a priori probability distribution.

2.5.1 Examples of disclosure of protected data

We now present a series of examples illustrating disclosures that can result from protecting

a relational table with cryptographic techniques, conventional access control mechanisms,

and statistical protection mechanisms. The Employee table shown in Table 2.1 contains

sensitive information about named employees such as contact details, salary, and marital

status. Typically, it is difficult to hide the schema of a protected table—it is often easy

for an adversary to predict and does not change often. The emphasis is on protecting the

records in the database.

Example 2.5.1 Block encryption

Table 2.5.1 contains the ciphertext resulting from the encryption of the Employee table

(represented as tab-delimited text) using the AES [59] encryption algorithm and an 128-

bit key derived from the password secretsecret. The ciphertext bytes were converted to

24

Table 2.1: The Employee table

Name Dept Phone Salary Marital Status
Edward Management 584-2154 80,000 Married
Elaine Accounting 584-2845 60,000 Single
Fiadora Admin 584-7515 35,000 Married
Frank HR 584-6324 45,000 Divorced
Gerard Accounting 584-9521 55,000 Single
Jane Management 584-2834 85,000 Married
Joe Admin 584-1147 35,000 Married

Table 2.2: The Employee table, under block encryption.

U2FsdGVkX1/OlG/JmkMv+U4r//F+Z7BCIo54Vv5ApI90cdTkK4YCxBgPwkQ0JgV6
5N+N9kB0elPNuilzcJ9oaRtp09SBVqXOvF+wUc2GTocKdDA893pj4PTS8WE5grog
dGUGyEHJW7ZbBIQ/ivxBG4ZZK5i9cwFgH7agLpF8u4KmTwjWiJU/jrawf1mVWE2A
QZADFn3FNL0O07Y0z9O05lIIFT5xUy9QfqlIFtJQ9IPywvZMYPCOFWR65J8dDKkv
vFapShcralzrXUx5s4bryFVigPUrE5i9Wi8kxDa4zpKhAcTetaaPgHqPlQTyni3c
hx5pd3zXd+qsWWXJPXkpHSnHzJYqdQOxsvKEw3+TKZHtp0GjITF+FqC1PGrGGSL0
Afzknw0ItWVlXJokRU2zhJ0mQ28H3Td2tVJ+PKeHvNd5z784/RJTZ2h70Tl84+t6
qTkjgSFiA4y7XwDjmWTgcKC7Ude/8mFt9yc5gBdO1xtSk88CpyA4xdMirrm4db0h
1iYx/DuQIJLpvpZX0bdFYqjgUwfqV9l5n/0WTZ1yYG0=

base-64 text for presentation purposes.

Practical encryption functions like AES are not perfectly secret. This is immediate, since

the plaintext space (here, all possible Employee instances, constructed from fixed attribute

domains) is much larger than the key space (2128). The ciphertext therefore contains infor-

mation about the input table. In particular, an adversary with unlimited resources could

discover that some Employee instances would never produce this ciphertext output, under

any key. That information is extremely difficult to compute for computationally bounded

adversaries. Even so, the ciphertext is likely to reveal the size of the encrypted table, to

a close approximation. For example, an adversary may be able to estimate, from knowl-

edge of the schema, the average size in bytes of a record occurring in the Employee table.

25

An adversary could then reason about the number of employees in the Employee database,

obscured only by padding of the plaintext prior to encryption.

Example 2.5.2 Attribute-value encryption

The Employee table, encrypted attribute-by-attribute, is pictured in Table 2.3. While

individual attribute values are hidden by encryption, the exact number of rows in the table

is revealed. Further, if the same encryption key is used for each column of values (as in

the example), duplicates values are revealed. An adversary may learn, for instance, that

there are 4 distinct departments, and that there are two employees in the same department

with the same salary. There are ways to encrypt individual attributes without revealing

duplicates, but there are also advantages to allowing these disclosures. In fact, a number

of recent proposals in the literature [79, 78, 5] publish tables of data encrypted in this way,

so the analysis of disclosure remains of interest. Prior knowledge or statistical expectations

about the data allow further inferences (see Example 2.5.5 below).

Table 2.3: The Employee table under attribute-value encryption. A few of the duplicate
values are underlined.

Name Dept Phone Salary Marital Status
b77f288091 f1ab2b289e 212b030658 bfced00a5a 46363ce136
a03d85bfc5 a4bf0a4be2 0d4f0044d1 c96fc1bc4a 36a4fa81f5
a4117cb167 35a1800c53 8f9a3edcc8 f886ffc571 46363ce136
fde1f029e2 81a5ca034a 32d54ab559 af924dcfc5 1211bdff44
6feedd319b a4bf0a4be2 f9422b55a6 4edce9bc47 36a4fa81f5
e34529bcc2 f1ab2b289e 94159bbf91 a048e9dcc7 46363ce136
0f555d4ddc 35a1800c53 d2cc54a35d f886ffc571 46363ce136

Example 2.5.3 Basic relational views

The Personnel department may wish to publish two views of the Employee table for legiti-

mate use by others. For example, the view projecting on (Name, Department), and the view

projecting (Department, Phone), as shown in Table 2.4. (Note that there is no encryption

here.) While the Personnel department may be willing to share these two views, they may

26

at the same time wish to keep employees’ phone numbers secret. This amounts to protecting

the following query:

Q = ΠName,Phone(Employee)

Although the exact answer to Q cannot be computed from the published views (since the

association between name and phone is not present) their combination contains partial

information about names and phone numbers of employees. For instance, since Edward

works in the Management department, the adversary knows his phone number is either

584-2154 or 584-2834.

Table 2.4: Two relational views derived from the Employee table. (Left) V1 =
Πname,dept(Employee) and (Right) V2 = Πdept,phone(Employee).

Name Dept
Edward Management
Elaine Accounting
Fiadora Admin
Frank HR
Gerard Accounting
Jane Management
Joe Admin

Dept Phone
Management 584-2154
Accounting 584-2845

Admin 584-7515
HR 584-6324

Accounting 584-9521
Management 584-2834

Admin 584-1147

Example 2.5.4 Statistical views

Table 2.5(left) shows a simple statistical view of the database consisting of the average

employee salary for each department. This data obviously offers an adversary approximate

information about individual salaries. More severe disclosures result from combining this

aggregate data with prior knowledge (see below), when individual salaries take on maximum

or minimum values, or when an adversary can witness multiple versions of the database

published over time. Table 2.5(right) shows the same view, but after random perturbation

of values.

Example 2.5.5 Prior knowledge

Prior knowledge refers to the facts or relationships an adversary may come to know from

27

Table 2.5: (Left) Average salary by department. (Right) Average salary by department,
protected by randomization.

Dept Avg Salary
Accounting 57,500

Admin 35,000
HR 45,000

Management 82,500

Dept Avg Salary
Accounting 58,123

Admin 34,435
HR 46,712

Management 80,892

other sources that are outside the control of the data owner. These can be the basis of further

inferences, and can impact the disclosure in any of the examples above. For example, an

adversary may know that Married is the most common value for marital status amongst

employees. In Example 2.5.2, this allows an adversary to infer that the two employees in the

same department with the same salary are both married. If it is known that there is only one

employee in the HR department, publishing the average salary by department, as in Example

2.5.4, causes a severe disclosure, diminished only slightly by randomization. In general, prior

knowledge may be derived from other data sources, from known correlations between data

values, or from the knowledge that constraints hold over the protected data. Modeling the

prior knowledge that may be available to an adversary is a critical but extremely difficult

aspect of disclosure analysis.

2.5.2 Analyzing and quantifying disclosure in databases

Shannon’s theory of information [123] can be used to measure the security of data protected

by views. Entropy is a measure of the amount of information in a message. Entropy is

determined by the probability distribution over the space of all possible messages. If P is

the space of plaintext messages, and a message x ∈ P occurs with probability p(x), then

the entropy of a message is:

−
∑
x∈P

p(x)log2p(x)

This quantity is equal to the expected number of bits in optimally encoded messages. It is

also a measure of the uncertainty about a message.

Entropy can be used as a measure of disclosure by studying the entropy of the sensitive

28

query Q. A probability distribution over databases induces a probability for each possi-

ble answer to Q. These are the a priori probabilities, from which the prior entropy can

be computed. The publication of a view of the database induces posterior probabilities,

changing the probabilities of answers to Q, and perhaps making some answers impossible.

If the posterior entropy of Q is zero, then an exact disclosure has occurred. Otherwise, the

difference in prior and posterior entropies provides a measure of disclosure. Denning notes

that requiring identical prior and posterior entropies is too strong a condition for evaluating

statistical queries – no statistics could be published under this condition [39].

Perfect secrecy (described in Section 2.4) can be applied to relational views. It depends

on prior and posterior probabilities of answers, as above, but results in a stronger condition

than one based on entropy. The following example illustrates this fact:

Example 2.5.6 Entropy and Perfect Secrecy compared

Consider a boolean query Q, returning true or false on database instances. Suppose the a

priori probabilities for Q are:

P [Q = true] = 1/10 and P [Q = false] = 9/10

Further, assume that as the result of publishing some view V , the probabilities for answers

to Q change to:

P [Q = true|V] = 9/10 and P [Q = false|V] = 1/10

The prior entropy of Q and posterior entropy of Q are equal, indicating zero disclosure. But

intuitively a substantial approximate disclosure has in fact taken place: as a result of seeing

the view, an adversary’s expectation of the answer to Q changes substantially. Perfect

secrecy captures this disclosure because it requires that P [Q] = P [Q|V] for all possible

answers, and thus fails for this example.

Another measure of disclosure was described recently by Evfimievski, et al [54]. Pub-

lished data V is said to cause a ρ1-to-ρ2 privacy breach for a property Q if the prior

probability is small (less than or equal to parameter ρ1) and the posterior probability is

large (greater than or equal to parameter ρ2). The query in Example 2.5.6 constitutes a

29

10%-to-90% privacy breach. The goal is to choose ρ1 and ρ2 to capture properties that were

very unlikely prior to releasing V , and have become likely as a result of the release. It is

not clear how to choose these parameters in general, and whether they are dependent on

the property Q or on the application.

There is no general framework for analyzing disclosure in the range of cases illustrated

above, and many open problems remain. One important problem is addressed in Chapter

3 where we provide a formal analysis of the disclosure of simple relational views (as in

Example 2.5.3), using a definition of security related to perfect secrecy. Prior to that work,

no formal tools existed for precisely analyzing disclosure.

30

Chapter 3

MANAGING DISCLOSURE

3.1 Introduction

In this chapter we provide a theoretical analysis of information disclosure resulting from the

publication of relational views. Specifically, we study the following fundamental problem,

called the query-view security problem: given views V1, V2, . . . that we want to publish, do

they logically disclose any information about a query S that we want to keep secret? The

views are expressed in a query language, and may remove data items through projections

or selections, or break associations between data items. The query expressions S, V1, V2, . . .

are known by the adversary, the answers to V1, V2, . . . are published, while the underlying

database remains secret.

A spectrum of information disclosure

To motivate the problem, we describe through examples the variety of disclosures that may

result from the publication of relational views. Table 3.1 contains a set of query-view pairs

referring to an Employee relation, along with an informal description of the information

the views disclose about the query. For simplicity, we use an abbreviated version of the

Employee table from Section 2 consisting only of name, department, and phone attributes.

The examples represent a spectrum of information disclosure, beginning with total disclosure

and ending with a secure query and view.

The first query and view is an obvious example of a total disclosure because S1 is

answerable using V1. Example (2) is precisely the Example 2.5.3 of Section 2, where two

views are published, and the relationship between name and phone is sensitive. As we noted,

for small departments, it may be easy for the adversary to guess the association between

names and phone numbers.

As another example of partial disclosure, consider example (3), whose view is the pro-

jection on the name attribute: V3 = Πname(Employee). We ask whether query S3 =

31

Table 3.1: Pairs of views and queries, over relation Employee(name, department, phone) and
an informal description of their information disclosure.

View(s) Query Information
Disclosure

Query-
View
Security

(1) V1(n, d) : −Emp(n, d, p) S1(d) : −Emp(n, d, p) Total No

(2) V2(n, d) : −Emp(n, d, p)
V ′

2(d, p) : −Emp(n, d, p)
S2(n, p) : −Emp(n, d, p) Partial No

(3) V3(n) : −Emp(n, d, p) S3(p) : −Emp(n, d, p) Minute No

(4) V4(n) : −Emp(n, Mgmt, p) S4(n) : −Emp(n, Admin, p) None Yes

Πphone(Employee) is secure when this view is published. In this case the view omits phone

entirely and would seem to reveal nothing about phone numbers in S3. Surprisingly, the view

does disclose some information about the secret query. In particular, it can reveal some-

thing about the size of the Employee relation, and therefore contains some small amount of

information about the omitted column. We describe this further in Section 3.3.

The last example, Table 3.1(4), is a case where no information is disclosed. The names

of employees in the Management department reveal nothing about the names of employees

in the Admin department.

Known techniques

Classical techniques for analyzing the relationship between queries and views fail in the

context of information security. For example, the basic problem addressed in query answer-

ing [80] is: given a view V (or several such views), answer a query S by using only the

data in the view(s). A more refined version, called query rewriting, asks for the answer to

be given as a query over the view(s) V . Whenever S can be answered from V , then S is

obviously not secure, as in Table 3.1(1). However, adopting non-answerability as a criterion

for security would clearly be a mistake: it would classify example (2) as secure. As we claim

32

above, even though the query S may be not answerable using V , substantial information

about the query may be revealed, allowing an attacker to guess the secret information with

a high probability of success.

A related strategy considers (for a database instance I and view V) the view answer

v = V (I) as a constraint on the set of possible database instances, making some impossible.

The set of possible answers to a query S given V may therefore be reduced. (If this set

happens to have size 1, then the answer to S is determined by v = V (I).) We might say S is

secure given V if every possible answer to S remains possible given V . This criterion would

classify Examples (2) and (3) correctly. That is, it would capture the partial disclosures in

these cases, but not in others. However, this standard of security ignores the likelihood of

the possible answers of S. For example, consider the boolean query and view below:

S() : −Employee(Jane,Shipping, 1234567)

V () : −Employee(Jane,Shipping, p),Employee(n, Shipping, 1234567)

In the absence of the view, the query S (which asserts the presence of a particular tuple in

the database) may be true or false. Given the answer to V on the database, S could still

evaluate to true or to false. However, the probability that S is true is substantially higher

given that V is true, and so a serious disclosure has occurred. In general, while V may not

rule out any possible answers to S, some answers may become less likely (or in the extreme,

virtually improbable) without contradicting a security criterion based on possible answers.

The definition of query-view security studied here captures this disclosure.

Contributions

The first contribution is a formal definition of query-view security that captures the dis-

closure of partial information. Inspired by Shannon’s notion of perfect secrecy [122], the

definition compares the likelihood of an adversary guessing the answer to secret query S

with and without knowledge of views V1, V2, . . . Vn. When the difference is zero, we say that

the query is secure w.r.t. the views. To the best of our knowledge this is the first attempt

to formalize logical information disclosure in databases. The second contribution consists

of a number of theoretical results about query-view security: we prove a necessary and

33

sufficient condition for query-view security, and show that the security problem for conjunc-

tive queries is Πp
2-complete; we generalize query-view security to account for pre-existing

knowledge; and when the query is not secure with respect to a view, we characterize the

magnitude of disclosure.

Chapter Organization

The next section presents notation and a probabilistic model of databases. Section 3.3

describes our definition of query-view security and its main results. Section 3.4 extends

these results to include prior knowledge, and in Section 3.5 we discuss attempts to weaken

the definition of disclosure. We treat encrypted views in Section 3.6 and related work in

Section 3.7.

3.2 Background and Notation

As we mentioned, many disclosures do not involve an adversary computing S completely

according to standard database query semantics. Instead a partial disclosure reveals to

the adversary something about the likelihood of answers to a secret query S. After an

overview of notation, we present our security model that allows formal statements about

the probability of a database and query answer.

3.2.1 Basic Notation

We assume a standard relational schema consisting of several relation names R1, R2, . . .,

each with a set of attribute names. Let D be the finite domain, which includes all values

that can occur in any attributes in any of the relations. For example D may be the set of

decimal numbers up to an upper bound, and all strings up to a given length. In a particular

setting we may consider further restricting D, e.g. to include only valid disease names, valid

people names, or valid phone numbers.

We use datalog notation to denote tuples belonging to the relations of the given schema.

For example R1(a, b, c) denotes a tuple in R1, and R3(b, a, a) denotes a tuple in R3. Let

tuples(D) be the set of all tuples over all relations in the schema that can be formed with

constants from the domain D. A database instance I is any subset of tuples(D), and we

34

denote by inst(D) the set of all database instances over the domain D. A query of arity

k is a function Q : inst(D) → P(Dk). For an instance I, Q(I) denotes the result of

applying Q to I. A boolean query is a query of arity 0. A monotone query has the property

I ⊆ I ′ ⇒ Q(I) ⊆ Q(I ′). In most of the paper our discussion will focus on conjunctive

queries with inequalities, written in datalog notation. For example:

Q(x) : −R1(x, a, y), R2(y, b, c), R3(x,−,−), x < y, y 6= c

Here x, y are variables, − are anonymous variables (each occurrence of − is distinct from

all others) and a, b, c are constants.

3.2.2 The Security Model

We assume a probability distribution on the tuples, Pr : tuples(D) → [0, 1], s.t. for each

ti ∈ tuples(D), Pr(ti) = xi represents the probability that the tuple ti will occur in a

database instance. We will refer to the pair (D,Pr) as a dictionary. A dictionary induces a

probability distribution on specific instances: for any I ∈ inst(D), the probability that the

database instance is precisely I is:

Pr[I] =
∏
ti∈I

xi ·
∏
tj /∈I

(1− xj) (3.1)

For example, if the schema consists of a single table Patient(name, disease) representing

sensitive data in a hospital, then the domain D may consist of all possible names (e.g.

those occurring in a phone book for the entire country), together with all possible diseases

cataloged by the CDC. For each tuple ti=Patient(name, disease), Pr(ti) is the (very small)

probability that a person with that name and that disease is in the hospital’s database. To

illustrate, assuming 108 distinct names and 500 distinct diseases1 there are n = 5 × 1010

tuples in tuples(D), and one possible probability distribution is Pr(ti) = 200/n for every

ti ∈ tuples(D). This is a uniform probability distribution, for which the expected database

size is 200 tuples. A more accurate, but far more complex probability distribution is one that

takes into account the different risk factors of various ethnic groups and for each diseases.

For example the probability of a tuple Patient(“John Johnson”,“Cardiovascular Disease”)

1Fewer than 500 are listed at http://www.cdc.gov/health/.

35

will be slightly higher than the probability of the tuple Patient(“Chen Li”,“Cardiovascular

Disease”), if Americans have a higher risk of a Cardiovascular Disease than Chinese, and

the nationality of John Johnson is likely to be American while that of Chen Li is likely to

be Chinese.

The probability Pr(ti) may be too complex to compute in practice, but computing it

is not our goal. Instead we will assume that the adversary can compute it, and can use

it to derive information about the secret query S. Thus, we endow the adversary with

considerable power, and study under which circumstances no information is disclosed.

Given a probability distribution over database instances, a query S attains some answer

s with probability equal to the sum of the probabilities of the satisfying instances:

Pr[S(I) = s] =
∑

{I∈inst(D)|S(I)=s}

Pr[I] (3.2)

Note that in the model studied here, occurrences of tuples in the database are indepen-

dent probabilistic events. This is a limitation. In practice, the occurrence of tuples may

be correlated due to underlying relationships in the data or integrity constraints. If tu-

ples are positively correlated (respectively, negatively correlated) the presence of one tuple

increases (decreases) the likelihood of another. For example, a key constraint introduces

strong negative correlations. We will address some of these limitations in Section 3.4 by

studying query-view security relative to prior knowledge expressing a functional dependency.

However, extending our results to a model that can capture arbitrary correlations between

tuples remains an open problem.

3.3 Query-View Security

In this section we formalize our notion of query-view security, describe its basic properties,

and state our main theorems which result in a decision procedure for query-view security.

3.3.1 Definition of Query-View Security

Our standard for query-view security is inspired by Shannon’s definition of perfect se-

crecy [122]. Let V̄ = V1, . . . , Vk be a set of views, and S a “secret” query. Both the

views and the query are computed over an instance I of a relational schema. We consider

36

an adversary who is aware of the domain and probability distribution over instances (the

dictionary), and is given V̄ (I) (but not I). The adversary’s objective is to compute S(I).

The definition below captures the intuition that V̄ (I) discloses no information about S(I).

Below, V̄ (I) = v̄ means V1(I) = v1 ∧ . . . ∧ Vk(I) = vk.

Definition 3.3.1 (Query-View Security) Let (D,Pr) be a dictionary. A query S is
secure w.r.t. a set of views V̄ if for any possible answer s to the query, and any possible
answers v̄ to the views, the following holds:

Pr[S(I) = s] = Pr[S(I) = s | V̄ (I) = v̄] (3.3)

Query-view security is denoted S |Pr V , or simply S |V if Pr is understood from the context.

The left hand side of equation (3.3) represents the a priori probability that S attains a

particular answer s over the instance I, which can be computed by the adversary using

(D,Pr). The right hand side is also the probability that S(I) = s but conditioned on the

fact that V̄ (I) = v̄. The security condition asserts the equality of these two probabilities (for

all possible s, v̄) and therefore says that nothing beyond the a priori knowledge is provided

by V̄ . Equation (3.3) is also the familiar definition of independence of two statistical events.

Accordingly, S is secure w.r.t. V̄ iff S and V̄ are statistically independent events. We can

rewrite (3.3) as follows:

Pr[S(I) = s]Pr[V̄ (I) = v̄] = Pr[S(I) = s ∧ V̄ (I) = v̄] (3.4)

Next we apply the definition in two examples:

Example 3.3.2 Non-security Consider a single relation R(X, Y) and domain D = {a, b}.

There are 4 possible tuples R(a, a), R(a, b), R(b, a), R(b, b), and the set of instances inst(D)

contains the 16 subsets of these. Assume for simplicity that Pr(ti) = 1/2 for each tuple ti,

and consider the following query and view:

V (x) : −R(x, y)

S(y) : −R(x, y)

V projects the first attribute of R while S projects the second. Although we might expect

that the view provides no information about the query, it is actually not the case that S |V .

37

Informally, the answer to V contains some information about the size of the database which

impacts answers to S. Consider a particular answer {(a)} for S. There are 3 equally-likely

instances generating this answer: {R(a, a)}, {R(b, a)}, and {R(a, a), R(b, a)}. Therefore,

we have a priori probability:

Pr[S(I) = {(a)}] = 3/16

Now suppose we are given that V (I) = {(b)}. There are again 3 instances, only one of

which causes S(I) = {(a)}. So, because each instance is equally-likely we have:

Pr[S(I) = {(a)} | V (I) = {(b)}] = 1/3

This contradicts (3.3) for the particular answers considered, and it follows that S and V

are not secure for this particular probability distribution. We show in the next section that

they are not secure for any distribution.

Example 3.3.3 Security As an example of a secure query and view, consider the same

schema and dictionary, and:

V (x) : −R(x, b)

S(y) : −R(y, a)

Here S is secure w.r.t. V . We prove this later, but illustrate here with one example. Consider

one possible output of S: S(I) = {(a)}. There are 4 instances that lead to this output,

{R(a, a)}, {R(a, a), R(a, b)}, {R(a, a), R(b, b)}, and {R(a, a), R(a, b), R(b, b)}, hence:

Pr[S(I) = {(a)}] = 4/16 = 1/4

Consider also one possible output of V , say V (I) = {(b)}. There are four instances I

satisfying this constraint: {R(b, b)}, {R(b, b), R(a, a)}, {R(b, b), R(b, a)}, {R(b, b), R(a, a),

R(b, a)}. Of these only one also results in S(I) = {(a)}, hence:

Pr[S(I) = {(a)} | V (I) = {(b)}] = 1/4

One can manually check, for all possible combinations of outputs of S and V , that the

probability of S is unchanged by publishing V . We will provide an easier criterion for

checking this shortly.

38

3.3.2 Properties of query-view security

Several properties of query-view security follow, providing intuition and justifying our choice

of definition.

Reflexivity It follows from Bayes’ Theorem that security is a reflexive relation: S | V̄ iff

V̄ | S.

Security (not obscurity) We always assume that publishing the views V̄ includes expos-

ing both the view definitions and their answers over the hidden database. Basing the

security on concealing the view and query expressions is dangerous. We thus avoid the

pitfall of “security by obscurity”, identified long ago by the cryptographic community

as ineffective [130, 118].

Instance-independence If the query S is secure w.r.t. the views V̄ , it remains so even if

the underlying database instance I changes: this follows from the fact that Eq.(3.3)

must hold for any query output s and any view outputs v̄. We say that query-

view security is instance independent. This property is necessary in applications like

message-based data exchange, where messages are exchanged continuously, even as

the database changes. Once S | V̄ has been checked, the views V̄ (I) can safely be

exchanged without any compromise of S(I). In fact, one can prove that if successive

instances are independent from one another, then even the adversary collects snapshots

of the views at various moments of time, V̄ (I1), V̄ (I2), . . ., V̄ (It), he still cannot learn

anything about any of S(I1), . . . , S(It). This way of defining security is different from

the standard definition in statistical databases. There the security criteria often apply

to a particular database instance, and may fail if the instance is later updated. For

example, one security criterion requires that the aggregate function be computed only

on cells that are “large enough”. One data instance may be secure, but it becomes

insecure when tuples are deleted (making some cells too small), or when tuples are

inserted (creating new cells, which are small).

Dictionary-independence The definition of query-view security S | V̄ is for a particular

39

dictionary (D,Pr). In practice, however, the dictionary is often ill-defined: for example

the probability distribution Pr is impossible to compute, and even the domain D may

be hard to define precisely. Thus, we are interested in a stronger version of security,

which is dictionary-independent. Our results in the next section provide necessary

and sufficient conditions for dictionary-independent security. They show, surprisingly,

that, in some cases, security for some dictionary implies security for all dictionaries

(see Theorem 3.3.8 and Proposition 3.3.9).

Collusions Given V̄ = V1, . . . Vk, we will show in Theorem 3.3.5 that S | V̄ if and only if

S |Vi for all i = 1, . . . , k. This has the following consequence. If we send different views

to different users, but have determined that the secret query S is secure w.r.t. each

view separately, then nothing will be leaked about S even if the recipients collude, i.e.

exchange the views they received and try to learn something about S by examining all

the views together. This strong property is a consequence of our adoption of a notion

of perfect secrecy to define security. Disclosure through collusion happens when each

view leaks very little information when taken separately, but together may leak a lot

of information about S. We will re-examine collusion in Sec. 3.5 when we discuss

measuring disclosures.

Query answering The database community has studied extensively the following query

answering problem. Given a set of views V̄ = V1, . . . Vk and another view V ′ find

a function f s.t. for any instance I, V ′(I) = f(V̄ (I)): in this case we say that V ′

is answerable from V̄ . In the related query rewriting problem, f is restricted to be

expressed in a query language. It is natural to ask about the relationship to security.

Intuitively, if V ′ is answerable from V̄ , then the information content of V ′ is not more

than that of V̄ , and any query S which is secure w.r.t. V̄ should be also secure w.r.t.

to V ′. This intuition is correct, as the following straighforward argument shows. We

have

Pr[V ′(I)=v′] =
∑
v̄

{Pr[V̄ (I)= v̄] | f(v̄)=v′}

40

and

Pr[S(I)=s ∧ V ′(I)=v′] =
∑
v̄

{Pr[S(I)=s ∧ V̄ (I)= v̄] | f(v̄)=v′}

which implies that the view V ′ satisfies Equation (3.4). In particular, if V is a boolean

view, then it follows that S | V iff S | ¬V . A similar result holds when security fails:

if ¬(S | V̄) and another query S′ is computable from S, then ¬(S′ | V̄).

Aggregates When applied to queries with aggregates our definition of security results in

a very strict condition: no query and view containing an aggregate over a common

tuple are secure. Techniques from statistical databases are better-suited for the case

of queries with aggregates, and are orthogonal to our discussion. We therefore omit

aggregate functions from the query language we consider.

3.3.3 Fundamental Theorems of Query-View Security

At this point, the only obvious procedure for deciding query-view security is to compute

probabilities for each answer to the query and view. In addition to the computational

complexity of this strategy, it requires re-computation for each dictionary. In this subsection

we present techniques for deciding query-view security by analyzing the query and view

definitions, and prove that this technique is dictionary-independent.

Definition 3.3.4 (Critical tuple) Let D be a finite domain and Q be a query. A tuple
t ∈ tuples(D) is critical for Q if there exists an instance I ∈ inst(D) such that Q(I −{t}) 6=
Q(I). The set of critical tuples of Q is denoted critD(Q), or simply crit(Q) when D is
understood from the context.

The intuition is that t is critical for Q if there exists some instance where dropping t makes

a difference.

For a simple illustration, consider the boolean query Q() : −R(a1, x) and let D =

{a1, . . . , an}. Any tuple of the form R(a1, ai), i = 1, . . . , n, is critical for Q, because Q

returns true on the database consisting of the single tuple R(a1, ai), but if we remove that

tuple then we get the empty database on which the query returns false.

We can now formulate the characterization of query-view security. The proof is in

Sec. 3.3.4.

41

Theorem 3.3.5 Let D be a domain. Let S be a query and V̄ be a set of views. Then
S |Pr V̄ for every probability distribution Pr iff critD(S) ∩ critD(V̄) = ∅.

Here crit(V̄) is crit(V1) ∪ . . . ∪ crit(Vk). In particular it follows that S |Pr V̄ forall Pr

iff S |Pr Vi forall i = 1, . . . , k and forall Pr. The theorem says that the only way a query

can be insecure w.r.t. some views is if they have some common critical tuple. This result

translates the probabilistic definition of query-view security into a purely logical statement,

which does not involve probabilities. This is important, because it allows us to reason about

query-view security by using traditional techniques from database theory and finite model

theory.

Next we revisit the query and view examples from the last section and apply Theorem

3.3.5.

Example 3.3.6 In Example 3.3.2, we saw that security fails to hold for V (x) : −R(x, y)

and S(y) : −R(x, y). Every tuple is critical for V : for example, R(a, b) is critical for V

because V ({}) = {} while V ({R(a, b)}) = {(a)}. Similarly, every tuple is critical for S, so

because crit(V)∩ crit(S) is nonempty, we conclude ¬(S |Pr V) at least for some probability

distribution Pr.

Example 3.3.7 We argued in Example 3.3.3 that security holds for V (x) : −R(x, b) and

S(y) : −R(y, a). The critical tuples of S are crit(S) = {R(a, a), R(b, a)}, and similarly

crit(V) = {R(a, b), R(b, b)}. Because crit(S) ∩ crit(V) = ∅, Theorem 3.3.5 allows us to

conclude S |Pr V for every probability distribution Pr.

So far S and V̄ were allowed to be arbitrary queries. We now restrict S and V̄ to be

monotone queries and will prove that the definition of query-view security is, for all practical

purposes, dictionary-independent. The main step is the following theorem, whose proof is

in Sec. 3.3.4.

Theorem 3.3.8 (Probability-Independence) Let D be a domain, and S, V̄ be any mono-
tone queries. Let Pr0 be a probability distribution s.t. ∀t,Pr0(t) 6= 0 and Pr0(t) 6= 1. If
S |Pr0

V̄ then for every probability distribution Pr, S |Pr V̄ .

42

This is a surprising theoretical result, which says that if a query is secure even for

one probability distribution, then it is secure for all such distributions. Continuing Ex-

ample 3.3.2, both S and V are monotone. It follows that ¬(S |Pr V) for any probability

distribution Pr which is 6= 0 and 6= 1. Notice that for the trivial distribution Pr(t) = 1, ∀t,

we have S |Pr V , because in this case the answer to both S and V are known.

We still need to show that the definition is insensitive to a particular choice of domain,

and for that we will further restrict all queries to be conjunctive queries. As we vary the

domain D, we will always assume that D includes all the constants occurring in S and V̄ .

Proposition 3.3.9 (Domain-Independence) Let n be largest number of variables and
constants occurring in any of the conjunctive queries S, V1, . . . , Vk. If there exists a domain2

D0 s.t. |D0| ≥ n(n + 1), and critD0(S) ∩ critD0(V̄) = ∅, then for any domain D, s.t.
|D| ≥ n(n + 1), critD(S) ∩ critD(V̄) = ∅.

We now discuss how to decide query-view security for conjunctive queries S and V̄ . Our

goal is to check dictionary-independent security, hence we need to check whether critD(S)∩

critD(V̄) = ∅, and we assume that the domain D is “large enough”. The previous proposition

gives us an exponential time algorithm: pick a domain D0 with n(n + 1) constants, then

enumerate exhaustively all instances I ⊆ D0 and tuples t ∈ I, checking whether t is a

critical tuple for S, and for V̄ . This also shows that the query-view security problem is in

complexity class Πp
2. (Recall that NP is the class of problems that can be expressed as {z |

∃y φ(y, z)} where the “certificate” y has length polynomial in z and φ is PTIME computable.

Complexity class Πp
2 consists of problems that can be expressed as {z | ∀x∃y φ(x, y, z)} where

x, y are polynomial in z and φ is PTIME computable.)

Theorem 3.3.10 The problem of deciding, for conjunctive query Q, whether a tuple t 6∈
crit(Q) is Πp

2-hard (query complexity).

This is a non-trivial result, whose proof uses a lengthy reduction from the ∀∃3-CNF

problem, and is omitted. We illustrate with an example why computing crit(Q) is non-

obvious. Clearly, any critical tuple t must be an homomorphic image of some subgoal of Q.

2For conjunctive queries without order predicates it suffices to pick the domains D0, D with size ≥ n.
When order predicates are allowed, then we need n fresh constants between any two constants mentioned
in the queries, which leads to n(n + 1).

43

But the following example shows the converse is not true:

Q() : −R(x, y, z, z, u), R(x, x, x, y, y)

Consider the tuple t = R(a, a, b, b, c), which is a homomorphic image of the first subgoal.

Yet t is not critical. Indeed, let I be any database s.t. Q(I) = true. Then the first subgoal

must be mapped to t. But that means that both x and y are mapped to a. Thus the second

subgoal must be mapped to the tuple t′ = R(a, a, a, a, a) and then t′ ∈ I. Then the first

subgoal can also be mapped to t′, hence t is not critical.

Next, we show that deciding whether crit(S)∩crit(V) = ∅ is at least as hard as deciding

whether a tuple t is not critical for a query Q. Indeed, if we define V = Q, and S():− t (i.e.

S simply checks for the presence of the tuple t), then t 6∈ crit(Q) iff crit(S) ∩ crit(V) = ∅.

For the former we have claimed that it is Πp
2-hard. In summary:

Theorem 3.3.11 The problem of deciding whether a conjunctive query S is secure w.r.t.
to a set of conjunctive views V1, . . . Vk is Πp

2-complete (query complexity).

A practical algorithm For practical purposes, one can check crit(S)∩crit(V̄) = ∅ and

hence S | V̄ quite efficiently. Simply compare all pairs of subgoals from S and from V̄ . If

any pair of subgoals unify, then ¬S | V̄ . While false positives are possible, they are rare:

this simple algorithm would correctly classify all examples in this chapter.

3.3.4 Proof of the Fundamental Theorems

The technique used in the proof of Theorems 3.3.5 and 3.3.8 is of independent interest,

and we present it here. Throughout this subsection we will fix the domain D and denote

the set of tuples with tuples(D) = {t1, . . . , tn}. Recall our notation from Sec. 3.2: x1 =

Pr[t1], . . . , xn = Pr[tn]. Hence, a probability distribution Pr is given by a set of numbers

x̄ ∈ [0, 1]n.

The Boolean Case, Single View We first prove both theorems for the case of boolean

queries; moreover, we will consider a single view, rather than a set of views. Given a boolean

query Q, we denote by Pr[Q] the probability that Q is true on a randomly chosen database

44

instance. Recall from Equations (3.1) and (3.2) that this probability is given by:

Pr[Q] =
∑

{I∈inst(D)|Q(I)=true}

Pr[I]

Pr[I] =
∏
ti∈I

xi ·
∏
tj /∈I

(1− xj) (3.5)

Therefore Pr[Q] is given by a polynomial in the variables x1, . . . , xn, which we denote

fQ(x1, . . . , xn) or fQ(x̄).

Example 3.3.12 Let D = {a, b}, and consider the boolean query:

Q() : −R(a, x), R(x, x)

In this case tuples(D) = {t1, t2, t3, t4}, where t1 = R(a, a), t2 = R(a, b), t3 = R(b, a), and

t4 = R(b, b). Then Q can be written as the following DNF formula:

Q = t1 ∨ (t2 ∧ t4)

To compute fQ one enumerates all 16 database instances I ⊆ tuples(D). Q is true on 12 of

them: {t2, t4}, {t2, t3, t4}, For each of them we apply Eq.(3.5). This results in a sum

of 12 expressions:

fQ = (1− x1)x2(1− x3)x4 + (1− x1)x2x3x4 + . . .

After simplification we obtain: fQ = x1 + x2x4 − x1x2x4. Let Q′ : −R(b, a) (so that

fQ′ = x3), and consider the boolean formula Q ∧ Q′. The polynomial fQ∧Q′ is equal to

fQ × fQ′ , i.e. (x1 + x2x4 − x1x2x4)x3 because Q and Q′ depend on disjoint sets of tuples.

Before we prove the two theorems we notice that query-view security for boolean queries

can be restated as follows. Given boolean queries S and V , S |Pr V iff:

fS∧V (x̄) = fS(x̄)× fV (x̄) (3.6)

where x̄ corresponds to Pr. Indeed, this represents precisely Equation (3.4) for one specific

choice of s and v, namely s = true and v = true. One can show that if Eq.(3.4) holds for

(true, true), then it also holds for the other three combinations, (false, true), (true, false),

(false, false). Thus, S |Pr V holds precisely if (3.6) holds.

We now restate the two Theorems for the boolean case:

45

Theorem 3.3.5 Let D be a domain, S a query, and V a view. Then:

∀x̄ ∈ [0, 1]n.fS∧V (x̄) = fS(x̄)× fV (x̄) iff critD(S) ∩ critD(V) = ∅.

Theorem 3.3.8 Let D be a domain. If S and V are monotone boolean queries, then:

∃x̄ ∈ (0, 1)n.fS∧V (x̄) = fS(x̄)× fV (x̄) implies

∀x̄ ∈ [0, 1]n.fS∧V (x̄) = fS(x̄)× fV (x̄).

The crux of the proof relies on a close examination of the polynomials fQ. The properties

we need are summarized below. Their proofs are straightforward and are omitted:

Proposition 3.3.13 Let fQ = Pr[Q], where Q is a boolean formula in t1, . . . , tn. Then fQ

is a polynomial in the variables x1, . . . , xn with the following properties:

1. For each i = 1, . . . , n, the degree of xi is ≤ 1.

2. For each i = 1, . . . , n, the degree of xi is 1 iff ti ∈ critD(Q). (In Example 3.3.12,
critD(Q) = {t1, t2, t4} and indeed x1, x2, x4 have degree 1, while x3 has degree 0.)

3. If critD(Q1)∩critD(Q2)=∅ then fQ1∧Q2=fQ1×fQ2.

4. Choose values in [0, 1]n−1 for all variables except for one, xi: fQ becomes a polynomial
of degree ≤ 1 in xi. Then, if Q is a monotone boolean formula, the coefficient of xi is
≥ 0. In Example 3.3.12, the coefficient of x4 in fQ is x2 − x1x2, which is always ≥ 0
when x1, x2 ∈ [0, 1]2.

5. Let Q0 be the boolean formula obtained from Q by setting tn = false, and Q1 be
the boolean formula obtained by setting tn = true. Then fQ0 = fQ[xn = 0] and
fQ1 = fQ[xn = 1]. In example 3.3.12, Q0 = t1 and fQ[x4 = 0] = x1; similarly
Q1 = t1 ∨ t2 and fQ[x4 = 1] = x1 + x2 − x1x2.

We prove now Theorem 3.3.5 for the boolean case.

Proof: Assume first that critD(S) ∩ critD(V) = ∅. Then fS∧V = fS × fV , by Proposi-

tion 3.3.13, item 3. Assume now that ∀x̄ ∈ [0, 1]n.fS∧V (x̄) = fS(x̄)×fV (x̄) holds. Then the

polynomials fS∧V and fS × fV must be identical. In particular, fS and fV cannot have a

common variable xi, otherwise its degree would be 2. Hence critD(S) and critD(V) cannot

have a common tuple (by Prop. 3.3.13 item 2). 2

Next we prove Theorem 3.3.8 for the boolean case.

46

Proof: Consider the polynomial gS,V = fS∧V − fS × fV . We show by induction on the

number n of tuples in tuples(D) that ∀x̄ ∈ [0, 1]n, gS,V (x̄) ≥ 0. It holds trivially for n = 0.

For n > 0, gS,V is a polynomial of degree ≤ 2 in xn, and the coefficient of x2
n is negative: this

follows from Proposition 3.3.13 item 4 and the fact that S, V are monotone. For xn = 0, the

polynomial in n−1 variables gS,V [xn = 0] corresponds to the boolean formulas S[tn = false],

V [tn = false] (item 5 of the proposition), hence we can apply the induction hypothesis and

obtain that gS,V ≥ 0 for xn = 0. Similarly, gS,V ≥ 0 for xn = 1, since now it corresponds to

the boolean formulas S[tn = true], V [tn = true]. Furthermore, since gS,V has degree ≤ 2

and the coefficient of x2
n is ≤ 0, it follows that gS,V ≥ 0 for every xn ∈ [0, 1]. This completes

the inductive proof. Now assume that for some x̄ ∈ (0, 1)n, gS,V (x̄) = 0. We will prove

that critD(S) ∩ critD(V) = ∅. Assume by contradiction that ti ∈ critD(S) ∩ critD(V) for

some tuple ti. Then gS,V is a polynomial of degree 2 in xi, with a negative coefficient for

x2
i , which has at least one root in (0, 1). It follows that gS,V must be < 0 either in xi = 0,

or in xi = 1, contradicting the fact that gS,V ≥ 0 for all x̄ ∈ [0, 1]n. 2

The Boolean Case, Multiple Views Let V̄ = V1, . . . , Vn be n boolean views. The next

step is to show that S |Pr V̄ forall Pr iff S |Pr Vi forall i = 1, . . . , n and all Pr. For simplicity

we prove this for n = 2.

Proof: For the ’only if’ direction we prove Eq.(3.4) directly. To show Pr[S(I)=s∧V2(I)=

v2] = Pr[S(I)=s]× Pr[V2(I)=v2] we notice:

Pr[S(I)=s ∧ V2(I)=v2] =
∑
v1

Pr[S(I)=s ∧ V1(I)=v1 ∧ V2(I)=v2]

Pr[V2(I)=v2] =
∑
v1

Pr[V1(I)=v1 ∧ V2(I)=v2]

then we use the fact that S |Pr (V1, V2) to complete the argument. For the ’if’ direction,

we need to check Pr[S(I) = s ∧ V1(I) = v1 ∧ V2(I) = v2] = Pr[S(I) = s] × Pr[V1(I) =

v1 ∧ V2(I)=v2]. Using Theorem 3.3.5 for the boolean, single view case, it suffices to check

critD(S) ∩ critD(V) = ∅ where V (I) is the boolean query V1(I) = v1 ∧ V2(I) = v2. This

follows from critD(V) ⊆ critD(V1)∪critD(V2), and the assumption, critD(S)∩critD(Vi) = ∅

for i = 1, 2. 2

47

The Non-boolean Case We now generalize to non-boolean queries. Given a k-ary query

Q, let t1, . . . , tm be all k-tuples over the domain D (m = |D|k). For each i = 1, . . . ,m, define

Qb
i the boolean query Qb

i(I) = (ti ∈ Q(I)); that is, it checks whether ti is in Q. Notice that

critD(Q) =
⋃

i critD(Qb
i), and if Q is monotone then Qb

i is monotone for i = 1, . . . ,m.

Given a domain D and probability distribution, the following is easy to check, by ap-

plying directly the Definition 3.3.1. For any query S and views V̄ = V1, . . . Vk:

S |Pr V̄ iff ∀i, j, l.Sb
i |Pr V b

j,l

Here V b
j,l denotes (Vj)b

l . This immediately reduces both theorems to the boolean case.

3.4 Modeling Prior Knowledge

So far we have assumed that the adversary has no knowledge about the data other than the

domain D and the probability distribution Pr provided by the dictionary. Next we consider

security in the presence of prior knowledge, which we denote with K. Our standard for

security compares the adversary’s knowledge about the secret query S before and after

publishing the views V̄ , but always assuming he knows K. In the most general case K

is any boolean statement on the database instance I. For example it can be a key or

foreign-key constraint, some previously published views, or some general knowledge about

the domain. K is thus any boolean predicate on the instance I, and we write K(I) whenever

I satisfies K. To avoid introducing new terminology, we will continue to call K a boolean

query. We do not however restrict K by requiring that it be expressed in a particular query

language.

3.4.1 Definition and Main Theorem

As before we assume domain D to be fixed. K is a boolean query, while S and V̄ are

arbitrary queries.

Definition 3.4.1 (Prior Knowledge Security) Let Pr be a probability distribution on
the tuples. We say that S is secure w.r.t. V̄ under prior knowledge K if for every s, v̄:

Pr[S(I) = s |K(I)] = Pr[S(I) = s | V̄ (I) = v̄ ∧K(I)]

We denote prior knowledge security by K : S |Pr V̄ .

48

Applying Bayes’ theorem reduces the above to:

Pr[S(I) = s ∧ V̄ (I) = v̄ ∧K(I)]× Pr[K(I)] =

Pr[S(I) = s ∧K(I)]× Pr[V̄ (I) = v̄ ∧K(I)] (3.7)

Both the prior knowledge and the relative security applications mentioned in Sec. 3.1

are modeled as a security problem with prior knowledge. In the case of relative security, we

take K to be the knowledge that the prior view has some given answer.

Theorem 3.3.5, which showed query-view security is equivalent to disjointness of the

critical tuples, can be generalized for security with prior knowledge. We state the theorem

for the boolean case, and will discuss specific generalizations to non-boolean queries and

views.

Theorem 3.4.2 Let D be a domain, T = tuples(D), and K, S, V be arbitrary boolean
queries. Then K : S |Pr V for all probability distributions Pr iff the following holds:

COND-K There exists sets of tuples T1, T2 and boolean queries K1,K2, V1, S2 s.t.:

T1 ∩ T2 = ∅
K = K1 ∧K2

S ∧K = K1 ∧ S2

V ∧K = V1 ∧K2

critD(K1) ⊆ T1 critD(K2) ⊆ T2

critD(V1) ⊆ T1 critD(S2) ⊆ T2

Informally, the theorem says that the space of tuples can be partitioned into T1 and T2

such that property K is the conjunction of two independent properties, K1 over T1 and K2

over T2. In addition, assuming K holds, S just says something about the tuples in T2 (and

nothing more about T1). Similarly, when K holds, V just says something about T1 (and

nothing more about T2).

By itself, this theorem does not result in a practical decision procedure, because it is too

general. We show, however, how it can be applied to specific applications, and in particular

derive decision procedures.

3.4.2 Applying Prior Knowledge

Application 1: No prior knowledge As a baseline check, let’s see what happens if

there is no prior knowledge. Then K = true and condition COND-K says that there are

49

two disjoint sets of tuples T1 and T2 such that critD(S) ⊆ T2 and critD(V) ⊆ T1. This is

equivalent to saying critD(S) ∩ critD(V) = ∅, thus we recover Theorem 3.3.5 for boolean

queries.

Application 2: Keys and foreign keys The notion of query-view secrecy is affected

by keys and foreign-keys constraints K. For an illustration, consider the boolean query:

S() : −R(a, b), and the boolean view V () : −R(a, c). Here a, b, c are distinct constants.

We have S |Pr V for any Pr, because critD(S) = {R(a, b)} and critD(V) = {R(a, c)} are

disjoint. But now suppose that the first attribute of R is a key. Then by knowing V we

know immediately that S is false, which is a total information disclosure, hence K : S | V

does not hold.

We apply now Theorem 3.4.2 to derive a general criterion for query-view secrecy in the

presence of key constraints K. Given a domain D, define the following equivalence relation

on tuples(D): t ≡K t′ if t and t′ are tuples over the same relation, and they have the

same key. In the example above, we have R(a, b) ≡K R(a, c), and R(a, b) 6≡K R(d, b) for a

new constant d. Given a query Q, denote critD(Q,K) the set of tuples t s.t. there exists

a database instance I that satisfies the key constraints K and Q(I) 6= Q(I − {t}). The

following criterion can be proven from Theorem 3.4.2 and shows how to check K : S | V̄ .

Corollary 3.4.3 Let K be a set of key constraints, D a domain, and S, V̄ be any queries.
Then S |Pr V̄ for any Pr iff ∀t ∈ critD(S, K), ∀t′ ∈ critD(V̄ ,K), t 6≡K t′. In particular, the
problem whether K : S |Pr V for all Pr is decidable, and Πp

2-complete.

As a simple illustration, in the previous example, we have critD(S, K) = {R(a, b)},

critD(V,K) = {R(a, c)}, and R(a, b) ≡K R(a, c), hence it is not the case that K : S |Pr V

for all Pr. Foreign keys can be handled similarly, however the corresponding decidability

and complexity result holds only when the foreign keys introduce no cycles.

Proof: (Sketch) We give the proof for the boolean case only: the generalization to non-

boolean queries is straightforward. The proof relies on two observations. Let U1, U2, . . . be

the ≡K equivalence classes on tuples(D). For each Ui, denote Li the predicate saying “at

most one tuple from Vi can be in the instance I”. For example if Ui = {t1, t2, t3} set

Li = (¬t1 ∧ ¬t2 ∧ ¬t3) ∨ (t1 ∧ ¬t2 ∧ ¬t3) ∨ (¬t1 ∧ t2 ∧ ¬t3) ∨ (¬t1 ∧ ¬t2 ∧ t3)

50

Then K is L1 ∧ L2 ∧ . . . The first observation is that whenever we split K into K1 ∧ K2

as in COND-K each of the two subexpressions must be a conjunction of some Li’s. It

follows that every equivalence class Ui intersects either critD(K1) or critD(K2) but not

both. The second observation is that there exists S2 s.t. critD(S2) ⊆ T2 S ∧K = K1 ∧ S2

iff critD(S, K) ⊆ T2. Indeed, in one direction, we notice first that if I satisfies K, then

S(I) = K1(I ∩ T1) ∧ S2(I ∩ T2) = S2(I ∩ T2). Then for any t ∈ critD(S, K), there exists I

satisfying K s.t. S(I) 6= S(I − {t}), hence S2(I ∩ T2) 6= S2((I − {t}) ∩ T2), which implies

t ∈ T2. For the other direction, define S2(I) = K2(I)∧S(I ∩T2) (obviously critD(S2) ⊆ T2)

and let’s show that S ∧ K = K1 ∧ S2. Let I be an instance s.t. (S ∧ K)(I) is true; in

particular I satisfies K, hence critD(S, K) ⊆ T2 which means S(I) = S(I ∩ T2). The claim

follows from the fact that K2(I) is true. With these two observations the proof of the

corollary is straightforward and omitted. The decidability and complexity is shown with an

argument similar to that used in Theorem 3.3.11. 2

Application 3: Cardinality Constraint. What happens if the adversary has some

partial knowledge about the cardinality of the secret database? This is quite common in

practice. For example the number of patients in a hospital is likely to be between 100 or

1,000, but not 2 and not 1,000,000. In this case K is a cardinality constraint, such as “there

are exactly n tuples in I” or “there are at most n tuples” or “at least n tuples”. Surprisingly,

there are no secure queries when the prior knowledge involves any cardinality constraints!

This follows from Theorem 3.4.2 since K cannot be expressed as K1 ∧K2 over disjoint sets

of tuples, by a simple counting argument, except for the trivial case when T1 = ∅ or T2 = ∅.

Hence, no query is perfectly secret w.r.t. to any view in this case, except if one of them (S

or V) is trivially true or false.

Application 4: Protecting Secrets with Knowledge Sometimes prior knowledge

can protect secrets! Take any queries S, V̄ , and assume that S is not secure w.r.t. V̄ .

Suppose now that we disclose publicly the status of every tuple in critD(S) ∩ critD(V̄).

That is, for each common critical tuple t we announce whether t ∈ I or t 6∈ I. If we denote

with K this knowledge about all common critical tuples, then Theorem 3.4.2 implies that

K : S |Pr V̄ for any Pr, as we show below. For a simple illustration, assume S() : −R(a,−)

51

and V () : −R(−, b). They are not secure because critD(S) ∩ critD(V) = {R(a, b)}. But

now suppose we disclose that the pair (a, b) is not in the database, R(a, b) 6∈ I, and call this

knowledge K. Then K : S |Pr V . The same is true if we publicly announce that R(a, b) is

in the database instance. We prove this formally next:

Corollary 3.4.4 Let K be such that ∀t ∈ critD(S) ∩ critD(V̄), either K |= t ∈ I, or
K |= t 6∈ I. Then, for every Pr, K : S |Pr V̄ .

Proof: We will prove this for two boolean queries S, V only: the general case follows easily.

Let T1 = critD(S) ∩ critD(V), and T2 = tuples(D)− T1. Let K1 = K, K2 = true, S2 = S,

V1 = V ∧K. Then the conditions of Theorem 3.4.2 are satisfied, hence K : S |Pr V for any

Pr. 2

Application 5: Prior Views. Suppose Alice already published a view U (there may

have been leakage about S, but she decided the risk was acceptable). Now she wants to

publish another view V , and she wonders: will I leak any more information about S?

Using Theorem 3.4.2 we give below a decision procedure for the case of conjunctive

queries, but only when U is a boolean query. This is a limitation, and due to the fact that

both sides of the formula (3.7) are linear in S and V̄ , but not in K: this made it possible

to generalize statements from boolean queries S, V to arbitrary ones, but not for K. To

simplify the statement, we also restrict S and V to be boolean: these, however, can be

generalized to arbitrary conjunctive queries.

Corollary 3.4.5 Let U, S, V be boolean conjunctive queries. Then U : S |Pr V for every
probability distribution Pr iff each of the queries can be split into the following:

U = U1 ∧ U2

S = S1 ∧ S2

V = V1 ∧ V2

such that the sets critD(U1)∪critD(S1)∪critD(V1) and critD(V2)∪critD(S2)∪critD(V2) are
disjoint, and U1 ⇒ S1 and U2 ⇒ V2. Hence, U : S |Pr V is decidable.

The proof follows rather directly from Theorem 3.4.2 and is omitted. For a simple

illustration consider:

U : − R1(a, b,−,−), R2(d, e,−,−)

52

S : − R1(a,−,−,−), R2(d, e, f,−)

V : − R1(a, b, c,−), R2(d,−,−,−)

Here S is not secure w.r.t. either U or V . However, U : S | V . By giving out U we already

disclosed something about S, namely R1(a,−,−,−). By publishing V in addition we do

not further disclose any information.

3.4.3 Proof of Theorem 3.4.2

Proof: (sketch) For boolean queries, K : S |Pr V can be expressed as follows:

Pr[S ∧ V ∧K]× Pr[K] = Pr[S ∧K]× Pr[V ∧K]

Using the notation fQ for a boolean query Q (see Sec. 3.3.4), this becomes:

fS∧V ∧K(x̄)× fK(x̄) = fS∧K(x̄)× fV ∧K(x̄) (3.8)

We need to prove that (3.8) holds for any x̄ ∈ [0, 1]n iff COND-K holds. For that we

need the properties of fQ in Proposition 3.3.13 plus three more. Call any multi-variable

polynomial g(x̄) of degree ≤ 1 in each variable a boolean polynomial if ∀x̄ ∈ {0, 1}n, g(x̄) is

either 0 or 1. Clearly, any polynomial fQ is a boolean polynomial.

Proposition 3.4.6

1. If g is a boolean polynomial then there exists a unique boolean formula Q s.t. g = fQ.

2. Let Q be a boolean formula, and suppose fQ is the product of two polynomials fQ =
g×h. Then there exists a constant c 6= 0 s.t. both cg and 1

ch are boolean polynomials.

3. If fQ = fQ1 × fQ2 then critD(Q1) ∩ critD(Q2) = ∅.

We can now prove the equivalence of (3.8) to COND-K. Assume (3.8) holds for every

x̄ ∈ [0, 1]n, i.e., this is an identity of polynomials. Then fK divides fS∧K × fV ∧K . Hence

fK = g×h where g divides fS∧K and h divides fV ∧K . By Prop. 3.4.6 we can assume that g, h

are boolean, hence fK = fK1×fK2 for some boolean formulas K1,K2, and moreover we have

K = K1∧K2 and critD(K1)∩critD(K2) = ∅. Since fK1 divides fS∧K , we can write the latter

as fS∧K = fK1 × fS2 , for some boolean query S2, which implies S ∧K = K1∧S2. Similarly,

53

fK2 divides fV ∧K , hence we can write the latter as fV ∧K = fV1 × fK2 for some query V1.

Finally, substituting in (3.8) and simplifying with fK1 × fK2 we get fS∧V ∧K = fV1 × fS2 . It

follows that fV1 and fS2 have no common variables, hence critD(V1)∩ critD(S2) = ∅. Define

T1 = critD(K1) ∪ critD(V1) and T2 = tuples(D)− T1. Then it follows that critD(K2) ⊆ T2

and critD(S2) ⊆ T2, completing the proof of COND-K.

For the other direction, assume COND-K is satisfied and let’s prove (3.8). We have:

fS∧V ∧K = f(K1∧V1)∧(K2∧S2) = fK1∧V1 × fK2∧S2

fK = fK1 × fK2

fS∧K = fK1 × fS2∧K2

fV ∧K = fV1∧K1 × fK2

and (3.8) follows immediately. 2

3.5 Relaxing the definition of security

Our standard for query-view security is very strong. It classifies as insecure query-view pairs

that are considered secure in practice. In many applications we can tolerate deviations from

this strong standard, as long as the deviations are not too large. We discuss briefly two

directions for a more practical definition of security. The first strategy is a numerical mea-

sure of information disclosure, and the second, based on [36], uses a substantially different

assumption of database probabilities which effectively ignores certain minute disclosures.

3.5.1 Subsequent work on practical query-view security

Following the original publication of this work [104], the author, along with Nilesh Dalvi and

Dan Suciu, analyzed query-view security under a substantially different probabilistic model

which can permit a relaxed notion of security termed practical security. For comparison

purposes, we provide here a brief overview of the setting and main results for this approach,

referring the reader to [36] for a full treatment of the topic.

To capture practical query-view security we adopt a new probability distribution over

databases. In this model, individual tuples have a uniform probability of occurring in the

database, but the probability of each tuple t is now such that the expected size of the relation

54

instance R is a given constant S (different constants may be used for different relation

names). As the domain size n grows to ∞, the expected database size remains constant.

Hence, in the case of directed graphs (i.e., a single binary relation R), the probability that

two given nodes are connected by an edge is S/n2. Denoting by µn[Q] the probability that a

boolean query Q is true on a domain of size n, our goal is to compute µn[Q | V] as n →∞.

We propose as a definition of practical security limn µn[Q | V] = 0. This is justified as

follows. The adversary faces a large domain. For example, if he is trying to guess whether

“John Smith” is an employee, then he has only a tiny probability of success: 1/n where

n is the size of the domain. On the other hand, the size of the database is much smaller,

and the adversary often knows a good approximation. This definition relaxes the previous

definition of security for sensitive queries Q.

In [36] we show that limn µn[Q | V] for conjunctive queries Q and V always exists and

provide an algorithm for computing it. The key technical lemma is to show that, for each

conjunctive query Q there exists two numbers c, d s.t. µn[Q] = c/nd+O(1/nd+1). Moreover,

both d and c can be computed algorithmically. Since µn[Q | V] = µn[QV]/µn[V], the main

result follows easily.

With this condition of practical security in mind we distinguish the following cases:

Perfect query-view security This is the condition analyzed in this paper. V |Q can be

rewritten as µn[Q | V] = µn[Q] for all n large enough. Here V provides no information

about Q.

Practical query-view security limn→∞ µn[Q | V] = 0. This implies that the difference

of probabilities is zero in the limit (since limn µn[Q] = 0 for all practical purposes). For

finite n, V may in fact contain some information for answering Q, but it is considered

negligible in this model.

Practical Disclosure 0 < limn→∞ µn[Q | V] < 1. Disclosure is non-negligible in this case.

Our main result allows us to compute this quantity in terms of expected database size

S.

55

3.6 Encrypted Views

Encryption is increasingly being used to protect both published data and data stored in

the DBMS. In many scenarios [102, 5, 78, 4], data is encrypted at the attribute level, and

analyzing the disclosure of these somewhat unusual “views” is an important open research

question. (See Section 2.5 for examples.)

Encrypted views can be modeled in our framework. One way is to model an encrypted

view of a relation as the result of applying a perfect one-way function f to each attribute.

Because our goal is to study the logical security of a view, we assume idealized properties

of the encryption primitive: namely that given f(x) it is impossible to recover x, and that

f is collision free. Under these assumptions an encrypted view is essentially an isomorphic

copy of the original relation. Clearly, such a view provides information that can be used

to answer queries. For example, Q1() : −R(x, y), R(y, z), x 6= z is answerable using such a

view. Query Q2() : −R(a, x) is not answerable using the view, but substantial information

is nevertheless leaked. It can be shown that no secret query S is secure w.r.t. an encrypted

view V .

3.7 Related Work

3.7.1 Database security

Chapter 2 thoroughly addressed the relationship between conventional database access con-

trol, statistical databases, and disclosure.

The authors of [55] study formal definitions of privacy in the context of privacy preserving

data mining. In this setting the goal is to permit accurate data mining models to be built

over aggregates while preventing disclosure of individual items. Here the published view

is the result of applying a randomization operator to data values or a distribution of data

values. It is shown that a known information-theoretic definition of privacy may permit

certain disclosures, and they propose an extended measure to account for this drawback.

A protection mechanism for relational databases was proposed in [10] based on a prob-

abilistic definition of security similar to our own. An algorithm for deciding query-view

security was not known, and relative security and quantified security were not addressed.

56

In [11] the same authors focus on comparing probabilistic independence (closely related to

our security criterion) with algebraic independence, but are not concerned with a decision

procedure for probabilistic independence.

3.7.2 Alternative models

Query-view security could be defined by comparing the entropy [123] of S with the con-

ditional entropy of S given V . If this is done for all possible answers s, v̄ (computing the

entropy of event S = s, and S = s given V̄ = v̄) then the condition is equivalent to our

security criterion. However, it would be more common to compare the entropies of the

events defined by S and V , aggregating over the answers to S and V . This would result in

a criterion strictly weaker than ours (see Example 2.5.6).

The goal of the probabilistic relational model [71, 84] is to model statistical patterns

in huge amounts of data. The issues addressed are learning models from existing data,

modeling statistics about a given database (e.g. to be used by a query optimizer), and

inferring missing attribute values. These techniques do not provide us with means to reason

about information disclosure, which is independent of a particular data instance.

3.7.3 Theoretical connections

A query is independent of an update if the application of the update cannot change the

result of the query, for any state of the database. Detecting update independence is useful

for maintenance of materialized views [17, 53, 90] and efficient constraint checking [76].

Deciding whether a tuple t is critical for a query Q (a notion we defined and studied

in Section 3.3.3) is equivalent to deciding whether Q is independent of the update that

deletes t from the database. Update independence is undecidable for queries and updates

expressed as datalog programs [90], but has been shown decidable for certain restricted

classes of queries like conjunctive queries with comparisons [17, 53, 90]. The tight bounds

shown in this paper for deciding crit(Q) constitute an interesting special case for update

independence.

The so-called FKG inequality [67] is a theoretical result about the correlation between

events in a probability space. It is closely related to our security criterion, and can be used

57

to show that Pr(V ∧S) ≥ Pr(V)Pr(S), for monotone boolean properties V and S. However,

it says nothing about when equality holds, and its inductive proof offers little insight. Our

Theorem 3.3.8 reproves this inequality and furthermore proves the necessary and sufficient

condition for equality to hold.

Another topic that connects logic to probability theory are the 0-1 laws [60, 61], which

hold for a logical language if, for each formula, the probability that a formula is true

converges to either 0 or 1 as the size of the domain tends to infinity. Our definition

of query-view security is not related to 0-1 laws: our domain size does not grow to infinity

but remains fixed and we are concerned about the effect of one formula (the view) on another

(the secret query).

3.7.4 Subsequent work

Following the original publication of this work [104], the author, along with Nilesh Dalvi and

Dan Suciu, has considered a relaxed notion of query-view security based on a substantially

different probability distribution over databases [36]. The approach was described briefly

in Section 3.5.1, although the main results are not included in this dissertation.

In [43] it is assumed that a set of views has been published to the adversary, regardless

of disclosure about a secret query. A new view, considered for publication, is then evalu-

ated for additional disclosure. (We consider such a scenario in Section 3.4.2) The authors

study a version of query-view security similar to our own, but also consider weaker vari-

ants. They provide complexity bounds for these decision problems under general probability

distributions, and for more expressive integrity constraints.

58

Chapter 4

CONFIDENTIALITY IN DATA EXCHANGE

The techniques described in the previous chapter assist the data owner in deciding which

views of the database can be safely shared to avoid partial disclosures and inferences. The

association of subjects with their authorized views of the database constitutes an access

control policy. To enforce such a policy–that is, to ensure that subjects receive authorized

views, and no other portions of the database–the owner must employ a protection mecha-

nism. The present chapter describes a distributed protection mechanism which depends on

encryption.

4.1 Introduction and Overview

Recall from Section 1 that distributed data exchange is characterized by multiple data

owners sharing data with potentially large numbers of intermediaries and final recipients.

For the following discussion, we focus on a single data owner seeking to share a database

D with a large number of subjects. The database is initially stored using a trusted system

administered by the owner. The subjects, denoted s1 . . . sn, have varying access rights to

the database, where subject si is authorized to see view vi on D. The subjects also have

systems capable of storing and processing data, but these systems are not controlled by

the owner, and therefore not trusted. Although subject si is authorized to see vi(D), the

subject may actually be interested in computing the answer to a different query, qi. We

assume that qi is answerable using vi(D).

4.1.1 Protection alternatives

We distinguish between four alternative architectures a data owner can employ to share

data and enforce access control policies.

Client-server In a client-server architecture, the data owner stores the database on a

59

trusted server which responds to requests by subjects for access to data. This is

typical of modern database systems as well as file systems that enforce access control.

– A subject si, after authenticating, posts a request for access to the database, in

the form of their query qi.

– For each such request, the owner determines whether the query can be answered,

given the subject’s access rights.

– If admissible, the server executes the query and returns the results to the subject.

Gifford described this as an active protection mechanism [72] because an active process

is placed between a client and protected data. Query execution is performed at the

server, and only query results are transmitted to the subject. Note that it is never

the case that a data item a subject is not authorized to see is sent to a subject.

View materialization and publishing This architecture is similar to that above, but

authorized views are computed and transmitted to subjects in anticipation of actual

requests. Interaction between owner and subjects consists of the following:

– The data owner computes the safe view vi(D) for each subject si.

– The data owner publishes vi(D), sending it to the subject over a secure channel.

– The subject stores vi(D) data locally, and then computes qi using its own query

execution resources.

Again, it is never the case that a data item the subject is not authorized to see is sent

to a subject.

Controlled publication Controlled publication is the focus of this chapter. Gifford de-

scribed this as a passive protection mechanism [72] because there is no system restrict-

ing the subjects’ access to data.

– Using access control policies for each subject, and techniques described below,

the data owner computes a single, partially-encrypted database.

60

– The data owner publishes this single document to all subjects, e.g. by posting

on a web server.

– The data owner transmits key-sets to each subject, over a secure channel.

– Subject si retrieves the published data. Using their authorized keys, the subject

can decrypt the data to derive the authorized view vi(D), or selectively decrypt

in order to compute qi.

Any data item a client is not authorized to see must be encrypted, since the protected

database is released to all clients.

Trusted computing base This architecture assumes that a trusted operating environ-

ment executes at the client. This typically requires tamper-resistant hardware. A

practical instance of this is a smart card, among others [6]. Effectively, the entire

database D may be transmitted to each subject’s secure environment, over a secure

communication channel. The client posts queries to the trusted component, which is

responsible for access decisions. This allows data items a client is not authorized to

see to be stored at the client, since proper access will be negotiated by the trusted

process running at the client. Recent research into secure operating environments and

XML data protection is described as related work in Section 4.9.5. The feasibility

of current designs based on this architecture depends heavily on enhanced hardware

capabilities of the future.

4.1.2 Comparative analysis

Each of the described architectures may be desirable for certain applications. In particular,

the choice of architecture will depend on properties of the database, the access policies to

be enforced, the number of clients, the processing resources of owner and subject, and the

available network bandwidth.

The focus of this chapter is controlled data publishing, which has a number of advantages

for distributed data exchange. This architecture is a very efficient means for broadcasting

data to many users, reducing the overall network bandwidth, and simplifying the publication

61

mechanism by allowing a single protected database to be published once, and used by all

subjects. Storage and dissemination of data is separated from access control restrictions,

and untrusted intermediaries can assist in storing and sharing data in encrypted form. This

relieves the requirement that the owner’s server be online and available for access control

decisions, and it also relieves the processing burden on the server, moving load to the

subject. Finally, this architecture supports query privacy because subjects can process their

authorized data without revealing to the server what data is accessed, how it is processed,

and when it is processed.

The architecture does have some limitations, however. It is impossible to prevent an au-

thorized but malicious subject from decrypting the data it is authorized to see and releasing

it to unauthorized recipients. This is a basic limitation that applies to each of the other

architectures as well. In addition, revocation is difficult using controlled data publication.

Once access is granted to a subject and data is published, that data cannot be retracted. If,

at a later point in time, a subject’s authorization changes, that change can only be reflected

in the publication of subsequent versions of the database.

4.1.3 System Overview and Chapter Organization

The remainder of this chapter describes a framework for controlled data publication, sup-

porting large numbers of subjects with varied access rights. The three main conceptual

components of the publication framework (illustrated in Figure 4.1) are:

1. Policy Queries – We define a language for specifying access control policies, which can

express high level notions like “A psychologist should have access to the records of

patients she examines”. The policy language defined here is based on query languages

specifically designed for XML data. An example policy query is shown on the left of

Figure 4.1. Policy queries are described by example in Section 4.2, and then formally

in Section 4.6.

Policy queries are evaluated on a database, resulting in (i) cryptographic keys associated

with subjects or groups of subjects, and (ii) an intermediate representation of a protected

XML document, called a tree protection. The keys are transmitted to authorized subjects

62

FOR $x in /doc/subjects/subject
 $y in /doc/psychs/psych
WHERE $x/examining-psych/id = $y/id
KEY getKey($y) keyChain("psych")
TARGET $x

<EncryptedData>
 <EncryptionMethod Alg="AES"/>
 <KeyInfo>
 <name>k1</name>
 </KeyInfo>
 <CipherData>
 <CipherValue>
 qZk+NkcGgWq6PiVxeFDCbJz
 ...
 DCbJzQ2JkcGgWq6PiVxeFFD
 </CipherValue>
 </CipherData>
</EncryptedData>

1

2

4 5

3

6

k1

True

k3 k4
k2

(k1 ∧ k3) ∨ k4

<hosp>

<nurse> <phys>

<pat_id>
<admin>

<pat_id>

"k3"

1. Policy Query 2. Tree Protection 3. Encrypted XML

Figure 4.1: The protected data publishing framework.

and act as digital capabilities [41], permitting access to specific portions of the database.

The tree protection relates keys and the accessibility to data that they allow.

2. Tree Protection – An example tree protection is shown in the middle of Figure 4.1.

A tree protection is a logical model for protected data which annotates the XML

document tree with “guard” formulas over symbolic key expressions. The model is

powerful enough to express complex policies, has a precise semantics, and admits

some basic logical optimizations which later result in significant space savings for the

published data. Tree protections are described in Section 4.3.

3. Encrypted Data – Finally, the tree protection is translated into a partially-encrypted

XML document. The encrypted instance can be represented using the recent W3C

Recommendation XML Encryption Syntax [51] as a physical format. Sample en-

crypted output is pictured on the right of Figure 4.1. The present work adapts and

extends known techniques including secret sharing [119, 12], bounded key encryp-

tion [63, 64], and random sequences [125]. Generation of the final encrypted XML is

described in Section 4.4 and the security of encrypted instances is discussed in Section

4.5.

At this point in the framework, the partially-encrypted XML document may be published

freely. It contains the entire accessible database and enforces all access policy queries. Keys

63

are transmitted to subjects, who download the data and process it. A subject can decrypt

the entire authorized view, or can decrypt the data selectively, using a query language,

and supplying appropriate keys. Techniques for processing encrypted data are discussed in

Section 4.7.

In Section 4.8 the performance of the framework is evaluated. We study the size of the

partially encrypted documents, and the encryption/decryption speed. We show that these

measures are reasonable, and can be dramatically improved using a combination of logical

and physical optimizations. The chapter concludes with a thorough discussion of related

research areas in Section 4.9.

4.2 Policy query examples

This section describes a motivating scenario illustrating the language for writing policy

queries. We defer a complete description of the language syntax and semantics to Section

4.6. Recall that policy queries are evaluated by the database owner on an XML data

instance, in a secure environment, before publishing the access-controlled version of the

database, and will be re-evaluated or updated when the database changes, to produce a

new version of the published data.

4.2.1 Examples

We now motivate our techniques by presenting a scenario of controlled data publishing.

What follows is inspired from actual challenges faced by biologists at the University of

Washington in meeting their goals of data dissemination while satisfying trust and security

constraints. The example includes a number of participants, the trust and privacy issues

between them, and a series of example policy queries that exercise the capabilities of our

framework.

In this scenario a group of primary researchers enlist the support of technicians in

carrying out medical and psychological tests on willing experimental subjects. Once the

data is analyzed, the primary researchers submit their results to the conference publisher.

In addition, experimental data must be published so that competing researchers can use it.

Finally, an auditor checks if certain privacy regulations are enforced.

64

The policy queries use an extension of XQuery with a KEY and a TARGET clause. These

clauses are used to associate symbolic keys with regions in the XML data that those keys

will protect. The first policy query is motivated by the relationship between primary and

competing researcher:

Policy Query 4.2.1
SUFFICIENT
FOR $x in /doc/subjects/subject
KEY getKey(“registration”),

$x/analysis/DNAsignature/text()
TARGET $x/analysis

This query declares that users with the two keys in the KEY clause will be granted access

to the analysis target. The first key is an exchange key, named “registration”: the getKey()

construction retrieves the key named “registration”, or, if one doesn’t exist, generates a new

secure key and stores it for future use. The second key is taken from the data itself: namely

the user must know the value of the DNAsignature field in order to access the entire analysis

element. Notice that this query fires for all subject elements. The “registration” key will be

the same for each target node, while the DNAsignature value will likely be different for each

target node.

The intent of Policy Query 4.2.1 is to allow competing researchers who have registered

(and thus acquired the registration key) to access the analysis of all subjects with a DNAsig-

nature they can provide. This severely impedes the competing researchers from doing

uncontrolled scans of all DNA samples, but allows them to verify data for the DNA samples

that they already have.

Policy Query 4.2.2
SUFFICIENT
FOR $x in /doc/subjects/subject
KEY getKey($x) keyChain(“imageKeys”)
TARGET $x/analysis/brain-scan

This query generates a new key for each subject, and grants access to brain-scan data to

users in possession of that key. The argument to getKey is now a node, $x. In addition a

keyChain is specified: this is a convenient way to organize keys. The key for $x is retrieved

from–or stored into–the key chain named “imageKeys”. When the data owner decides to

65

grant access to the brain-scan of a specific subject to some user, she looks up the key associ-

ated to that subject in the keychain “imageKeys” and sends it to the user through a secure

channel . She can thus have very fine-grained control over how users access the data.

Notice that the targets of Policy Queries 4.2.1 and 4.2.2 overlap. The SUFFICIENT key-

word means that satisfaction of any rule grants access to the common target. In particular,

brain-scan data can be accessed either with the keys specified in Query 4.2.1 or with the key

in Query 4.2.2.

Policy Query 4.2.3
SUFFICIENT
FOR $x in /doc/subjects/subject

$y in /doc/psychs/psych
WHERE $x/examining-psych/id = $y/id
KEY getKey($y) keyChain(“psych”)
TARGET $x

This query simply says that a psychologist examiner is allowed to see all subjects he ex-

amined. A new key is generated for each psychologist (or retrieved, if it already exists), in

the keychain named “psych”, and that key grants access to all subjects examined by that

psychologist. Notice that if a subject was examined by multiple psychologists1 then each

will have access to that subject: this query results in self-overlap, in addition to the overlap

with previous queries.

Next we show a more intricate policy query, motivated by the legal requirement of

protecting personal identity data such as name and social security number. Lab technicians

need access to some of the subjects’ data, e.g. age, sex, etc., but not to the identity data.

However, subjects with blood type “AB-” are very rare: only one or two are encountered

each year. A technician could trace the identity of such a subject from the exam-date/year

information. The two policy queries below grant technicians conditional access to various

data components:

Policy Query 4.2.4

1This happens when subject has more than one examining-psych subelements.

66

SUFFICIENT
FOR $x in /doc/subjects/subject
WHERE $x/blood-type != “AB-”
KEY getKey(“tech1”) keyChain(“technicians”)
TARGET $x/age, $x/sex,

$x/blood-type, $x/exam-date/year

SUFFICIENT
FOR $x in /doc/subjects/subject
KEY getKey(“tech1”) keyChain(“technicians”)
WHERE $x/blood-type = “AB-”
TARGET $x/sex, $x/blood-type

The first policy query says that the key “tech1” grants access to four fields (age, sex,

blood-type, and exam-date/year), but only of subjects with blood type other than “AB-”.

For the latter, the second query grants access only to sex and blood-type.

Finally, an auditor wants to verify that HIV tests are protected. Under the lab’s policy,

only registered users have access to the HIV test, hence the auditor’s query is:

Policy Query 4.2.5
NECESSARY
FOR $x in /doc/subjects/subject
KEY getKey(“registration”)
TARGET $x/analysis/tests/HIV

Notice that this query starts with the NECESSARY keyword: it means that only users

having the key named “registration” (same as in Query 4.2.1) have access to the analy-

sis/tests/HIV data. We provide a complete description of the policy language syntax and

semantics in Section 4.6.

4.3 The Tree Protection

This subsection describes the logical model for protecting an XML tree, which plays a

central role in the protected publishing framework: it is the output of policy queries, the

input to the physical encryption procedure, and the data model for the client’s queries. A

tree protection consists of a tree where nodes are “guarded” by keys or sets of keys. Such a

protected tree limits access in the following way: only users with an admissible set of keys

can access an element. Without a qualifying set of keys, the element’s name, its attributes,

and its children are all hidden. We present this formally next.

67

1

2

4 5

3

6

k1

True

k3 k4
k2

(k1 ∧ k3) ∨ k4

P

1

2

4 5

3

6

k1

True

k3 k4

k2

s1=sa⊕sb

OR

sk4

k1 k3 s1

P'

True

True

AND

<hosp>

<nurse> <phys>

<pat_id>
<admin>

<pat_id>
"sb""sa" "s"

"s"

"k3""k3"

<hosp>

<nurse>

<phys>

<pat_id> <pat_id>

<admin>

Figure 4.2: A tree protection P (Example 4.3.1), and an equivalent normalized protection
P ′ (Example 4.3.4). The white nodes are metadata nodes.

XML Trees We model an XML document as a node-labeled tree t with internal nodes

labeled from an alphabet of element and attribute names, and leaves labeled from a set of

values. We denote the set of nodes with nodes(t) and the set of edges with edges(t), and

value(i) the value of a leaf node i. Given two nodes i, j ∈ t, we write i ≺ j when i is a

proper ancestor of j and i � j for the ancestor-or-self relation.

Keys We consider three kinds of keys in our model: exchange keys, inner keys, and data

value keys. To simplify our discussion we fix the length of key values at 128 bits, but varying

bit lengths are supported.

Exchange keys are stored by the data owner and communicated through secure channels to

various clients. They have a public name, for identification, unrelated to their key value

which is used for encryption and decryption. Referring to Sec. 4.2.1, examples of exchange

keys are: ”registration” in Query 4.2.1, and the subject’s keys in Query 4.2.2, with system

generated names like ”subject030223”. We denote by NamedKey the (finite) domain of

exchange keys.

Inner keys are random numbers generated by the system during the encryption process,

and stored in the XML data itself (as base64-encoded text): users can only learn them by

accessing the XML data where they are stored. There are no inner keys illustrated in our

motivating example because they are generated automatically by the system.2 We denote

2Inner keys are needed to support complex access control policies, and are used in the normalization
process described later in Sec. 4.3.2.

68

by LocalKey the (finite) domain of inner keys.

Data Value keys are all the text values, numbers, dates, etc., that can normally occur in

an XML document. We derive a 224-bit string by using the UTF-8 encoding, padding it

appropriately if necessary, and then applying a cryptographic hash function (e.g. SHA-224

[58]). This convention is publicly known and can be repeated by the user. We use data

values as keys because, in some applications, access may be granted to users who know

certain fields of a protected piece of data. For example, a user who knows a patient’s name,

address, and social security number may have access to the entire patient’s record. We

denote by DataValue the set of values. In our motivating example, the DNAsignature in

Query 4.2.1 is a data value key. We write Key = NamedKey∪LocalKey∪DataValue.

XML values In our model the leaves of an XML document may carry either a data value,

or an inner key. While the latter is encoded as a base64 string (thus we could model it as a

data value), we distinguish it from an access control point of view. Users may acquire, by

some independent means, certain data values with meaningful semantics: names, addresses,

social security numbers, bank account numbers. But they have no way of learning an inner

key, except by accessing an XML node where that inner key is stored as a value. Thus, in

our model, the value of a leaf node i ∈ nodes(t) is value(i) ∈ DataValue ∪ LocalKey.

Metadata XML nodes We introduce an extension to the basic XML model, by allowing

some additional metadata nodes in the tree. Their role is to express certain protections or to

hold inner keys, and they are introduced automatically by the system. Formally, a metadata

XML tree tm over a tree t is obtained from t by inserting some meta-data nodes, which can

be either internal nodes (element or attribute nodes), or leaf nodes, and may be inserted

anywhere in the tree. Thus, nodes(tm) consists of meta-data nodes, plus nodes(t): we call

the latter data nodes. We assume that the meta-data nodes can be distinguished in some

way from the data nodes, for example by using an XML namespace. (In figures, metadata

nodes are white while data nodes are gray.) An operation, trim(tm) = t, recovers the XML

tree from the metadata tree, by removing the metadata nodes and promoting their children.

For any XML tree t, a trivial metadata tree is t itself, having no metadata node: in this

case trim(t) = t.

69

k

"k"

k

k

"k"
(a) (b) (c)

k'

Figure 4.3: Typical usage patterns of tree protections, described in Example 4.3.2.

Tree Protection A protection over an XML tree t is P = (tm, σ) where tm is a metadata

tree over t and σ associates to each node i ∈ nodes(tm) a positive boolean guard formula

σi over Key, satisfying the following grammar (where k ∈ Key):

σ := true | false | k | σ ∨ σ′ | σ ∧ σ′

The intuition is that σi defines the key(s) that a user needs to present in order to gain

access to the node i. But in order to reach the node i from the root, the user needs to also

satisfy all formulas σj , for all j ≺ i. This justifies the next definition: we call the necessity

formula, ϕi of a node i to be ϕi = ∧j�iσj .

Example 4.3.1 Figure 4.2 illustrates a protection P = (tm, σ). Each node i ∈ t is an-

notated with its guard formula σi, using named exchange keys k1, k2, k4, and data value

key k3. Guard formula σ2 is equal to (k1 ∧ k3) ∨ k4 and necessity formula ϕ6 is equal to

k1 ∧ true ∧ k2. There are no metadata nodes in this case, so t = tm.

Example 4.3.2 Figure 4.3 illustrates typical usages for the three kinds of keys. An ex-

change key is used as in (a): it simply protects a subtree. An inner key is shown in (b)

where the white nodes are metadata nodes: the key k protects the right subtree, and the

user can access it only by reading the left subtree, which in turn is locked with k′. A data

value key is shown in (c): here k is a data value stored in the tree, for example a Social

Security number, but the user must know it in order to access the tree.

70

4.3.1 Access Semantics

The access semantics of a tree protection P is defined formally by the access function

accP (K), which, given a set of keys K, returns a set of nodes accessible by a user who

“knows” K.

Precisely what is revealed when a node is accessible deserves careful consideration, and

Figure 4.4 provides illustration. When a node is inaccessible, its element name and all

descendants are hidden, as in Figure 4.4(a). When a node is accessible, it means that

the element name of the node is visible, and the existence and number of the node’s child

elements is apparent (although the children themselves may be protected). This is shown

in Figure 4.4(b). We adopt this definition throughout, and in Section 4.4 we describe an

encryption technique which enacts this notion of access.

This is only one possible definition of what access to a node entails. Other notions

of access can easily be accommodated by the framework. For example, another possible

convention would reveal the existence of child nodes, but not their number (Figure 4.4(c))

or may hide the existence of children all together (in Figure 4.4(d)). If an alternative access

semantics is desired, it can be simulated by adopting the standard semantics and simply

introducing additional metadata nodes. For example, to hide the number of children of an

accessible node x, a metadata node m can be created and the tree protection modified so

that m is the parent of the children of x, and m is the sole child of x. Access to the number

of children is then controlled by permitting or denying access to m.

Now we describe the access function formally. The function will return only the data

nodes that the subject can access: during the process described below she may also access

metadata nodes, but we only care about which data nodes she can access. The input K

will be restricted to K ⊆ NamedKey ∪ DataValue, because before accessing the XML

document a user can only know exchange keys and data values, not inner keys.

The function accP (K) is described by an iterative process. The user currently has access

to a set of nodes N (initially empty) and to a set of keys M (initially K). N may contain

both data nodes and metadata nodes, while M may contain all types of keys, including

inner keys. At each step she increases M by adding all values on the leaf nodes in N , and

71

No access

<element> <element> <element>

?

Access Other possible access semantics

(a) (b) (d)(c)

Figure 4.4: Various access semantics for a tree protection node.

increases N by adding all nodes that she can unlock by “using” the current keys in M . In

order to unlock a node, she can either use the keys in M directly, or combine some keys in

order to generate new keys. For example secret sharing protocols require the computation

of a bit-wise XOR between two random keys, r1 ⊕ r2. For our semantics we assume to be

given a function M ′ = combine(M) which, given a finite set of keys M ⊆ Key, returns a

set of keys M ′ ⊇ M which includes all allowed combinations of the random keys in M . The

exact definition of combine may depend on the protocols: for our purpose, we will define

it to be combine(M) = M ∪ {r ⊕ r′ | r, r′ ∈ M ∩ LocalKey}. Other choices are possible,

but one has to restrict combine to be computationally bounded, otherwise it may return

the set of all random keys3. Finally, we need the following notation: for a set of keys M and

positive formula ϕ over M we say M |= ϕ, if ϕ is true under the truth assignment derived

from M by using keys in M as true propositional variables and assuming all others false.

For example: {k1, k2, k3} |= k4 ∨ (k1 ∧ k2) but {k1, k2} 6|= k2 ∧ k3.

We can now define the function accP (K) formally: accP (K) = N ∩ nodes(t), where

N ⊆ nodes(tm) and M ⊆ Key are the least fixed point of the following two mutually

recursive definitions:

N = {i | i ∈ nodes(tm), combine(M) |= ϕi}

M = K ∪ {value(i) | i ∈ N}

3The set of random keys is finite, e.g. 128-bit keys.

72

(b)

(c)(a)

σ ∧ σ'
σ

σ'

(d)

 σ σ σ
True

σ

True True

σ

σ1 σ2 σ3

True

σ1 ∧ σ

σ2 ∧ σ

σ3 ∧ σ

σ' True

σ ∧ σ' σ ∧ σ'

Figure 4.5: Protection rewritings for logical optimization: (a) formula split; (b) formula
pull-up; (c) formula simplification; (d) formula push-down.

Finding this fixed point can be done with a standard iterative procedure4 which corresponds

to the informal description above.

Example 4.3.3 For the tree protection P illustrated in Figure 4.2, the following are

values of accP (K) for selected subsets K ⊆ NamedKey. (The subtree of t returned

by the access function is represented as a set of node identifiers.) accP ({k1}) = {1, 3},

accP ({k2}) = {}, accP ({k1, k2}) = {1, 2, 3, 4, 6}, accP ({k1, k4}) = {1, 2, 3, 5}, accP ({k1, k3}) =

{1, 2, 3, 4}, accP ({k1, k3, k4}) = {1, 2, 3, 4, 5}.

Having defined semantics we can now define equivalence between two protections P , P ′

of the same XML tree t. Namely P and P ′ are equivalent (in notation, P ≡ P ′) if for every

set K ⊆ NamedKey∪DataValue, accP (K) = accP ′(K). Notice that the two protections

may use different metadata nodes: what is important is that the user can learn the same

set of nodes from both protections, with any set of keys K.

73

σ1 ∧ σ2

(b)

sa
s

sb

σ1 σ2

s=sa⊕sb

σ1 ∨ σ2

(a)

s
s

s

σ1 σ2

True True
ANDOR

Figure 4.6: Rewriting formula conjunction and disjunction during tree protection normal-
ization.

4.3.2 Rewrite Rules

We describe a set of local rewrite rules to be used in optimizations and normalization. It

is easy to check that all rewrite rules are sound, i.e. each replaces one protection with an

equivalent one. This can be verified in each case by showing that the access functions for

the left and right protection are equal.

The rewritings in Figure 4.5 are intended to express logical optimizations. (The list is

not exhaustive.) For example, in the left protection of rule (b) the same formula appears on

many nodes: the right protection introduces a new metadata node, and uses that formula

only once. In (c) the need for nested protections is eliminated: nested protections lead

to nested encryptions, which increase the size of the output XML document significantly.

Hence (c) can be viewed as a space-reducing optimization.

Figure 4.6 shows more rewriting rules that we use to normalize the protection before

encrypting it as shown in Section 4.4. A protection is normalized if every formula σi is atomic

(i.e. consisting of a single key, true, or false). These rules therefore transform a protection

with complex key formulas (disjunctions and conjunctions) into a protection having only

atomic key formulas. In the process new meta data nodes and new randomly-generated

inner keys are introduced. We describe the rewritings below:

4This definition can be expressed in datalog, for example.

74

(a) Disjunction: To eliminate σ1 ∨ σ2 a new random key, s, is generated and stored twice:

once guarded with σ1 and once with σ2. The actual data is now guarded with s.

(b) Conjunction: To eliminate σ1 ∧ σ2 two new random keys, sa and sb, are generated and

guarded with σ1 and σ2 respectively. The actual data is guarded with s = sa ⊕ sb. A

user needs to acquire both sa and sb in order to unlock s: knowing only sa, for example,

reveals nothing about s. This is a standard secret sharing protocol in cryptography [12].

Recall that in the definition of the access function accP (K) the set of keys K is required to

consist only of exchange keys and data values. Had we allowed K to contain inner keys too,

then these two rewrite rules would not be sound: having the inner key s a user can access

the protected trees on the right of Fig. 4.6, but learns nothing on the left. Our definition of

the semantics, accP (K), is such that it allows the system to introduce its own inner keys,

as in Fig. 4.6.

Example 4.3.4 Figure 4.2 contains the normalized tree protection P ′ resulting from P

after an application of rule (a) followed by an application of rule (b). A client in possession

of key k4 can access the nurse element by discovering key s in the metadata node. Alter-

natively, a client with both keys k1 and k3 can discover sa and sb and use them to compute

s, thereby also gaining access to the nurse element.

4.4 Generating Encrypted XML

Given an XML document t and protection P , we now describe how to generate an encrypted

XML document t′ that implements P such that a user (or adversary) knowing a set of keys K

will have efficient access to those nodes of t in accP (K), and only those nodes. The first step

is to apply logical rewritings to optimize the tree protection. The next step is to normalize P

and obtain an equivalent protection P ′ for a metadata tree tm. Once normalized, every node

in the tree protection will be guarded by an atomic formula (no disjunction or conjunction),

and encryption can be performed bottom-up.

75

4.4.1 Encrypted data format

The recent W3C Recommendation on XML Encryption Syntax and Processing [51] provides

a standardized schema for representing encrypted data in XML form, along with conventions

for representing cryptographic keys and specifying encryption algorithms.

The basic object is an XML element EncryptedData containing four relevant sub-

elements: EncryptionMethod describes the algorithm and parameters used for encryp-

tion/decryption; KeyInfo describes the key used for encryption/decryption (but does not

contain its value); CipherData contains the output of the encryption function, represented

as base64-encoded text; EncryptionProperties contains optional user-defined descriptive

data. The cipher text included in the CipherData element is the encryption of an XML ele-

ment or element content. When the encrypted contents is itself an EncryptedData element,

it is called nested encryption.

4.4.2 KeyInfo

In our framework, the content of the KeyInfo element contains its length in bits, and other

fields that depend on the type of the key, as follows. For an exchange key it simply contains

a Name subelement equal to its identifier. For an inner key it contains either one or two Name

subelements: in the first case the Name is the local name of the inner key; in the second case

the two inner keys with these names need to be XOR-ed. Recall from earlier in this section

that for a data value key, its derived bitstring v is used for encryption and decryption. In this

case, KeyInfo contains the following subelements: path denotes the path expression that

leads to this data value; concealment contains v⊕r for a random bitstring r; hash contains

h(r), the result of the SHA-224 hash function [58] applied to r. It is computationally hard

to reproduce v given the values of concealment and hash. However, a user with a proposed

data value can easily check whether it matches the data value key. The user derives the

bitstring w from their proposed value, computes h(w⊕(v⊕r)), and tests whether the result

equals hash. This will be the case when v = w. This technique is more secure than an

earlier encryption method described in [63, 64] for a similar purpose. In designing it, we

were inspired by the techniques of [125] for search on encrypted data.

76

4.4.3 Nested encryption

Nested encryption of the protection P ′ is done by a straightforward recursive traversal of

the metadata tree of P ′. The encryption proceeds as follows. A node protected by the

key true is simply copied to the output (after processing its children recursively). A node

protected with the key false is removed from the output, together with all its children and

descendants. A node protected with a key k is translated into an EncryptedData element

with the following children: EncryptionMethod (in our case this is always AES with 128-

bit keys), KeyInfo, which has the structure described above, and CipherData, which is the

encryption of the node with the current key. This encryption process is consistent with the

desired access semantics described previously: possession of a key guarding a node allows

decryption to reveal the element name, and a collection of encrypted elements representing

the children of the node.

Example 4.4.1 Figure 4.7 shows an XML instance constructed from the normalized pro-

tection P ′ of Figure 4.2. The CipherValue element contains bytes (encoded as base64 text)

which may be decrypted to reveal the root element of the original tree. Once decrypted, the

element name (<hosp>), and its attributes, are revealed. Its content however is still partially

encrypted: the first child of the <hosp> element is another EncryptedData element, while

the second child, <phys>, is unencrypted since it is not protected in P .

Compression Nested encryption can result in a significant size increase. We deal with this

at a logical level by applying the rewriting rules in Sec. 4.3.2, and at the physical encryption

level we can apply compression before encryption. We discuss this further in the context of

the performance analysis in Section 4.8.

4.5 Security Discussion

The analysis of the security of the encrypted instances produced in this framework intro-

duces many of the problems of disclosure analysis reviewed in Section 2.5. The confiden-

tiality of published data depends on the security of the cryptographic functions employed

and the soundness of the protocol, but in addition there may be subtle disclosures such as

77

<?xml version="1.0"?>
<EncryptedData>
 <EncryptionMethod Alg="AES" KeySize="128"/>
 <KeyInfo>
 <name>k1</name>
 </KeyInfo>
 <CipherData>
 <CipherValue>
 qZk+NkcGgWq6PiVxeFDCbJz
 ...
 DCbJzQ2JkcGgWq6PiVxeFFD
 </CipherValue>
 </CipherData>
</EncryptedData>

<hosp att="val">
 <MetaNode:OR>
 <MetaNode:AND>
 <EncryptedData>
 <!-- encrypts sa with key k1 -->
 </EncryptedData>
 <EncryptedData>
 <!-- encrypts sb with key k3 -->
 </EncryptedData>
 <EncryptedData>
 <!-- encrypts s with key sa XOR sb -->
 </EncryptedData>
 </MetaNode:AND>
 <EncryptedData>
 <EncryptionMethod Alg="AES" KeySize="128"/>
 <KeyInfo>
 <name> s </name>
 </KeyInfo>
 <CipherData>
 <CipherValue>
 VxeFDCbJzQ2JqZk+NkcGgWq6
 ...
 q6PFDCbJkcFDCbJiVxe2zQGg
 </CipherValue>
 </CipherData>
 </EncryptedData>
 </MetaNode:OR>
 <phys>

 </phys>
</hosp>

 Decryption
under key k1

Figure 4.7: XML produced by applying nested encryption to the protection of Figure 4.2.

78

the size of the encrypted instances, the number of children of a node, and even clues about

access policies.

One way to state a desired security property is as follows:

Property 4.5.1 (Security) Suppose t is an XML document, P is a protection over t, and
t′ is the implementation of P over t described above. Then for any set of keys K:

1. if x ∈ accP (K), there is an efficient algorithm for reproducing x from t′ and K.

2. if x /∈ accP (K) then it is computationally infeasible to derive x from t′ and K.

The first statement is easy to verify: the access function, accP (K) can be easily computed

following its definition, for example by running a datalog program. The second statement

is much more complex. It relies on the fact that each cryptographic construction we use is

in itself secure. For example, in secret sharing a key s is computed as sa ⊕ sb, and nothing

at all can be deduced about s from either sa or sb in isolation. This protocol offers the

strongest security guarantee (much stronger than any practical encryption algorithm) [12].

Our protocol for encrypting with data value keys is also secure. However, the security of

the combined protocols requires a separate formal proof. This analysis is beyond the scope

of this dissertation, but has been provided by others, as described below.

4.5.1 Provable protocol security

Abadi and Warinschi have recently performed a security analysis [2] of the core of the pub-

lishing framework described above, using techniques for the formal analysis of cryptographic

protocols that the authors had developed in prior works [1, 99]. Their analysis applies to

tree protections without data value keys, and with a more general use of secret sharing

schemes (thresholds in place of simple disjunction and conjunction). Their work relates the

abstract semantics of access (formally defined by the tree protection) to the information

that may be derived by an adversary from the structured, partially-encrypted strings of

bits that make up the published data. In particular, they prove that data that is protected

according to the access function of a tree protection is indeed secret according to a strong

computational notion of security.

79

4.5.2 Other disclosures

Not captured by Property 4.5.1 is the fact that an adversary may learn facts about the data

without decrypting nodes. For example they will see the size of the encrypted ciphertext

hiding a subtree. In some cases, they can count the number of encrypted children of a

node, even if they cannot decrypt them. Furthermore, the metadata nodes present in the

protected document may reveal aspects of the security policy, as they depend on the presence

of disjunction and conjunction in the tree protections which in turn depend on the structure

of policies. An accurate analysis of these subtle disclosures remains an open problem.

4.5.3 Data value key entropy

As described in Section 4.3, the bytes making up data value keys are derived in a deter-

ministic way from values occurring in the database. The space of possible keys is therefore

bounded by the domain of the values. For example, the first policy query in Section 4.2.1

used a data value key based on a patient’s DNA signature. In many such cases the space

of possible keys may be small, raising the risk of brute-force guessing attacks by an ad-

versary. This is particularly dangerous since the database is published, and the adversary

can attempt to guess the key repeatedly without detection. In the context of forensic DNA

databases, the authors of [19] found that stored DNA entries often have less than 80-bits of

entropy, making a brute force attack feasible. Other data values might have substantially

smaller entropies. In general therefore, the use of data value keys alone to protect data is

suspect. Instead, a data value key should be combined with conventional cryptographic keys

(as it is in the example in Section 4.2.1). The conventional key can be given to a class of

users who qualify for access to the data, but should be discouraged from doing uncontrolled

scans of the the data. This creates a soft access restriction which we believe can be very

effective in limiting data disclosure amongst authorized groups.

4.6 Policy queries: syntax and semantics

This section describes the syntax and semantics of the policy query language, which was

illustrated by example in Section 4.2. The semantics has a number of subtleties: a set of

80

policy queries must evaluate to a single unified protection on the XML tree (as described in

Sec. 4.3) and must therefore resolve possibly overlapping and contradictory policy queries.

4.6.1 Language Syntax

The general form of a policy query is:

[SUFFICIENT | NECESSARY]
FOR . . . LET . . .WHERE . . .
KEY keyExpr1, keyExpr2, . . .
TARGET targetExpr1, targetExpr2, . . .

A policy query can be either a sufficient or a necessary query. The query contains an

XQuery [18] FLWR expression (but without the RETURN clause) followed by a KEY and

a TARGET clause. KEY expressions have the following form:

KEY [path-expr] |
[getKey(key-name) [keyChain(keychn-name)]]

The first expression, path-expr, denotes a data value key, and must evaluate to a data value.

The second expression, getKey(key-name), is an exchange key expression, optionally followed

by a key chain name. If such a key exists in the keychain then it is retrieved; otherwise a

new random 128-bit key is generated, and is associated with that name and keychain. The

expressions targetExpr1, targetExpr2, . . . are XPath expressions denoting nodes in the XML

document.

4.6.2 Language Semantics

Intuitively, given an input XML document t, a policy query specifies a protection over t

as follows. If the query is a sufficient query, then it says that a user holding the keys

k1, k2, . . . can unlock the target node. If the query is necessary, then it says that any

user that can access the target must have the keys k1, k2, . . . Typically, a data provider

writes multiple protection queries, and evaluates all of them on the XML document t that it

wants to publish, which results in a protection P for t that enforces all the queries. Such a

protection may not exist. We say that the policy queries are consistent for t if a protection

for t exists; we say that they are consistent if they are consistent for any t. Checking

81

consistency and constructing the protection P is non-obvious. We show how to do this

next.

Policy queries → primitive rules The first step is to evaluate the policy queries on the

XML document t and obtain a set of primitive rules. Given an XML document t, a primitive

sufficient rule is a rule of the form rs = S → e, where S is a set of keys and e ∈ nodes(t).

Similarly, a primitive necessary rule is a rule of the form rn = e → S. Thus, a primitive rule

applies to a particular tree t, and to a particular element of that tree. Given a tree t and a

policy query, we evaluate the query to obtain a set of primitive rules on t, as follows. We first

compute all variable bindings in the FOR. . .WHERE. . . LET. . . clauses: this computation

is a standard step in any XQuery processor. For each such binding the key expressions in

the KEY clause evaluate to some keys k1, k2, . . ., and the target expressions in the TARGET

clause evaluate to some nodes v1, v2, . . . For each descendant-or-self node e of some target

node (i.e vi � e, for some i = 1, 2, . . .) add the rule {k1, k2, . . .} → e, if the query was a

sufficient query, or the rule e → {k1, k2, . . .}, if the query was a necessary query. Repeat

this for each binding of the query, then for each policy query. The result is a set, R, of

primitive rules for t.

Primitive rules → Protection We show here how to derive a protection PR that “enforces”

all primitive rules in a set of primitive rules R. The protection is over t itself, i.e. no

metadata nodes are added (these are added later, during normalization). The intuition for

the construction below is the following. The meaning of a sufficient rule S → e is that any

user having the keys S can access the node e; a necessary rule e → S specifies that the

user is not allowed access to e unless he has all keys in S. We seek a protection PR that

satisfies all rules in R, but it is easy to see that such a protection is not uniquely defined.

For example if R contains only sufficient rules, then the True protection, where each guard

formula is simply true, satisfies R: clearly this is not what we want from a set of primitive

sufficient rules. Instead we define the meaning of R to be the most restrictive protection

satisfying all rules. We make this formal next, using lattice-theoretic techniques [73].

Recall the definition of accP (K) in Sec. 4.3.

Definition 4.6.1 (Primitive rule satisfaction) Let P be a protection over metadata tree

82

t.

• For a sufficient primitive rule rs = S → e, P satisfies rs (denoted P � rs) if e ∈
accP (S).

• For a necessary primitive rule rn = e → S, P satisfies rn (denoted P � rn) if for all
K, if e ∈ accP (K) then S ⊆ K.

Define now PS(R) ={P | P = (t, σ),∀r ∈ R,P � r}. This is the set of all protections over t

that satisfy all rules in R. Notice that we only consider protections over t, and do not allow

additional metadata nodes. We define next the most restrictive protection in the set PS(R)

to be the greatest lower bound, for the following order relation. Recall that ϕi =
∧

j�i σj is

the necessity formula at node i (Sec. 4.3).

Definition 4.6.2 Given two protections P and P ′ over the same metadata tree t, P is
more restrictive than P ′, denoted P � P ′, if for all nodes i ∈ nodes(t), ϕi → ϕ′i (the logical
implication holds). The relation � is a preorder5. For a set of protections S, GLB(S)
denotes the greatest lower bound under �.

We can now define formally the meaning PR of a set of primitive rules R to be GLB(PS(R)),

when PS(R) 6= ∅, and to be undefined otherwise. In other words, the meaning of R is the

most restrictive protection that satisfies all primitive rules in R. We show how to construct

GLB(PS(R)), when PS(R) 6= ∅. In particular this construction proves that the greatest

lower bound exists.

We partition the set of primitive rules into sufficient and necessary primitive rules:

R = Rs ∪Rn. The following theorem summarizes the key properties that we need in order

to compute the protection PR. For a set of key expressions S = {σ1, . . . , σn}, the notation∧
S denotes σ1 ∧ . . . ∧ σn, and

∨
S denotes σ1 ∨ . . . ∨ σn.

Theorem 4.6.3 Let t be a metadata tree, Rs be a set of primitive sufficient rules and Rn

a set of primitive necessary rules on t. Then:

• If GLB(PS(Rs ∪Rn)) exists then it is equal to GLB(PS(Rs)).

• GLB(PS(Rs)) always exists, and is the protection defined as follows. For every node
i ∈ nodes(t), the key expression σi is given by: σi =

∨
{
∧

S | ∃(S → e) ∈ Rs, i � e}
That is, the key formula for the node i is the disjunction of all key expressions S that
are sufficient to unlock some descendant of i.

5Reflexive and transitive.

83

• GLB(PS(Rs ∪Rn)) exists iff the following Consistency Criterion is satisfied: For
every pair of rules (S → e) ∈ Rs and (e′ → S′) ∈ Rn, if e′ � e (i.e. e′ is a ancestor-
or-self of e), then S′ ⊆ S.

Proof: Recall the preorder relationship P � P ′ between two protections of the same tree

(Definition 4.6.2). For any protection P let [P) denote {P ′ | P → P ′} and (P] denote

{P ′ | P ′ → P}.

Recall that PS(R) denotes the set of all protections P satisfying all rules in R. We

examine next this set, as well as its greatest lower bound GLB(PS(R)), starting with a

single sufficient rule, r : S → e. In this case Pr = GLB(PS(r)) is the following. It has
∧

S

on the path from the root to e and False everywhere else. It is obvious that Pr satisfies r,

since with the set of keys S we can clearly access the node e in Pr. One can also see that,

for any other protection P that satisfies r, we have Pr � P . Indeed, let i be a node s.t.

i � e. In Pr it is labeled with
∧

S; in P it is labeled with some formula σi, and recall that

the necessity formula is ϕi =
∧

j�i σj . Since e ∈ accP (S), we also have i ∈ accP (S), which

means that S |= ϕi (since there are no metadata nodes in t, hence no keys to be learned

besides S). This implies that
∧

S → ϕi is true. For other nodes i, which are not ancestors

of e or e itself, the label in Pr is false, and false → ϕi also holds. Hence Pr � P .

More interestingly, we have in this case, PS(r) = [Pr). Indeed, PS(r) ⊆ [Pr) follows from

the fact that Pr = GLB(PS(r)). For the other direction, we observe that any protection

P s.t. Pr � P satisfies the rule S → e. Indeed, from Pr � P we have that
∧

S → ϕi for

every node i � e, where ϕi is the necessity formula in P . Hence S unlocks the entire path

from the root to e, and e ∈ accP (S).

Set of sufficient rules We now examine the structure of PS(R) and PR = GLB(PS(R))

for a set of sufficient rules, R = {r1, . . . rn}. We have:

PS(R) = PS(r1) ∩ . . . ∩ PS(rn)

= [Pr1) ∩ . . . ∩ [Prn)

PR = GLB(PS(R))

= GLB([Pr1) ∩ . . . ∩ [Prn))

= LUB(Pr1 , . . . , Prn)

84

The first line follows directly from the definition of PS(R) (the set of protections that

satisfy all rules in R). The last line is because GLB([x) ∩ [y)) = LUB(x, y) in any lattice.

As before, PS(R) = [PR).

One necessary rule Consider now a single necessary rule in isolation, r : e → S.

The false protection, where each guard formula is simply false, denoted Pbottom, is in

PS(r), hence clearly the semantics here is Pr = Pbottom. Necessary rules in isolation are

not interesting, since their most restrictive protection is to lock everything. For technical

reasons denote with P ′
r the protection having S on e and True everywhere else.

Given a set of protections P, we denote LUB(P) the least upper bound, for the preorder

�. For a single necessaryy rule r, it should be clear that LUB(PS(r)) = (P ′
r]: this can be

shown by reasoning similarly to the way we discussed a single sufficient rule. Moreover, for

a set of necessary rules R = {r1, . . . rm} we have:

PS(R) = PS(r1) ∩ . . . ∩ PS(rm) = (P ′
r1

] ∩ . . . ∩ (P ′
rm

]

and, defining P ′
R = P ′

r1
∧ . . . ∧ P ′

rm
, we have PS(R) = (P ′

R].

Mixed sufficient and necessary rules Now consider a set of sufficent and necessary

rules, R = Rs ∪ Rn. We describe its semantics, PR = GLB(PS(Pr)). We know that

PS(Rs) = [PRs) and PS(Rn) = (P ′
Rn

]. Then:

PS(R) = [PRs) ∩ (P ′
Rn

]

There are two cases:

1) when [PRs) ∩ (P ′
Rn

] 6= ∅. Equivalently: PRs ⊆ P ′
Rn

. In this case GLB(PS(R)) =

GLB([PRs)) = PRs .

2) when [PRs) ∩ (P ′
Rn

] = ∅. In this case the set of rules is inconsistent, and its semantics is

undefined.

Finally, we show how to check for Case 1 or Case 2. We need to check the following:

Pr1 ∨ . . . ∨ Prn ⊆ P ′
r′
1
∧ . . . ∧ P ′

r′
m

(∗)

85

where r1, . . . rn are the sufficient rules and r′1, . . . r′m are the necessary rules. (*) is equiva-

lent to:

Pri ⊆ P ′
r′
j

for every i, j (∗∗)

To check (**) let ri : S → e and r′j : e′ → S′. There are two cases. First, if e′ is an

ancestor-or-self of e. Then (**) holds iff S′ ⊆ S. Second, if e′ is not an ancestor-or-self of

e, then (**) always holds. This completes the proof. 2

Evaluation Procedure This results in the following procedure for computing the protection

PR from a set of primitive rules R. First check the consistency criteria: if it fails, then PR

is undefined and the set of rules is inconsistent. Otherwise, we retain only the sufficient

rules Rs, and construct the protection as follows. Given a node i, identify all rules S1 → e1,

S2 → e2, . . . for which the target nodes e1, e2, . . . are either i or its descendants: then protect

i with the key expression (∧S1) ∨ (∧S2) ∨ . . .

Checking Consistency Statically

The procedure outlined above checks at runtime whether a set of queries is consistent for t.

It is also possible to check at compile time whether a set of policy queries is consistent (i.e.

for any input tree t). We show next how to reduce the problem to query containment for

the XQuery language. Consider all pairs of sufficient and necessary policy queries Qs and

Qn. We write them as:

Qs(S1, ..., Sm, E):

FOR...LET...WHERE...
KEY S1, ..., Sm
TARGET E

Qn(S′1, ..., S
′
n, E′)

FOR...LET...WHERE...
KEY S1’, ..., Sn’
TARGET E’

A set of policy queries is consistent for all XML documents if, for any pairs of queries Qs,

Qn, and for every i = 1, . . . , (number of keys in Qn), the query containment Q ⊆ Q1∪. . . Qm

holds where Q,Qi are defined in Figure 4.8.

86

Q(E,S1, ..., Sm, Si′) : − Qs(E,S1, ..., Sm), Qn(E′, S′1, ..., S
′
i, ..., S

′
n), E � E′ (4.1)

Q1(E,S1, ..., Sm, S′i) : − Q(E,S1, ..., Sm, S′i), S1 = S′i (4.2)
... (4.3)

Qm(E,S1, ..., Sm, S′i) : − Q(E,S1, ..., Sm, S′i), Sm = S′i (4.4)

Figure 4.8: Queries for checking consistency statically.

Thus checking consistency is no harder than deciding containment of queries in the

language considered. For the complete XQuery language the containment problem is un-

decidable (since it can express all of First Order Logic), and hence, so is the consistency

problem. However, if one restricts the policy queries to a fragment of XQuery for which the

containment problem is decidable, then the consistency problem is decidable. For example,

[44] describes such a fragment for which the containment problem is ΠP
2 -complete. Con-

tainment for XQuery was also studied in [50] with complexity results provided for a variety

of sublanguages.

4.7 Data Processing

4.7.1 Querying Protected Data

A user holding a copy of the protected data instance P , and a set of keys K may access

P naively by implementing the access function accP (K) from Sec. 4.3. This, however, is

hopelessly inefficient. We describe here a simple extension of XQuery that allows the user

to access data selectively, and, moreover, guide the query processor on which keys to use

where. The extension has a single construct: access(tag, k1, k2, . . .) where tag is an XML

tag and k1, k2, . . . are key expressions of the following form:

getKey(key-name) | path-expr = value

The first denotes an exchange key, while the second a data value key.

Example 4.7.1 Consider Policy Query 4.2.1 from Sec. 4.2.1. Assume a physician down-

loaded the data, named it protectedData.xml, and needs to access the analysis element of a

patient named “John Doe”. Recall that this data is protected by both the “registration” key

87

and by the DNAsignature data value. The physician has the “registration” key, and can re-

trieve the DNAsignature from its local database, called patients.xml. She does this as follows:

FROM $x in document(“patients.xml”)/
patients/patient[name=“John Doe”]

$y in document(“protectedData.xml”)/
subjects/subject/
access(analysis, getKey(“registration”),
DNAsignature/txt()=$x/DNAsignature/txt())

RETURN $y

The query returns the analysis element.

This construct can be implemented in a query execution environment to decrypt only

EncryptedData elements for which a qualifying set of keys is held, and then select those

decrypted elements that match tag. Other optimizations that in addition avoid decrypting

elements that do not match tag are also possible, but beyond the scope of the discussion.

4.8 Performance Analysis

Next we discuss the performance of a preliminary Java implementation. We begin with an

input document t and protection P , generate the encrypted document t′ enforcing P , and

then process t′ naively by reproducing t by decryption (assuming possession of all keys).

We focus on the following metrics: time to generate t′, the size of t′ compared with t, and

the time to reproduce t from t′.

Algorithm Choice and Experimental Setup We use a public Java implementation [23] of

the Advanced Encryption Standard (AES) [34] with 128-bit keys. We tested other algo-

rithms as well and while the ideal choice of algorithm is a complex issue6 it is not a critical

factor for the results below. We use three real datasets (Sigmod Record, an excerpt of

SwissProt, and Mondial) for our experiments7. We consider basic protections which place

single unique keys at all nodes on different levels of the document trees, and are named

6The choice of algorithm is a trade-off between raw encryption speed, key setup time, sensitivity of each
of these to key length, in addition, of course, to the security of the algorithm.

7Available from the University of Washington XML Data Repository:
www.cs.washington.edu/xmldatasets

88

Protected Instance Size
with and without compression

0

1

2

3

4

5

6

7

8

9

no gzip gzip no gzip gzip no gzip gzip

SigmodRecord SwissProt Mondial

M
e
g

a
b

y
te

s

Original Data
protect1
protect2
protect3
protect12
protect13
protect23
protect123

Figure 4.9: Size of protected documents, with and without compression.

accordingly. For example, P1 guards the root with a single key, and P23, guards nodes at

level 2 and 3 with distinct keys (with True everywhere else).

Protected document size The ciphertext output of a symmetric encryption algorithm

is generally the same size as the cleartext input (modulo padding to block boundaries).

However, in the case of encrypting XML, the cleartext uses a text encoding with 8 bits

per character (UTF-8), while the ciphertext is binary data and is represented using 6 bits

per character (base64 text), to conform with the Encryption standard [51]. This results in

an immediate blow-up of 33% in the case of the simplest encrypted XML. The problem is

compounded during nested-encryption, since the inflated representation of the ciphertext

becomes the cleartext for another round of encryption. We address this difficulty by applying

rewriting rules to avoid nested-encryption, and also by using compression.

Figure 4.9 presents the size of the encrypted instance t′ for the three datasets and various

protections, with and without compression. The protected instance can be considerably

89

Time to Generate and Decrypt Protected XML
various protections, with and without compression

SigmodRecord.xml

-8

-6

-4

-2

0

2

4

6

8

10

12

-gz gz -gz gz -gz gz -gz gz -gz gz -gz gz -gz gz -gz gz

protectNone
(0)

protect1 (1) protect2
(67)

protect3
(201)

protect12
(68)

protect13
(202)

protect23
(268)

protect123
(269)

S
e
co

n
d

s

SAX decryption (below x-axis)
Encryption
Policy & Key Gen
DOM parsing

Figure 4.10: Processing time for generation and decryption of protected documents.

larger than the original, especially in the case of P123 which involves many keys and nested-

encryption: 5 times the size of original for Mondial, 7 times for SwissProt for this protection.

Applying rewriting rules (Sec. 4.3), when possible, can help however. Protection P13 can

be seen as an approximation of the result of applying the rewriting rule in Figure 4.5(d) to

push the level two formulas down in protection P123, and this reduces the protected instance

size by 25%. Pulling formulas up in the tree using rewriting rule in Figure 4.5(b) can have

an even larger impact: P12 is roughly 70% smaller than P123 in each case. Finally, for each

dataset and each protection, file sizes are presented with and without compression. We used

gzip compression, which can easily be applied to the cleartext before encryption, and then

after decryption by the client. The W3C Encryption Schema includes metadata to describe

such pre- and post-processing of data. With gzip, under P123, t′ is in fact smaller than the

original data. The positive impact of the rewritings above are only slightly diminished when

compression is applied.

It should be emphasized that the encrypted instance generated is capable of supporting

90

many different access policies. In the absence of our techniques, a separate instance must

be published to each user according to their access rights. Therefore a small constant factor

increase in instance size is extremely favorable in many cases.

Generation and Decryption Time The graph presented in Figure 4.10 measures the gen-

eration time (above the x-axis) and decryption time (below the x-axis)8. The number in

parentheses next to the protection name is a count of the number of keys used in the protec-

tion. The extra time to compress is more than compensated by the time saved by processing

less data, so that compression actually reduces generation and decryption time overall. The

two rewritings mentioned above have a modest positive impact on generation time: 12%

and 18% respectively.

The absolute generation and decryption times of our preliminary implementation do

not reflect the possibilities for fast processing. The symmetric algorithms used here have

been implemented [7] to run orders of magnitude faster than numbers reported here. In

fact, absolute throughput of optimized encryption implementations appears to far exceed

the throughput of many XML parsers, so we expect that the addition of our techniques to

a data processing architecture would not be the bottleneck.

4.9 Related Work

This section contains a thorough review of related research including similar controlled pub-

lishing frameworks, access control for XML, and the use of trusted computing architectures

for XML data.

4.9.1 Data Encryption

It has been the classical goal of the cryptographic community to prevent the unauthorized

disclosure of data communicated over networks or stored in computer systems [39, 94]. As

mentioned in Section 2.4, Gifford proposes a “passive protection mechanism” [72], using

cryptography to provide secrecy and authentication of data blocks or files, and granting

8for the Sigmod Record dataset; other results were similar.

91

access by sharing an appropriate key set. The key mechanisms introduced include AND, OR

and general threshold schemes. The present work extends Gifford’s techniques by adapting

them to the hierarchical XML data model, supporting complex access control policies that

may be expressed in this data model, and providing a performance analysis. Also, the

emphasis of the present work is secrecy only, not authenticity.

The XML Encryption Recommendation [51] describes a format for representing en-

crypted data as XML. We have adopted the format for representing our encrypted data

instances, and described its basic features in Section 4.4. It is not a critical aspect of the

techniques described here, and could easily be replaced by an alternative format. A format

for representing encrypted data does not, by itself, meet any of the goals of protected data

publishing.

4.9.2 Protected data publishing

The work of Bertino and Ferrari [13, 15] precedes this work and shares the goal of controlling

access to published XML data. The authors present a system for generating encrypted

XML documents consistent with stated access control policies, including algorithms for

evaluating access control policies on an XML document, key generation, encryption of an

XML document, and the proper association of keys with user roles. In [14] they consider

key management in the context of repeated updates to data.

The work presented here differs in a number of respects. First, their access control poli-

cies are limited to simple path expressions. Our access control policies are more expressive,

based on XPath [30] and XQuery [18], and we provide a static analysis of our access con-

trol policies (in Section 4.6.2). While the exact physical details of their encryption are not

clearly stated, the encryption is node-based. They do not address the security limitations of

node-based encryption (see Section 4.5) and do not offer alternatives like nested encryption.

They do not support formulas over keys, or secret-sharing techniques, which can reduce the

number of keys transmitted to users, and they do not include data value keys for flexible

access control. Further there is no performance analysis of any of the techniques proposed,

and no consideration of the partial disclosures that result from the publication of encrypted

data.

92

Crampton [32] considers simple access control policies expressed using XPath, and how

they can be enforced using encryption (and also view selection). The access model is role

based, and existing hierarchical key generation schemes are proposed for assigning keys to

regions of the XML document.

Oriol and Hicks [109] propose a formalism for tagging unstructured data collections with

categories for both organization and protection. The tags they apply to sets of data items

include basic values, as well as surrogates for symmetric and asymmetric encryption keys.

Tags can be combined with disjunction and conjunction. The tags are used to select data

items and to prevent access to data items.

The use of data value keys to enforce binding patterns over XML data has been investi-

gated by the author in [101]. That work extends techniques for publishing access controlled

membership lists [63, 64], and protecting forensic databases [19]. The use of data value keys

was formalized and enhanced in [103], and is included in this dissertation.

4.9.3 XML Access Control: Languages

We introduced XML access control languages in Section 2.2.2. Two of the first languages,

proposed by Kudo and Hada [86] and by Damiani, et. al. [37], were the basis for a subse-

quent standardization effort that resulted in the OASIS Extensible Access Control Markup

Language (XACML) [108]. XACML policies are themselves described as XML documents,

and policy evaluation has been implemented [87]. In [86], the authors use XPath to describe

the target elements, and add provisional authorization, where users are granted access on

the condition that some further actions are taken (either by the user or the system). An

access control language, with formal semantics described by reference to XPath, is proposed

in [68] and compared nicely with other access control languages [106, 69, 37, 15, 86].

Our policy queries could be expressed as XACML policies. Unlike our formalism,

XACML is not based on a query language like XQuery. Rules requiring joins, like our

Policy Query 2.3 (Sec. 4.2.1) are expressed in an ad-hoc syntax.

93

4.9.4 XML Access Control: evaluation, optimization, and analysis

Each request for access to a protected XML document requires evaluation of the access

control policy by the security processor which computes a boolean response of grant or

deny. Evaluation may be performed with a query submitted by the user, or alternatively,

the accessible view of the XML document may be materialized in its entirety, prior to query

evaluation. The accessible view of an XML document may not conform to its original DTD

or XML Schema, as elements may be omitted.

In [69], access policies are translated into XSLT [138] programs that compute the acces-

sible view of the document for a given user. In [37] an algorithm is described which first

labels the XML tree according to accessibility imposed by each rule, and then performs a

second pass over the tree to resolve conflicts and prune. To improve the efficiency of access

decisions in query processing, the authors of [142, 143] design an accessibility map which

records, for each data element, the set of users permitted to access it. Locality of access

in XML documents is exploited to reduce the size of the accessibility map, and to permit

space and time efficient processing. Fan et al. propose security views, [62] where an access

policy is defined by annotating the document DTD. Users query the accessible portions of

the document by reference to a derived security view definition. The authors also propose

rewriting techniques which transform queries over the accessible view into safe admissible

queries that can be evaluated directly over the original XML document.

It is the goal of [106] to improve query evaluation under access policies by statically

analyzing the query and access policy. Static analysis may show that a query will always

refer only to accessible content, for all input documents. For such safe queries, security policy

evaluation may be omitted. The analysis described in sound, but not complete: when it

is not possible to determine query safety statically, policy evaluation must be performed

at runtime. The authors of [29] devise optimization techniques for query evaluation under

access policies. They assume an XML document labeled with access levels, and optimize

evaluation by eliminating expensive tree traversals using global access information contained

in the document DTD.

Yang and Li [139] address the problem of unintended disclosures that may occur even

94

when access control is correctly specified and enforced. The disclosures result from the fact

that semantic constraints hold over the data instances. Removing data items therefore does

not necessarily afford secrecy. The authors propose algorithms for computing the maximal

document that can be published without allowing illegal inferences.

4.9.5 Protection using a trusted computing base

Recall that conventional access control mechanisms rely on a trusted security processor

to evaluate and grant access. When data is published on the web, trusted processing

is generally not available at client sites. An exception to this may be secure operating

environments that can be provided by tamper resistant hardware. (See Section 4.1 for

a description of secure operating environments and their comparison to the architecture

considered in this chapter.)

The use of a client-side secure operating environment to protect data was investigated

in [22, 21]. The target architecture is a smart card, which would perform data decryption,

access control evaluation, and query processing outside the server, but in a trusted manner.

To cope with severe resource limitations, the authors describe query splitting techniques

which permit some computation to be performed by the server, and some by the untrusted

client, reducing the processing and storage burden on the smart card. The goal of [20] is to

evaluate access control policies in a resource-constrained secure environment running on a

client. A security processor is described that can process streaming encrypted XML data

by using an index structure containing accessibility and structural information about the

data.

95

Chapter 5

INTEGRITY IN DATA EXCHANGE

This chapter focuses on data integrity, leaving behind the confidentiality issues addressed

in the previous two chapters. First, we present a vision for managing authenticity in dis-

tributed data exchange by annotating data with cryptographic evidence of its authenticity.

Then, we address a key implementation challenge we believe is critical to realizing this

vision: efficiently maintaining and verifying proofs of integrity in relational databases.

5.1 Introduction

5.1.1 Vision for integrity in data exchange

Data integrity is an assurance that unauthorized parties are prevented from modifying

data. Participants in distributed data exchange include primary data sources, intermediate

sources, and end users (as illustrated in Figure 1.1). Integrity benefits both primary sources

(who need to make sure data attributed to them is not modified) and end users (who need

guarantees that the data they use has not been tampered with). After publishing data,

a source can never directly prevent the modification of data by recipients, since they are

autonomous and not regulated by a trusted system. However it is possible to annotate data

with virtually unforgeable evidence of its authenticity that can be verified by any recipient.

To do this, data sources need techniques which allow them to annotate data with claims

of authenticity. These claims should be difficult to forge or transfer, and must be carried

along with the data as it is exchanged and transformed. In addition, users should be able

to derive useful integrity guarantees from query results containing these claims.

The ultimate goal, therefore, is to develop a framework to (1) allow authors to annotate

data with evidence of authorship, (2) allow recipients to query, restructure, and integrate

this data while propagating the evidence, and (3) enable recipients to derive useful conclu-

sions about the authenticity of the data they receive. To accomplish these goals we propose

two related integrity annotations which are applied to data to represent useful claims of

96

IBM TechnologyBUY
MSFT TechnologyHOLD
WFMI ConsumerHOLD
JPM FinancialSELL

A

B

C D E

Stock (ticker, rating, industry)
Stock

Buy Hold Sell

IBM MSFT WFMI JPM

Tech ConsumerTech Financial

Stock.xml
F

G

Figure 5.1: A relational table of stock recommendations (left), the same data represented
as XML (right), and an illustration of fragments of the data to be signed.

origin authenticity.

5.1.2 Integrity Annotations

An annotation is a label attached to a data fragment. For relational data, the fragment

may be an individual attribute, a tuple, or a set of tuples. For XML data, the fragment

may be a complex subtree or a forest of subtrees. We propose below two related forms of

annotation – signature and citation – which are used by data authors and consumers to

represent claims of origin authenticity.

Signatures

We described digital signatures in Section 2.4. An author signs data to ensure that others

cannot modify it. The granularity of signatures can vary: an author can sign an entire

table, a tuple, a single column value. Often signatures are used to secure two or more data

values in an unmodifiable way, as shown in the next example.

Example 5.1.1 Figure 5.1 shows stock recommendations represented as a relational ta-

ble Stock(ticker, rating, industry) and as an XML document. The dotted regions illustrate

portions of the data that may be signed, which we call the target fragment of a signature.

Signature sig(A) is applied to target A, i.e. the entire table, and sig(F) is similarly ap-

plied to the entire document Stock.xml. If the user wanted to evaluate the performance of

the portfolio represented by Stock, then these signatures provide integrity: the removal of

97

poorly performing stocks, or the addition of outperforming stocks, would be detected during

signature verification. Signature sig(B) and sig(G) are applied to ticker-rating pairs. This

associates the ticker name with the rating in an unmodifiable way. However, a collection of

such signed tuples does not prevent deletions, rearrangements or additions to the collection.

Signatures sig(C), sig(D), and sig(E) are applied to individual attribute-value targets. By

themselves, these three are probably not useful signatures since they do not authenticate

the association between ticker and rating, which is of primary importance here.

The choice of signature granularity is application dependent. The signature of an entire

database protects against all possible changes, but may be inefficient since verification must

be performed on the entire database. In practice authors sometimes want to authorize

smaller pieces of data. In many contexts, the author may wish to publish data signed in

more than one way, with varying granularity.

Citations

We propose another integrity annotation that allows for the citation of signed data. We

define a citation to be an annotation of a data fragment (the derived data), with a query and

a reference to some signed data (the target). A citation represents a claim of authenticity:

that the derived data is the result of evaluating the query on the target fragment. Equiva-

lently, the derived fragment is the answer of a given view, evaluated over the signed target

data. The following examples provide some intuition, and an illustration of the flexibility

of citations.

Example 5.1.2 Consider again the stock recommendations in Figure 5.1. Each row of

Table 5.1 describes the components of a citation. The first column is the derived fragment

(tuples or sets of tuples in this case) to which the citation refers. The third column names

the target fragment, where A refers to the data signed by sig(A). The second column is the

citation query which relates these two. It is expressed as a conjunctive query over the signed

target fragment, and its result is the target fragment. The last column indicates that the

target is backed by a signature. The intended meaning of each citation is described below:

98

1. Citation (1) has derived data consisting of two tuples (IBM, BUY) and (MSFT, HOLD).

The citation claims that these two tuples are the result of evaluating query C1 on the

target (the entire Stock table), which is signed by signature sig(A). That is, the claim

says that these tuples (and only these tuples) make up the ticker and rating fields of

stocks in the Technology sector recommended by the signing author Alice.

2. Citation (2) is very similar, but with a different condition in the citation query (it

selects stocks in the Consumer sector).

3. Citation (3) consists of the same derived data (WFMI, HOLD) as example (2), however

its citation query is different: it claims that the derived data is contained in the result

of query C3. In this case, the claim is that (WFMI, HOLD) is one of the stocks rated

HOLD in the original signed table, but that other qualifying tuples may have been

omitted (in fact MSFT has been omitted). If this claim is verified, the user will know

that spurious tuples have not been added to the result, but will not be sure that some

tuples have not been removed. (In Section 5.1.4 we will define this as a guarantee of

correctness, without a guarantee of completeness.)

4. In each of the citations above, the target data was signed. In other cases the target

data may instead be cited, resulting in the composition of citations. The derived

fragment from Citation (1) is T1. Citation (4) therefore refers to a fragment that

is itself cited. The claim of authenticity here is the composition of the individual

claims. That is, the citation claims that tuple (MSFT, HOLD) is the result of query

C4 evaluated on table T1 which itself is the result of citation query C1 on the original

data signed with sig(A). This results in a claim that (MSFT, HOLD) is the ticker and

rating of all Technology stocks with a HOLD recommendation in the original signed

table.

Citations are useful because they do not require the compliance of the author, and

because they provide additional flexibility if the signature on the source data does not

permit the extraction a user desires. For example, as the author, Alice may choose to sign

99

Table 5.1: Citations, referring to the relational data in Figure 5.1.

Derived fragment Citation query Target Signature /
fragment Citation

T1 = (IBM, BUY) C1(t, r) :- A(t, r, “Technology”) A Sig A
(MSFT, HOLD)

T2 = (WFMI, HOLD) C2(t, r) :- A(t, r, “Consumer”) A Sig A

T3 = (WFMI, HOLD) C3(t, r) ⊆ A(t, “HOLD”, i) A Sig A

T4 = (MSFT, HOLD) C4(t, r) :- T1(t, ”HOLD”) T1 Cit T1

(only) the stock table in its entirety. She may not want to sign individual tuples in the stock

table because she doesn’t want to authenticate individual tuples in isolation. Another user,

Bob, may only be interested in replicating the tuple (WFMI,HOLD) from Alice’s table for

use in a derived database. This individual tuple can’t be published with Alice’s signature

(Alice didn’t sign it, and Bob shouldn’t be able to forge her signature). But it can be cited

by Bob, using Alice’s data as a target.

Signatures can only be generated by the author, but citations can be generated by any

downstream user of the data. Even so, citations may not offer the same level of integrity

guarantee as a signature, and as the example shows, the same data may be cited using more

than one citation query resulting in different authenticity conditions. Notice that citations

(2) and (3), as well as Sig(B) from Example 5.1.1, are each annotations representing a

claim of integrity about the same data fragment: (WFMI, HOLD). Each of these integrity

annotations has a different meaning, and in some cases the distinction could be important.

Note that a citation is a generalization of a signature. Consider a citation whose query

is the identity query. The citation says that the derived fragment is precisely the target

fragment, which is backed by some signature. This is equivalent to annotating the derived

fragment with the signature of the signed target fragment. Also, a citation reports on the

provenance of the cited data, describing it’s relationship to the source data. A discussion

of related work on data provenance is provided in Section 5.7.

100

Since a citation is merely a claim, it must be verified by checking the signature of the

cited source, and verifying that the cite fragment is in fact the result of the citation query

evaluated on the citation source. Designing an efficient verification mechanism for citations

is the focus of this chapter.

5.1.3 Using hash trees to verify citations

Note that there is a naive strategy for verification of a citation, which is to retrieve the

original signed target data, compute the citation query and compare the result with the

annotated data. This may be inefficient or impossible in a data exchange setting, and our

goal is to avoid this. Research into consistent query protocols [82, 110, 47, 45] can provide

a more efficient verification process for a certain limited class of queries. The techniques are

based on Merkle hash trees [95, 96] and allow signing of a database D such that a qualifying

query Q and a possible answer x to Q, a verification object can be constructed which proves

that x = Q(D). This matches the semantics of citations described above. The verification

object may be constructed (with knowledge of the query) by either the data owner or an

untrusted third-party with access to the signed database. The important property is that

the verification guarantees consistency with the original signed data, and that third-parties

cannot forge verification objects.

5.1.4 Using hash trees for integrity in database systems

Hash trees are described in detail in Section 5.2. The efficient implementation of hash

trees in relational databases also has applications to conventional client-server databases.

In database systems, integrity is provided by user authentication and access control. Users

are required to authenticate themselves and are limited in the operations they can perform

on columns, tables, or views. Unfortunately, in real-world systems these mechanisms are

not sufficient to guarantee data integrity. The integrity vulnerabilities in a modern database

system stem from the complexity and variety of security-sensitive components, integration

of database systems with application level code, underlying operating system vulnerabilities,

and the existence of privileged parties, among others. Consequently, when a data owner uses

a database to store and query data, she is forced to trust that the system was configured

101

properly, operates properly, and that privileged parties and other users behave appropriately.

Hash trees are a safeguard against these vulnerabilities because they provide the author of

data with a mechanism for detecting tampering. When verification succeeds, the data owner

has a strong guarantee that none of the vulnerabilities above has resulted in a modification

in their data.

The use of hash trees in both data exchange and client-server databases is illustrated in

Figure 5.2. In the top figure, Alice is a client for an untrusted database server which stores

her data and processes queries on her behalf. When she queries the database, she performs

a verification procedure to check that no modifications have been made to her data.

SERVER

Alice

Bob

Untrusted database

Data creation /
update

query

SERVER

Alice

Untrusted database

Data creation /
update query

verify

verify

authentication tag

Figure 5.2: Alternative uses for integrity mechanisms.

The lower figure illustrates distributed data exchange. Alice acts as a source and data

owner, publishing data for storage on an untrusted system. Bob acts as recipient of the

data and would like to verify the claim made by a citation. Bob retrieves data from the

untrusted server, and also retrieves an authentic copy of the hash tree root for verification.

We describe these operations in more detail below.

We focus initially on a single author who is the sole individual with rights to create and

modify data. Many parties may issue queries, but integrity is judged with respect to the

102

author. (We discuss extensions of our results to the multiparty case in Section 5.6.) To

formalize integrity guarantees, we assume the author creates a relation R, stores it at the

server (and not locally), and asks queries over the database. We further assume that the

author updates the relation and that the sequential authentic states of the database are

R1, R2, . . . Rn. When a user asks a (monotone) query q over R, they receive ans. The key

integrity properties we consider are:

Correctness Every tuple was created or modified only by the author:

ans ⊆
⋃

1≤i≤n

q(Ri)

The union on the right consists of all tuples present in any state of the database.

Correctness asserts that the answer set is composed of only these tuples.

Completeness No qualifying tuples are omitted from the query result: for some i, q(Ri) ⊆

ans.

Consistency Every tuple in the database or query result is current; i.e. it is not possible

for the server to present as current a tuple that has been been removed, or to mix

collections of data that existed at different points in the evolution of the database.

Consistency means ans ⊆ q(Ri) for some i.

If the author were to sign tuples individually, verification by the client would prove

correctness only. Consistency is a stronger condition which implies correctness. The hash

tree techniques to be described provide consistency (and thus correctness) upon verification.

In some cases hash trees can provide completeness as well. The index i, which identifies

particular states of the database, corresponds to a version of the authentication tag which is

changed by the author with updates to the database. Proofs of consistency or completeness

are relative to a version of the authentication tag.

Note that the database server is largely oblivious to the fact that Alice is taking special

steps to ensure the integrity of her data. The server stores a modified schema for the

database which, in addition to the base data, also includes integrity metadata. The integrity

103

metadata consists of one or more specially-designed tables each representing a hash tree [95,

96, 47]. Alice’s database queries are rewritten by the middleware to retrieve the query answer

along with some integrity metadata. The middleware performs an efficient verification

procedure, returning to Alice the query answer along with notice of verification success or

failure.

5.1.5 Contributions and chapter organization

The goal of this chapter is to allow a user to leverage a small amount of trusted client-side

computation to achieve guarantees of integrity when interacting with a potentially vulner-

able database server. The remainder of the chapter presents the design, implementation

and performance evaluation of hash trees for use with a client-server relational database.

We describe a novel relational representation of a hash tree, along with client and server

execution strategies, and show that the cost of integrity is modest in terms of computational

overhead as well as communication overhead. Using our techniques we are able to provide

strong integrity guarantees and process queries at a rate between 4 and 7 times slower than

the baseline, while inserts are between 8 and 11 times slower. This constitutes a dramatic

improvement over conceivable methods of ensuring integrity using tuple-level digital signa-

tures, and also a substantial improvement over naive implementations of hash trees in a

database. Since our techniques can easily augment any database system, we believe these

techniques could have wide application.

The next section presents background on Merkle hash trees, followed in Section 5.3 by

the design of our relational hash trees. Section 5.4 describes optimizations, and Section

5.5 is a thorough performance evaluation. Related work is reviewed in Section 5.7 and

extensions are discussed in Section 5.6.

5.2 Background

5.2.1 Enforcing integrity with hash trees

In this subsection we review the use of hash trees for authenticating relations [47, 95] by

illustrating a simple hash tree built over 8 tuples from a relation R(score,name). We denote

by f a collision-resistant cryptographic hash function (for which it is computationally-

104

(2, joe)
t1

(3, sam)
t2

(5, mary)
t3

(6, doug)
t4

h00=f(h000,h001) h01=f(h010,h011) h10=f(h100,h101) h11=f(h110,h111)

h0=f(h00,h01) h1=f(h10,h11)

hϵ=f(h0,h1)

(7, fred)
t5

(10, sam)
t6

(11, mary)
t7

(14, jeff)
t8

h000=f(t1) h001=f(t2) h010=f(t3) h011=f(t4) h100=f(t5) h101=f(t6) h110=f(t7) h111=f(t8)

Figure 5.3: Hash tree built over a relation containing tuples t1, t2, ...t8. f is a cryptographic
hash function; comma denotes concatenation when it appears in the argument of f .

infeasible to find inputs x and x′ such that f(x) = f(x′)). We build the tree of hash values,

shown in Fig. 5.3, as follows. First we compute the hash for each tuple ti of the relation

by hashing the concatenated byte representation of each attribute in the tuple. Then, to

generate a (binary) hash tree, we pair these values, computing f on their concatenation

and storing it as the parent. We continue bottom-up, pairing values and hashing their

combination until a root hash value hε is formed. The root hash value, hε, is a short

sequence of bytes that depends on each tuple in the database and on a chosen order for the

tuples. (The value of the root hash can therefore be used to uniquely identify states of the

database, as per the definition of consistency above.)

The computation of a hash tree uses the public hash function f and is deterministic, so

for a given tree shape it can be repeated by anyone. Alice chooses an order for the tuples

in her relation, computes the root hash hε and stores it locally and securely. She will then

store the relation at the vulnerable server. In Fig. 5.3 the hash tree is perfectly balanced,

but this is not required.

5.2.2 Verifying query results

The client verifies a query by checking that the query result is consistent with the root hash.

To do so, the client must duplicate the sequence of hash computations beginning with the

105

query result, and verify that it ends with the root hash. The tree structure allows the client

to perform this computation without recovering the entire relation from the server. For a

set of result tuples, the nodes in the tree the server must return are those on the hash path,

which consist of all siblings of nodes on a path from a result tuple to the root. Successful

verification proves integrity under the assumption that it is impossible for the server to find

a collision in the hash function f . We illustrate with the example queries below which refer

to the database R in Fig. 5.3 and we assume score is a key for R.

Example 5.2.1 Select tuples with score=5. The server returns the answer tuple, t3. The

client can compute h010. In order to complete the computation to the root, the client needs

more values from the database, or some nodes internal to the tree. The server returns in

addition the hash path consisting of nodes h011, h00 and h1. From these values the client can

compute up the tree a new root hash h′ε. Verification succeeds if h′ε equals the root hash hε

stored at the client. Unless the server can find a collision in the hash function, this proves

that tuple t3 is an authentic element of the database, proving consistency and correctness

of the query answer.

Example 5.2.2 Select tuples with score=8. Since 8 is not present in the database, the query

result is empty and correctness holds trivially. To show completeness, i.e. that there are no

tuples with score=8 omitted illegally, the server must return the predecessor tuple, t5, and

the successor, t6, and the hash path {h11, h0}.

Example 5.2.3 Select tuples with score between 4 and 6. The server will return answer

tuples t3 and t4 along with their hash path {h00, h1} which allows the client to verify cor-

rectness and consistency, as above. However there could exist other tuples in the collection

matching the search condition, score between 4 and 6. Evidence that the answer is in fact

complete relies on the fact that the tree is built over sorted tuples. The server provides

the next-smallest and next-largest items for the result set along with their hash path in

the tree. To prove completeness, the result will consist of t2, t3, t4, t5 and the hash path is

h000, h101, h11.

106

Example 5.2.4 Select tuple with name=’Mary’. This query is a selection condition on the

B attribute, which is not used as the sort key for this hash tree. The server may return the

entire result set {t3, t7} along with the hash path nodes {h011, h00, h111, h10}, however in this

case only consistency and correctness is proven. The server could omit a tuple, returning

for example just t3 as an answer along with its verifiable hash path. The author will not be

able to detect the omission in this case.

5.2.3 Modifying data: Insertions, deletions, updates

The modification of any tuple in the database changes the root hash, upon which the

verification procedure depends. Therefore, the client must perform re-computation of the

root hash locally for any insertion, deletion, or update. We illustrate with the following

example:

Example 5.2.5 Insert tuple (12, jack). This new tuple t′ will be placed in sorted order

between tuples t7 and t8. More than one tree shape is possible, but one alternative is to

make t′ a sibling of t7 and set h110 = f(t7, t′). Since the value of h110 has changed, the

hashes on the path to the root must be updated, namely h11, h1 and hε.

It is critical that the root hash be computed and maintained by a trusted party, and

retrieved securely when used during client verification. If the server could compute or update

the value of the root hash, it could perform unauthorized modifications of the database

without violating the verification procedure. The root hash can be stored securely by the

client, or it can be stored by the server if it is digitally signed. Since the root hash changes

with any modification of the database, the latter requires re-signing of the root hash with

each update operation.

5.3 The relational hash tree

In this section we describe techniques for implementing a hash tree in a relational database

system.

107

5.3.1 Overview of design choices

The simplest representation of a hash tree as a relation would represent nodes of the tree

as tuples with attributes for parent, right-child, and left-child. With each tuple uniquely

identified by its node id, the parent and child fields would contain node id’s simulating

pointers. There are a number of drawbacks of this simple organization. The first is that

in order to guarantee completeness the server must return not just the result set, but the

preceding and following elements in the sorted order (as in Ex. 5.2.3). Second, traversing

the tree requires an iterative query procedure which progresses up the tree by following a

sequence of node-ids, and gathers the nodes on the hash path. Finally, the performance of

this scheme depends on the tree being balanced which must be maintained upon modification

of the database. Even assuming perfect balancing, experiments indicate that the time at the

server to execute a simple selection query using this organization is about 12 ms (a factor

of 20 times higher than a standard query) and that query times scale linearly or worse with

the size of the result.

To simplify the hash path computation, a basic optimization is to store the child hashes

with their parent. Then whenever the parent is retrieved, no further database access is

required for gathering the children. To simplify the identification of preceeding and following

elements, we translate our sorted dataset into intervals. The leaves of the hash tree are

intervals, and we always search for the containing interval of a point, or the intersecting

intervals of a range. This provides completeness as in Ex. 5.2.2 and 5.2.3. To remove the

iterative procedure on the path to the root, we store intervals in the internal nodes of the

tree representing the minimum and maximum of the interval boundaries contained in that

node’s descendants. The result is a relational representation of a hash tree with the only

remaining challenges being (i) implementing interval queries efficiently and (ii) keeping the

tree balanced.

Interval queries are not efficiently supported by standard indexes. One of the best

methods for fast interval queries was presented in [112]. These techniques are a relational

adaptation of an interval tree [52] and themselves require representing a tree as relations.

Since any tree shape can work as a hash tree, the innovation here is to adapt interval trees

108

(-∞,2]

(3,5]

(6,7]

(5,6]

(10,11]

(7,10]

(14,∞]

(11,14]

(2,3]

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

Figure 5.4: The domain tree T4 is the complete binary tree, rooted at 8, shown with dotted
edges. The value tree is represented by circled nodes and solid edges, for intervals derived
from adom = {2, 3, 5, 6, 7, 10, 11, 14}. The intervals shown in the tree are stored in the Auth
table.

to the design of a hash tree, combining both trees into one structure. This serves dual

purposes: in addition to supporting very efficient hash path queries, it also maintains a

balanced tree for many data distributions.

5.3.2 Interval Trees

An interval tree [52, 112] is a data structure designed to store a set of intervals and efficiently

support intersection queries. We review this data structure here, and then adapt it to a

hash tree in the next subsection.

The domain tree Tk for positive1 domain dom = [0..2k − 1] is a complete binary tree

whose nodes are labeled with the elements of dom − {0} = (0..2k − 1]. Its structure is

precisely that of a perfectly balanced search tree built over the entire domain. The root of

Tk is the midpoint of dom − {0}, 2k−1, or in bits 1000...0. Its children are 01000...0 and

1100...0. The tree has height k − 1 and its leaves are the odd elements of dom. Domain

tree T4 is shown in Fig. 5.4. We often refer to the nodes of Tk by their labels in dom.

Each node in Tk is the midpoint of its spanning interval, denoted span(n), defined to be

1For illustration purposes only, we describe a relational hash tree over a positive domain, although it
is easily generalized to signed integers, floats, or strings. We implemented a signed integer domain with
k = 32.

109

the interval containing every element in the subtree rooted at n, including itself. The span

of the root is therefore (0..2k − 1]; the span of node 2, shown in Fig. 5.4 is (0, 3] = {1, 2, 3}.

For a given dom, we denote −∞ = 0, and ∞ = 2k − 1.

An interval with endpoints in dom is stored at a unique node in the domain tree as

defined by its fork node. The fork is the lowest node n such that span(n) contains the

interval.

Definition 5.3.1 (Fork node of interval) Let I = (x, y] be an interval with x, y ∈ dom
and x < y. The fork node fork(I) is the unique node n ∈ Tk such that:

(i) I ⊆ span(n), and

(ii) for all descendants n′ of n, I 6⊆ span(n′).
It follows immediately that n ∈ I, and that n is the highest node in the domain tree such
that n ∈ I.

As an example, the fork node in T4 of interval (3, 5] is 4 as shown in Fig 5.4. The computation

of the fork for interval I = (x, y] can be performed efficiently using bitwise operations on x

and y. Since x < y, x and y can be written as x = z0x0 and y = z1y0 for (possibly empty)

bit strings z, x0, y0. Then fork(I) = z10|x0|. If x = 3 = 0011 and y = 5 = 0101 then z = 0

and fork(I) = 0100 = 4.

5.3.3 Disjoint interval trees

We now adapt interval trees to our setting. Let adom = {x1 . . . xn} be a set of data values

from dom. We always assume the data values are different from −∞ and ∞. Then they

partition dom into a set U of n + 1 intervals:

I0 = (−∞, x1], I1 = (x1, x2] . . . In = (xn,∞]

for −∞ = 0 and ∞ = 2k − 1. Since the elements of adom are distinct, we have xi < xi+1

for all intervals Ii. Each interval of U is stored at its fork node in the domain tree. We show

next how the intervals can be connected to form a tree which overlays the domain tree.

We say a node w in the domain tree is occupied if there is an interval in U whose fork

is w. The occupied nodes in Fig 5.4 are circled and labeled with the intervals that occupy

them. Recall that the intervals of U are always non-overlapping and cover the entire domain.

(Ours is therefore a special case of the structure considered in [52, 85] which is designed

110

to accommodate a general set of intervals.) Each node in the domain tree holds at most

one interval: since a fork node n is an element of any interval whose fork is n, two disjoint

intervals cannot have the same fork. Further, the root of Tk is always occupied. This is

because the interval set U partitions the entire domain, so some interval in U must contain

the root element 2k−1 and this interval’s fork can only be the root of Tk. We show next that

for any disjoint interval set U as above, the occupied nodes can always be linked to form

a unique (possibly incomplete) binary tree, called the value tree for U . Let subtree(x) in

Tk be the subtree rooted at x.

Property 5.3.2 For any node x in domain tree Tk, if there is at least one occupied node
in subtree(x), then there is always a unique occupied node y which is the ancestor of all
occupied nodes in subtree(x).

Proof: (Sketch) This property follows from the fact that if y and y′ are two occupied nodes

in subtree(x) then their least common ancestor must be occupied. If y is the ancestor of

y′, or vice versa, this is trivially true. Otherwise, suppose that their least common ancestor

is a distinct node z that is not occupied. Let I be the interval occupying fork node y. Since

y is a descendant of z, and fork(I) = y, the element z cannot be contained in I. The same

argument shows that z cannot be contained in I ′. However, z must be present in some

interval I0, since the intervals partition the domain. Interval I0 must occupy node z. It’s

fork cannot be lower in the tree because it contains z. It cannot be higher in the domain

tree either: the fact that it has occupied nodes beneath it implies that I0 does not contain

any ancestor of z. 2

As an example, in Fig 5.4, the unique occupied ancestor in subtree(10) is node 11.

Property 5.3.2 implies that nodes 9 and 11 could never be occupied while 10 remains unoc-

cupied.

Definition 5.3.3 (Value tree) For a set of disjoint intervals U derived from adom as
above, and domain tree Tk, the value tree VU is a binary tree consisting of the occupied
nodes from Tk and defined inductively as follows:

• root(VI) = root(Tk)

• For any value node x in VU , its right (resp. left) child is the unique occupied ancestor
of the right (resp. left) subtree of x in Tk, if it exists.

111

x is a leaf in VU iff the right and left subtrees of a value node x are both unoccupied.

In Fig. 5.4 the value tree is illustrated with solid edges connecting the occupied nodes of

T4.

Benefits of the value tree

In summary, the domain tree is static, determined by the domain, while the value tree

depends on the set of values from which the intervals are derived. The value tree has a

number of important properties for our implementation. First, by design, it is an efficient

search structure for evaluating range intersection queries (i.e. return all stored intervals

that intersect a given interval I = (x, y]). Such a query is evaluated by beginning at the

root of the value tree, traversing the path in the value tree towards fork(I) and checking

for overlapping stored intervals. Secondly, it provides an organization of the data into a

tree which we use as the basis of our hash tree. This avoids explicit balancing operations

required by other techniques. Finally, the relationship between the domain tree and value

tree allows us to avoid expensive traversals of the tree at the server. Instead of traversing

the path from a node in the value tree to the root, we statically compute a superset of these

nodes by calculating the path in the domain tree. We then probe the database for the value

tree nodes that exist. The sets defined below are used for query evaluation in Sec. 5.3.5,

and compute all the forks of nodes in the value tree necessary for client verification.

Definition 5.3.4 (Ancestors) For x ∈ dom, Ancestors(x) is the subset of dom consisting
of all domain tree nodes whose span contains x:

Ancestors(x) = {n | x ∈ span(n)}

Definition 5.3.5 (Range Ancestors) For interval (x, y], rangeAncestors(x, y) is the sub-
set of dom consisting of all domain tree nodes whose span intersects (x, y]:

rangeAncestors(x, y) = {n | (x, y] ∩ span(n) 6= ∅}

Ancestors(x) includes all fork nodes where an interval containing x could be stored.

rangeAncestors(x, y) includes all fork nodes where an interval containing (x, y] could be

stored. Note that these sets do not depend on the current state of the database, only the

domain. For our example domain, Ancestors(13) = {8, 12, 14, 13} and range-Ancestors(6,9)

= {8, 4, 6, 7, 12, 10, 9}.

112

Properties of a disjoint interval tree

Each set adom determines a unique value tree. If adom is empty, then the resulting interval

set contains only one interval (−∞,∞], and the value tree consists of a single node: the root

of Tk. At the other extreme, if adom = dom − {−∞,∞} then every node of the domain

tree will be occupied, and the value tree will be equal to the domain tree. We describe next

some properties of the value tree which are implied by sets adom derived according to a

known distribution.

The depth of a node n ∈ Tk is the number of edges along the path from the root to

n (hence 0 for the root). The width of an interval determines the maximum depth of the

interval’s fork.

Property 5.3.6 (Maximum depth of interval) Let I = (x, x′] be an interval and de-
fine j = blog2(x′ − x)c. Then the depth of fork(i) is less than k − j.

Proof: (Sketch) If n has depth j, the span(n) is an interval of width 2k−j − 1, since the

root spans the whole domain, and moving from a node to its child divides the span in half.

It follows from the definition of fork that span(n) is the largest interval that can be stored

at the node n, since any lower node could never contain it. The value of j is defined to be

blog(x′ − x)c, so that the width of the interval is 2j ≤ (x′ − x) ≤ 2j+1. 2

This result implies that if adom consists of values spread uniformly, then the value tree

fills Tk completely from the top down. Alternatively, if adom consists of consecutive values,

then Prop 5.3.2 implies that the value tree fills Tk completely from the bottom up. These

observations allow us to prove:

Property 5.3.7 (Value tree shape) Let adom be a set of 2m− 1 elements (for m < k).
If (1) adom is spread uniformly or (2) it consists of consecutive values, then the value tree
has height m.

Proof: (Sketch) Since the elements of adom are uniformly distributed, the expected width

of each resulting interval will be 2k−m. Property 5.3.6 implies that the occupied nodes each

have depth less than m. Tk consists of precisely 2m − 1 nodes at a height less than m, so it

follows that every node of Tk must be occupied, and the value tree is complete. 2

113

The relevant issue for our implementation is the length of paths in the value tree. Both

a uniform distribution and a set of consecutive values result in a minimal height of the value

tree. The question of the worst case distribution in this setting remains open. We return

to the impact of the data distribution, and domain size, k, in Sec. 5.5.

5.3.4 Relational hash tree

In this subsection we describe the relational representation of a hash tree based on interval

trees. Figure 5.5 contains table definitions, indexes, and user-defined functions, while Figure

5.6 contains the important verification queries. Given a relation R(A,B1, ...Bm), we choose

the sort attribute of the hash tree to be A and assume the domain of A can be represented

using k bits. A is not necessarily a key for R, and we let adomA be the set of distinct A-

values occurring in R. We form disjoint intervals from this domain as described above, build

a disjoint interval tree, and encode each node in the value tree as a tuple in table AuthR.A.

The table DataR stores each tuple of the original table R, with an added field fork which

is a foreign key referencing AuthR.A.fork. We drop the subscripts for Auth and Data when

the meaning is clear. For tuple t ∈ Auth, t.fork is the fork of the interval (t.predA,t.A]. Hash

values for the left child and right child of the node are stored in each tuple. In addition, the

hash of the node content is stored in attribute hashed-content. The content of a value tree

node is a serialization of the pair (pred,A), concatenated with a serialized representation of

all tuples in Data agreeing on attribute A, sorted on a key for the remaining attributes. The

hash value at any node in the value tree is computed as f(Lhash, hashed-content,Rhash). For

internal nodes of the value tree, Lhash and Rhash are hash values of right and left children of

the node. For leaf nodes, Lhash and Rhash are set to a public initialization value. All hash

values are 20 bytes, the output of the SHA-1 hash function. Note that in a conventional

hash tree, data values only occur at the leaves while in our interval hash tree, data values

are represented in all nodes.

5.3.5 Authenticated query processing

The client-server protocol for authenticated query and update processing is illustrated in

Fig. 5.7. We describe next server query processing, client verification, and updates to the

114

TABLES
AuthR(fork bit(k), predA bit(k), A bit(k), Lhash byte(20), hashed-content byte(20),

Rhash byte(20))
DataR(fork bit(k), A bit(k), B1 ... Bm)

INDEXES
Auth-index CLUSTERED INDEX on (Auth.fork)
Data-index INDEX on (Data.fork)
〈additional user indexes on Data not shown〉

FUNCTIONS
Ancestors(x bit(x)) 〈defined in Sec. 5.3.3〉
rangeAncestors(x bit(x),y bit(x))

Figure 5.5: Table, index, and function definitions for the relational hash tree implementa-
tion.

(Q1) Selection query on A: R.A = $x
SELECT Auth.*
FROM Ancestors($x) as F, Auth
WHERE F.fork = Auth.fork
ORDER BY F.fork

(Q2) Range query on A: $x < R.A ≤ $y
SELECT Auth.*
FROM rangeAncestors($x,$y) as F, Auth
WHERE F.fork = Auth.fork
ORDER BY F.fork

(Q3) Arbitrary query condition: cond(R.A, R.B1 .. R.Bm)
SELECT Auth.*
FROM Auth, Data, Ancestors(Data.A) as F
WHERE F.fork = Auth.fork AND cond(Data.A,Data.B1 .. Data.Bm)
ORDER BY F.fork

Figure 5.6: Query definitions for the relational hash tree implementation.

115

database.

Server query processing

The query expressions executed at the server are shown in Figure 5.6. For selection and range

queries on the sort attribute, Q1 and Q2, and arbitrary query conditions, Q3. They each re-

trieve from Auth the result tuples along with paths to the root in the value tree. We avoid it-

erative traversal in the value tree by computing the sets Ancestors(x) or rangeAncestors(x, y)

and performing a semijoin. Note that the computation of the ancestors makes no database

accesses. It is performed efficiently as an user-defined procedure returning a unary table

consisting of nodes from the domain tree. The following examples illustrate the execution

of Q1 and Q2.

Example 5.3.8 SELECT * FROM R WHERE R.A = 13 Referring to Fig. 5.4, we compute

Ancestors(13) which is equal to {8, 12, 14, 13}. Q1 joins these nodes with the value tree

nodes in AuthR. The result is just two tuples representing nodes 12 and 8 in the value tree.

Node 12 holds interval (11, 14] which contains the search key 13, proving the answer empty

but complete, and node 8 is included since it is on the path to the root.

Example 5.3.9 SELECT * FROM R WHERE 6 < A ≤ 9 Computing rangeAncestors(6, 9)

yields the set {8, 4, 6, 7, 12, 10, 9} since each of these nodes in the domain tree has a span

intersecting (6, 9]. Of these, only nodes {8, 4, 6, 7, 12} are in the value tree, and are retrieved

from the database. Note that some intervals stored at these nodes do not overlap the query

range (6, 9] (for example, (3, 5] is retrieved with node 4). Nevertheless, node 4 is required

for reconstructing this portion of the value tree since nodes 6 and 7 are its descendants.

The client will perform a final elimination step in the process of verifying the answer.

Arbitrary queries

For queries that include conditions on attributes B1, ...Bm the interval hash tree cannot be

used to prove completeness of the query answer, but can still be used to prove correctness

and consistency. Any complex condition on B1, ...Bm can be evaluated on Data, resulting

in a set of values for attribute A. These values will be distributed arbitrarily across the

116

domain and therefore arbitrarily in the value tree. They are fed into the Ancestors function to

retrieve all paths up to the root. Duplicates are eliminated, and then these nodes are joined

with Auth (as in queries Q1 and Q2). The resulting query, called an arbitrary condition

query is shown in Figure 5.6 as Q3.

Example 5.3.10 The query in Ex. 5.2.4 asked for all tuples from R with name=’Mary’.

The query result consists of tuples with scores 5 and 11. To authenticate this query, the

fork ancestor set is computed to be Ancestors(5)∪Ancestors(11) = {8, 4, 6, 5}∪{8, 12, 10, 11}

= {8, 4, 6, 5, 12, 10, 11}.

Execution plan

For queries Q1, Q2 and Q3 the favored execution strategy is to materialize the Ancestors ta-

ble, and perform an index-nested loops join using the index on AuthR. The query optimizers

in the two database systems we tried chose this execution plan. For Q1, the Ancestors set

is quite small – it is bounded by parameter k of the domain tree (32 for most of our exper-

iments). Thus evaluation of Q1 consists of not more than k probes of the index on Auth.

For range queries, the Ancestors set is bounded by the result size plus 2k. The execution

of range queries can be improved by utilizing the clustering of the index on Auth. This

optimization is described in Sec. 5.4.3.

Client verification

In each case above, the server returns a subset of tuples from Auth which represent a portion

of the value tree. The client verifies the query answer by reassembling the value tree and

recomputing hashes up the tree until a root hash h′ε is computed. To enable the client to

efficiently rebuild the tree, the result tuples can be sorted by the server.

Insertion, deletion, and update

Updating any tuple in the database requires maintenance of the interval hash tree, namely

addition or deletion of nodes in the value tree, and re-computation of hashes along the path

to the root from any modified node. These maintenance operations are integrity-sensitive,

and can only be performed by the client. Therefore, before issuing an update, the client

117

must issue a query to retrieve the relevant portions of the hash tree, verify authenticity, and

then compute the inserts or updates to the database. The insertion protocol between client

and server is illustrated in Fig. 5.7. We focus for simplicity on inserts (deletes are similar,

and updates are implemented as deletes followed by insertions).

Example 5.3.11 To insert a new tuple (13, ..) the client issues the selection query for

A = 13. This is precisely the query described in Ex. 5.3.8, and retrieves nodes 8 and

12 from the value tree. Node 12 contains interval (11, 14] which must be split, with the

insertion of 13, into two intervals: (11, 13] and (13, 14]. This requires an update of the tuple

representing value tree node 12, changing its interval upper bound from 14 to 13. Interval

(13, 14] will be stored at the formerly unoccupied node 14, which requires insertion of a new

tuple in Auth representing the new value node. The hashes are recomputed up the tree from

the lowest modified node in the value tree.

In general, executing an authenticated insert involves the cost of an authenticated query,

the insertion of one new Auth tuple, and updates to h Auth tuples, where h is the depth of

the fork of the new interval created by the insertion. Although each update to Auth can be

executed efficiently using the index on node, the large number of updates can cause a severe

penalty. We address this problem next by bundling the nodes of the value tree.

5.4 Optimizations

5.4.1 Bundling nodes of the value tree

The execution cost of queries and inserts depends on the length of paths in the value tree,

which is determined by the data distribution and bounded by the maximum depth in the

tree k. Reducing the length of paths in the value tree reduces the number of index probes

executed for queries, and reduces the number of tuples modified for insertions. To reduce

path length, we propose grouping nodes of the value tree into bundles, and storing the

bundles as tuples in the database. For example, we can imagine merging the top three

nodes (8, 4, 12) in the tree of Fig. 5.4 into one node. We measure the degree of bundling

by the height of bundles, where a bundle of height b can hold at most 2b − 1 value tree

nodes (b = 1 is no bundling). The schema of the Auth table is modified so that a single

118

tuple can hold the intervals and hashes for 2b − 1 nodes in the value tree. We use variable-

length binary large objects to store collections of hashes and intervals for each bundle.

The resulting schema is: Auth(fork int, intervals varbinary, hashes varbinary) where intervals

encodes a list of intervals, and hashes encodes a list of corresponding left, right, and content

hashes which are decoded at the client. Finally, the Ancestors and rangeAncestors functions

are generalized to account for bundling.

5.4.2 Inlining the fork ancestors

Although the Ancestors set is efficiently computed for selection queries on the sort attribute,

our experiments show that when evaluating arbitrary query conditions that return a large

number of distinct A-values, computation of the Ancestors set can be a prohibitive cost. To

remedy this, we have proposed trading off space for computation, and inlining the ancestor

values for each tuple in Data. This requires that the schema of the Data table be modified

to accommodate dk/be fork nodes, where k is the parameter of the domain tree and b is the

bundling factor. For example, for b = 4 we store 8 fork nodes fork1, fork2, ... fork8 with

each tuple in Data and we would rewrite query Q3 (from Figure 5.6) as shown below, using

the operator combine to coalesce the multiple attributes into a set:

SELECT Auth.*

FROM Auth, (SELECT DISTINCT combine(fork1, fork2, ... fork8)

FROM Data WHERE cond(A,B1, ..Bm)) as F

WHERE F.fork = A.fork

5.4.3 Optimizing range queries

The evaluation of range queries can be substantially improved by expressing rangeAncestors(x, y)

as the disjoint union of three sets: leftAncestors, Inner, and rightAncestors. Inner(x, y) consists

of all fork nodes inside (x, y]. leftAncestors(x, y) consists of all fork nodes not in Inner whose

span upper boundary intersects (x, y]. Likewise, rightAncestors(x, y) contains all nodes not

in Inner whose span lower boundary intersects (x, y]. The range query Q2 is then equivalent

119

CLIENT SERVER

S1: query execution

issue query

C1: parse tuples, build tree

C2: verify by hashing

C3: calc update/inserts

query result

update/inserts

S2: execute insert

S3: execute updates

2.64 Execution Tim
e (m

s)

0.21

0.57

0.15

1.97

4.59

Query
total

Insert
total

3.42

10.1

Break-
down

Figure 5.7: Processing diagram for authenticated QUERY and INSERT. C1, C2, C3 are
client-side computations, S1, S2, S3 are server-side computations (including communication
cost), with execution times broken down by component cost (for bundling = 4).

to the following union of three subqueries:

SELECT * FROM leftAncestors(x,y) as L, Auth

WHERE L.fork = Auth.fork

UNION ALL

SELECT * FROM rightAncestors(x,y) as R, Auth

WHERE R.fork = Auth.fork

UNION ALL

SELECT * FROM Auth

WHERE Auth.fork BETWEEN x AND y

The benefit is that the range query in the third SELECT can be evaluated using the

clustered index on fork. This optimization is used in [85].

5.5 Performance evaluation

In this section we present a thorough performance evaluation of the relational hash tree and

our proposed optimizations. The client authentication code was written in Java, using JDBC

120

to connect to the database server. Experiments were performed using both PostgreSQL,

and Microsoft SQL Server databases. (Moving between database systems was very easy;

the only challenge was adapting to different SQL dialects.) No substantial differences were

found between systems, and for each experiment we present numbers for only one system.

Both the client and server machines were Pentium 4, 2.8Ghz machines with 2 GB memory,

although actual memory utilization by the client process was small. We used SHA-1 [58] as

our hash function. As mentioned in Section 2.4, SHA-1 is no longer considered secure. It was

broken after these experiments were performed, but moving to SHA-224 is expected to have

a negligible impact on the numbers presented here. The performance numbers below do not

include the invariant cost of signing the root hash upon update (4.2 ms), and verifying the

root hash for queries (0.2 ms). The numbers below represent the average execution time for

200 random query or insert operations (with the 5 lowest and highest values omitted) over

a database of random values.

5.5.1 Overview of cost for selection query and insert

Our experiments were run on synthetic datasets containing 200-byte tuples. On a database

of 1,000,000 tuples, without authentication, a selection query on an indexed attribute takes

approximately 0.6ms while an insert takes about 1.0ms. These are the baseline values used

for comparison in our analysis.

Figure 5.7 shows the processing protocol for a simple selection query and an insert, along

with times for our best-performing method. An authenticated query consists of execution

of the hash path query at the server (quantity S1) followed by client-side parsing the result

tuples and re-building tree structure (C1) and verification by hashing up the tree and com-

paring the root hash (C2). The total time is 3.42ms, of which 77% is server computation

and 23% is client time. This verified query therefore executes about 6 times slower than

the baseline. Communication costs are included in the server-side costs for simplicity.

Execution of an authenticated insert includes the costs of the query plus the additional

client computation of the updates and inserts to the relational hash tree (quantity C3) and

server execution of updates and inserts (S2 and S3). Overall, authenticated inserts run

about 10 times slower than the baseline. The dominant cost is the execution of updates.

121

Our bundling optimization targets this cost, bringing it down from 14ms to the value in

Fig. 5.7 of 4.59ms (for bundle height 4). The cost is significant because for a relational

hash tree of average height h, approximately h tuples in the Auth table must be updated

since the hash values of the nodes have changed. This cost is targeted by our bundling

optimization described next.

5.5.2 Impact of domain tree bundling

Recall that our bundling optimization was defined in terms of a bundle height parameter b,

the tree height of bundles, which is 1 for no bundling. Fig. 5.8 shows the impact of bundling

on authenticated selection queries and inserts. Each bar in the graph also indicates the

breakdown between client and server computation. Bundling primarily speeds up server

operations by reducing the number of tuples retrieved and/or updated. The impact of

bundling is dramatic for inserts, where the time for b = 4 is about half the time for b = 1.

This is a consequence of fewer updates to the bundled value tree nodes in the Auth table (5

instead of about 16 without bundling).

5.5.3 Range and Arbitrary queries

The bundle height b = 4 is optimal not only for inserts (shown above) but for range and

arbitrary queries studied next, and all results below use the bundling technique. Range

queries (using the optimization described in Sec. 5.4.3) run very efficiently, just 2-3 times

slower than the baseline case. Arbitrary queries are slower because disparate parts of the tree

must be retrieved, and each node retrieved requires and index probe. They run about 20-30

times slower than the baseline, and scale roughly linearly with the result size. Inlining is a

critical optimization, as shown in Fig. 5.9 (left) which improved processing time by about

a factor of 5 in our experiments. The figure shows the per-tuple speed-up for processing

an arbitrary query. That is, a value of 1 indicates that an arbitrary query returning 1000

tuples takes the same time as 1000 separate selection queries returning 1 tuple.

Scalability Fig. 5.9 (right) shows that our techniques scale nicely as the size of the

database grows. The table presents selection queries, range queries, and inserts for databases

consisting of 105, 106, and 107 tuples. Authenticated operations are roughly constant as

122

Authenticated Selection Query & Insertion
Bundling Impact - 1,000,000 Tuples

0.0

4.0

8.0

12.0

16.0

20.0

N
o
 A

u
th

B
=

1

B
=

2

B
=

3

B
=

4

B
=

5

B
=

6

N
o
 A

u
th

B
=

1

B
=

2

B
=

3

B
=

4

B
=

5

B
=

6

QUERY INSERT

Bundling Factor

E
x
e
cu

ti
o

n
 T

im
e
 (

m
s) Server (S2+S3)

Client (C1+C2+C3)

Server (S1)

Figure 5.8: Impact of bundling on execution times for authenticated query and insert.

the database size grows. This is to be expected since at the client the execution time is

determined by the result size, and at the server the execution time is largely determined by

the length of paths in the relational hash tree which grow logarithmically with the database

size.

5.5.4 Impact of domain size and data distribution

Recall that parameter k of the domain tree is determined by the number of bits required

to represent elements in the domain of the sort attribute A, and was set to 32 in most of

our experiments. Since k is the height of the domain tree, k bounds the length of paths in

the value tree, and determines the size of the sets returned by Ancestors and rangeAncestors.

This means that as k increases, the number of index probes increases with the average

depth of nodes in the domain tree. This increases the server query time, but is mitigated

by the bundling optimization. Further, the more important factor is the length of paths

in the value tree because this determines the number of nodes returned by the server, as

123

Arbitrary Queries - Per Tuple Speed-Up
1,000,000 Tuples

0.00

0.20

0.40

0.60

0.80

1.00

1.20

100 1000 10000
Result Size in Tuples

P
e
r

T
u

p
le

 S
p

e
e
d

-u
p

No Inlining

Inlining

Scalability Analysis

0.00

5.00

10.00

15.00

20.00

25.00

100,000 1,000,000 10,000,000

Database Size in Tuples

E
x
e
cu

ti
o

n
 T

im
e
 (

m
s) QUERY

INSERT

RANGE
(1000)

Figure 5.9: (Left) Per-tuple speed up for arbitrary condition queries using inlining. (Right)
Scalability graph showing execution time for selection queries, inserts, range queries for
databases with size 105, 106 and 107.

well as the number of updates/inserts to the database when hashes are recomputed upon

update. The length of paths in the value tree is determined by the database instance size

and distribution of values across the sort attribute. Prop. 5.3.7 proves an upper bound on

the height for two cases. Our experiments confirmed that the value tree is well-balanced and

these paths are short. For example, there is no measurable difference in query execution

times between a uniform distribution, a database of consecutive values, or distributions

derived from compound sort keys. Thus the shape of the interval tree is a very effective

alternative to explicit balancing of the hash tree stored at the server.

5.5.5 Storage and Communication overhead

Communication cost is included with the server-side query execution costs in all performance

numbers above, and was not substantially increased by our techniques. Storage overhead

was also modest: total size on disk (including indexes) for the authenticated database was

321MB compared to 249MB for the baseline.

Overall, we consider the costs presented modest, especially since the overhead of our tech-

niques is measured by comparison to some of the fastest operations that can be performed

124

in a database system (index lookups and updates). In a real application, the overhead of

integrity could easily be dwarfed by a query that included even a simple table scan.

5.6 Multiple party integrity

Conventional notions of authenticity typically refer to a single author. There are therefore

some basic underlying challenges to formalizing authenticity of data modified by many

parties. A straightforward extension of the single party case we have studied so far permits

multiple authors, who all trust one another, but do not trust the database server. In this case

any author is permitted to update the root hash, and the authors use a shared signature to

prevent the server from modifying the root hash. Such a scenario presents some challenges

for concurrent processing of updates because there is contention for the root hash value.

Nevertheless, a more realistic model for multiple party integrity has n mutually untrust-

ing authors contributing to a common database which is stored at an untrusted server. In

this setting we partition the tuples of the database by author, and ownership of a tuple

is indicated by the presence of an author field in our modified schema: R’(author, A, B1

... Bm). A query over R can be evaluated over R’ and the same integrity properties of

correctness, consistency, and completeness are relevant in this setting. However, it should

be impossible for author α1 to add, modify, or delete tuples in the name of any other au-

thor. Our techniques can be used to provide these integrity guarantees by prepending the

author field to whichever sort key is used for the authentication table Auth, and essentially

maintaining separate hash trees for each author. This relieves contention for the root hash,

and improves concurrency. This model can be extended to support transfer of ownership

amongst users, but we leave this as future work.

5.7 Related work

Integrity of published data

The W3C XML Signature format has been used to implement “content extraction signa-

tures” [24], designed to allow an author to sign a document along with a definition of certain

permissible operations for deriving new data. An authorized recipient can blind or extract

the document and generate a signature without contacting the author. However, verification

125

of the signature by a third-party requires contacting the original author who will check the

extractions were legal and verify the new signature. This execution model differs from ours.

We would like to avoid contact with the original source of the data which restricts flexible

data exchange. Bertino et al. [16] propose a framework of cooperative updates to a docu-

ment which are controlled according to confidentiality and integrity processes. A drawback

of their scheme is that the flow of the document through a sequence of collaborating parties

must be predetermined by the first author, again restricting flexible data exchange.

Data provenance and annotation management

A number of projects have studied data provenance, or lineage, which involves tracing

and recording the origin of data and its movement among databases. Computation of the

set of tuples in a database that contribute to a particular tuple in the output of a query

over that database is studied in [33]. In [25] the authors refer to this problem as why-

provenance (which reports on why a tuple is in the answer to a query) and distinguish

it from where-provenance (which reports on the origin of the data). Where-provenance is

closely related to propagating source annotations through views. In [26] the authors study

backward propagation: given a tuple in the output of a view to be annotated, determine

the set of tuples should be annotated in the base relations to produce the annotation (with

minimal side-effects). In [129] a definition for query containment is studied for queries that

propagate annotations, and a prototype system for annotation management was presented

recently [28]. These results may provide useful tools for supporting our integrity annotations.

However, our goal is not just to carry annotations, but to provide cryptographic evidence

of source attribution.

The authors of [132] describe an information integration system where query results

are tagged with references to the sources from which they are derived. Similar techniques

are applied to semistructured data in [89]. A general discussion of data annotation as

“superimposed” information is provided in [91]. Annotea [131] is a W3C open project

oriented toward tools for creating and managing web annotations, which are stored on

specified servers for public use.

126

Hash trees and authenticated data structures

Hash trees were developed by Merkle and used for efficient authentication of a public file

[97, 95] as well as a digital signature construction in [96]. Merkle’s hash tree can be described

as an authenticated dictionary data structure, allowing efficient proofs (relative to the root

hash) of membership or non-membership of elements in the set. Authenticated dictionaries

were adapted and enhanced to manage certificate revocation lists in [83, 107].

Authenticated dictionaries were adapted to relations in [47, 46], where algorithms based

on Merkle trees and refinements in [107] are proposed for authenticating relations and

verifying basic relational queries. In [111] the authors envision authenticated B-trees and

the application of commutative hash functions to improve certain performance metrics,

but abandon guarantees of completeness for queries, and provide no implementation. To

our knowledge, no implementation and thorough performance evaluation of B-tree based

techniques has been performed.

Our work draws on the above results (providing the integrity guarantees of [47]) but

offers the first design and implementation of an authenticated database using a database

management system. The algorithms in existing work were described with a main mem-

ory implementation in mind: the data structures are tree-based, and the algorithms require

pointer traversals and modifications that are not appropriate for a relational DBMS. Further,

the algorithms are evaluated merely in terms of worst case computational and communi-

cation complexity, which can hide critical factors in the implementation. For example, we

show that minimizing the number of hashes is not a major concern, but a tree organization

that minimizes index lookups is critical.

Authenticating queries using the techniques above may require revealing some data items

that are not in the query answer. It is the goal of [98, 110] to provide authenticated answers

while also maintaining certain secrecy properties. We focus exclusively on integrity in this

chapter. Finally, in [124], hashing is used in conjunction with a trusted external party to

make audit logs tamper resistant.

127

Chapter 6

CONCLUSION

This dissertation has addressed the challenges of providing confidentiality and integrity

guarantees for complex data exchanged across heterogeneous systems. The subtle disclosures

that may result, even under the correct enforcement of access control policies, pose a risk in

all settings, but are particularly dangerous for distributed data exchange where it is more

difficult to prevent collusion and moderate the behavior of authorized users. In addition,

since heterogeneous distributed systems are not trusted, cryptographic techniques must be

employed to ensure security properties. The contributions of this dissertation can help

data owners and participants achieve the promise of convenient access to data and flexible

collaboration, while avoiding the peril of data misuse.

6.1 Review of contributions

In Chapter 3 a novel analysis of disclosure was presented, inspired by the perfect secrecy

[122] standard applied by Shannon to cryptosystems. The analysis captures subtle partial

disclosures that may occur when a data owner publishes one or more views, and seeks to

protect the answer to a query. We show that for simple relational queries and views, it

is possible to decide query-view security, and we provide tight complexity bounds for the

decision problem. The definition of query-view security has some surprising consequences.

For example, it shows that simply removing sensitive columns from a relational table—a

common strategy in practice—does not totally protect the sensitive data items. The analysis

can account for some forms of knowledge the user may already have, resulting in a notion of

query-view security relative to prior knowledge. It can also address the disclosure resulting

from collusion by authorized parties.

In Chapter 4 we described a framework for protected data publishing, which uses en-

cryption to enforce access control on data that is stored at untrusted hosts. The framework

allows the data owner to go from high-level access control policies to physically-encrypted

128

documents in an automatic way. The resulting encrypted data consists of a single database

instance that can be published to all subjects. Sets of cryptographic keys are used to

negotiate access by authorized users.

The framework includes an intermediate representation (the tree protection from Section

4.3), which models the protected database with a precise access semantics. This abstract

model is important because it can be used as the basis of logical manipulations to optimize

the security or processing efficiency of the encrypted instances. The abstract model of

protection also forms the basis for a formal security analysis.

In Chapter 5 we described a framework for authentic data exchange, and then described

implementation techniques for a key component of that framework. These techniques allow

a client of an untrusted database to efficiently store and maintain authentication metadata.

When querying the untrusted database, clients retrieve the authentication metadata and use

it to verify that data has not been modified. When updating the database, clients must also

update the authentication metadata. We proposed a novel representation of the hash tree

metadata for efficient storage and maintenance in a relational database. The performance

analysis proves that the cost of integrity is modest, and that these techniques can be used

to prevent tampering in data exchange scenarios that use relational systems as a storage

mechanism.

6.2 Future directions

There are a number of remaining challenges for securing distributed data exchange. These

include specific challenges that follow from the contributions of this work, as well as the

overarching problem of limited adoption of security technologies in practice.

6.2.1 Adoption and deployment of security technology

The degree of adoption of security technologies is often disappointing, with many proposed

technologies never deployed beyond research prototypes. Usability issues are a major reason

for poor adoption [135].

The publishing framework described in Chapter 4 has the potential to ease the burden

of securing distributed data. The encryption of data is driven by access control policies,

129

so that a user or administrator does not have to implement and apply complex encryption

algorithms. But in some cases security goals and usability goals are directly in conflict. For

example, in Chapter 5 our goal was to distribute data with verifiable proof of authorship

and authenticity. Authenticity guarantees restrict the modification of data by unauthorized

parties. They also restrict the reuse of data because derived versions or extracted pieces of

the data are not authorized. There is a tension therefore between the security goal of resist-

ing modification, and the usability objective of allowing reuse, derivation, and extraction.

Negotiating these competing concerns is a compelling direction for future work.

A related challenge for practical database security is that security features are often

implemented across both the database server and the application code built on top of the

database. Developers often use some basic security features of the underlying database

system, but implement customized security features outside the database. This may be

largely the result of a failure in database system security to provide adequate tools for

application developers. For example, one well-known limitation of database access control

is that fine-grained, tuple-level access is not possible or practical in many systems. There

are many reasons to minimize the implementation of security in applications as opposed

to the database. First, if each application needs to re-implement common features, errors

are more likely. Second, it is harder to verify or reason about overall system properties if

security features are in hybrid form. Thus a direction for future investigation is how to

provide the secure data management capabilities application developers can use to avoid

re-implementation.

6.2.2 Disclosure

Many databases are dynamic, that is, they change over time. When a dynamic database is

protected, the disclosures that may result from the adversary witnessing frequent changes

must be taken into account. Note that this is not a problem for the definition of security

presented in Chapter 3. When a view reveals nothing about a query, then subsequent

versions of that view cannot reveal anything about the query either. For weaker notions of

security [36], as well as for other statistical protection techniques, and for anonymization

[127], this is not the case. Capturing subtle disclosures in a dynamic setting remains an

130

interesting area of inquiry.

In Section 2, we described a range of protection mechanisms including partial or complete

encryption, protection by publishing only relational views or aggregates, anonymization, etc.

In real applications, these mechanisms may be applied in combination, or an adversary may

combine data from the same source that has been protected in differed ways. There is

currently no unified framework for the analysis of disclosure that may result from these

different protection mechanisms.

6.2.3 Confidentiality for distributed data

Dynamic data is also the context for open problems related to encrypted publishing. When

the underlying database changes, policies must be re-evaluated, the encrypted database

re-published, and new keys possibly disseminated to users. The techniques described in

Chapter 4 can easy support these scenarios, but may be inefficient because the entire dataset

must be transmitted even for small changes to the database. A preferred strategy would

generate incremental updates to the encrypted document. There are connections here to the

techniques of incremental view maintenance [75]: the policy queries are the views that must

be maintained under updates to the underlying data. But there are also novel issues here

because of the added complexity of tree protections and the normalization and rewritings

applied to them to generate the encrypted XML. Changes to access control policies or user

roles, even in the absence of changes to the data, also require updates to the published data.

6.2.4 Integrity for distributed data

Many open issues remain in the realization of authentic data publishing. Some of these

issues have been addressed by the author in work not included in this dissertation. In [105]

we investigate some of the challenges and trade-offs of signature granularity to protect data

authenticity. We also propose the use of homomorphic signatures in an attempt to efficiently

provide authenticity while at the same time permitting controlled derivation from signed

data. A general infrastructure for storing, propagating, and processing integrity annotations

is needed. Recent research by others [16] has addressed this problem (as described in Section

5.7). Finally, the authenticity of data authored by multiple parties requires further study,

131

as described in Section 5.6.

Security features are often treated as an afterthought. They are integrated into existing

systems at great expense to mitigate the risk of inappropriate use. Instead, secure data

management should be seen as an enabling technology. When data management tasks are

trusted, new forms of communication, interaction and collaboration become possible since

participants are comfortable releasing data or are certain of its authenticity. Hopefully, the

contributions of this dissertation, along with the work of others in the research community,

will allow the development of novel applications.

132

BIBLIOGRAPHY

[1] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the com-
putational soundness of formal encryption). In IFIP International Conference on
Theoretical Computer Science, Sendai, Japan, 2000.

[2] Mart́ın Abadi and Bogdan Warinschi. Security analysis of cryptographically controlled
access to xml documents. In Principles of Database Systems (PODS), 2005.

[3] Nabil R. Adam and John C. Wortmann. Security-control methods for statistical
databases. ACM Computing Surveys, 21(4):515–556, Dec. 1989.

[4] Gagan Aggarwal, Mayank Bawa, Prasanna Ganesan, Hector Garcia-Molina, Krish-
naram Kenthapadi, Rajeev Motwani, Utkarsh Srivastava, Dilys Thomas, and Ying
Xu. Two can keep a secret: A distributed architecture for secure database services.
In Conference on Innovative Data Systems Research (CIDR), pages 186–199, 2005.

[5] Rakesh Agrawal, Alexandre Evfimievski, and Ramakrishnan Srikant. Information
sharing across private databases. In SIGMOD Conference, pages 86–97, 2003.

[6] Ross Anderson. Security Engineering: A Guide to Building Dependable Distributed
Systems. Wiley Computer Publishing, 2001.

[7] Kazumaro Aoki and Helger Lipmaa. Fast Implementations of AES Candidates. In
The 3rd Advanced Encryption Standard Candidate Conference, pages 106–120. NIST,
13–14 2000.

[8] Berkeley db xml. Available at www.sleepycat.com.

[9] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A composable cryptographic
library with nested operations. In Conference on Computer and Communications
Security (CCS), pages 220–230, New York, NY, USA, 2003. ACM Press.

[10] François Bancilhon and Nicolas Spyratos. Protection of information in relational data
bases. In Conference on Very Large Databases (VLDB), pages 494–500, 1977.

[11] François Bancilhon and Nicolas Spyratos. Algebraic versus probabilistic independence
in data bases. In Principles of Database Systems (PODS), pages 149–153, 1985.

[12] Josh Benaloh and Jerry Leichter. Generalized secret sharing and monotone functions.
In CRYPTO, pages 27–35, 1988.

133

[13] E. Bertino, S. Castano, and E. Ferrari. Securing XML documents with Author-X.
IEEE Internet Computing, May/June 2001.

[14] Elisa Bertino, Barbara Carminati, and Elena Ferrari. A temporal key management
scheme for secure broadcasting of xml documents. In Conference on Computer and
Communications Security (CCS), pages 31–40, New York, NY, USA, 2002. ACM
Press.

[15] Elisa Bertino and Elena Ferrari. Secure and selective dissemination of xml docu-
ments. ACM Transactions on Information and System Security (TISSEC), 5(3):290–
331, 2002.

[16] Elisa Bertino, Giovanni Mella, Gianluca Correndo, and Elena Ferrari. An infrastruc-
ture for managing secure update operations on xml data. In Symposium on Access
control models and technologies, pages 110–122. ACM Press, 2003.

[17] José A. Blakeley, Neil Coburn, and Per-Åke Larson. Updating derived relations:
detecting irrelevant and autonomously computable updates. ACM Transactions on
Database Systems, 14(3):369–400, 1989.

[18] Scott Boag, Don Chamberlin, James Clark, Daniela Florescu, Jonathan
Robie, and Jerome Simeon. XQuery 1.0: An XML query language.
http://www.w3.org/TR/xquery/, May 2003.

[19] Philip Bohannon, Markus Jakobsson, and Sukamol Srikwan. Cryptographic ap-
proaches to privacy in forensic DNA, databases. In Public Key Cryptography, 2000.

[20] Luc Bouganim, François Dang Ngoc, and Philippe Pucheral. Client-based access
control management for xml documents. In Conference on Very Large Databases
(VLDB), pages 84–95, 2004.

[21] Luc Bouganim, François Dang Ngoc, Philippe Pucheral, and Lilan Wu. Chip-secured
data access: Reconciling access rights with data encryption. In Conference on Very
Large Databases (VLDB), pages 1133–1136, 2003.

[22] Luc Bouganim and Philippe Pucheral. Chip-secured data access: Confidential data on
untrusted servers. In Conference on Very Large Databases (VLDB), pages 131–142,
2002.

[23] Bouncy Castle. Open implementation of java cryptography api. www.bouncycastle.org.

[24] Laurence Bull, Peter Stanski, and David McG. Squire. Content extraction signatures
using xml digital signatures and custom transforms on-demand. In Conference on
World Wide Web, pages 170–177. ACM Press, 2003.

134

[25] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why and where: A charac-
terization of data provenance. In ICDT, pages 316–330, 2001.

[26] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. On propagation of deletions
and annotations through views. In PODS ’02, pages 150–158, 2002.

[27] Michael Burrows, Martin Abadi, and Roger Needham. A logic of authentication. ACM
Transactions on Computer Systems, 8(1):18–36, 1990.

[28] Laura Chiticariu, Wang Chiew Tan, and Gaurav Vijayvargiya. Dbnotes: a post-it
system for relational databases based on provenance. In SIGMOD Conference, pages
942–944, 2005.

[29] SungRan Cho, Sihem Amer-Yahia, Laks V. S. Lakshmanan, and Divesh Srivastava.
Optimizing the secure evaluation of twig queries. In Conference on Very Large
Databases (VLDB), pages 490–501, 2002.

[30] James Clark. XML path language (XPath), 1999. Available from the W3C,
http://www.w3.org/TR/xpath.

[31] Privacy Rights Clearinghouse. Chronology of data breaches reported since the choi-
cepoint incident. available at http://www.privacyrights.org/, 2005.

[32] Jason Crampton. Applying hierarchical and role-based access control to xml docu-
ments. In ACM Workshop on Secure Web Services, pages 41–50, 2004.

[33] Yingwei Cui and Jennifer Widom. Practical lineage tracing in data warehouses. In
International Conference on Data Engineering, pages 367–378, 2000.

[34] Joan Daemen and Vincent Rijmen. The block cipher rijndael. In CARDIS, pages
277–284, 1998.

[35] T. Dalenius. Towards a methodology for statistical disclosure control. Statistik Tid-
skrift, 15:429–444, 1977.

[36] Nilesh Dalvi, Gerome Miklau, and Dan Suciu. Asymptotic conditional probabilities
for conjunctive queries. In Proceedings of the International Conference on Database
Theory (ICDT), 2005.

[37] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. A fine-
grained access control system for xml documents. Transactions on Information and
System Security (TISSEC), 2002.

135

[38] Judith DeCew. Privacy. In Edward N. Zalta, editor, The Stanford Encyclopedia of Phi-
losophy. Available at: http://plato.stanford.edu /archives/sum2002/entries/privacy/,
Summer 2002.

[39] Dorothy Denning. Cryptography and Data Security. Addison-Wesley Publishing Co.,
1982.

[40] Jack B. Dennis and Earl C. Van Horn. Programming semantics for multiprogrammed
computations. Communications of the ACM, 9(3):143–155, 1966.

[41] Jack B. Dennis and Earl C. Van Horn. Programming semantics for multiprogrammed
computations. Communications of the ACM, 9(3):143–155, 1966.

[42] Alin Deutsch, Mary Fernandez, and Dan Suciu. Storing semistructured data with
stored. In Conference on Management of data (SIGMOD), pages 431–442, New York,
NY, USA, 1999. ACM Press.

[43] Alin Deutsch and Yannis Papakonstantinou. Privacy in database publishing. In
Proceedings of the International Conference on Database Theory (ICDT), 2005.

[44] Alin Deutsch and Val Tannen. Containment and integrity constraints for xpath. In
Knowledge Representation meets Databases Workshop (KRDB), 2001.

[45] P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls, and S. G. Stubblebine.
Flexible authentication of xml documents. In Conference on Computer and Commu-
nications Security (CCS), pages 136–145. ACM Press, 2001.

[46] Premkumar Devanbu, Michael Gertz, Charles Martel, and Stuart G. Stubblebine. Au-
thentic data publication over the internet. Journal of Computer Security, 11(3):291–
314, 2003.

[47] Premkumar T. Devanbu, Michael Gertz, Chip Martel, and Stuart G. Stubblebine.
Authentic third-party data publication. In IFIP Work. on Database Security, 2000.

[48] W. Diffie and M.E. Hellman. New directions in cryptography. In IEEE Transactions
on Information Theory, pages 644–654, 1976.

[49] Josep Domingo-Ferrer. A provably secure additive and multiplicative privacy homo-
morphism. In Information Security Conference, ISC, volume 2433 of Lecture Notes
in Computer Science, pages 471–483. Springer, 2002.

[50] Xin Dong, Alon Y. Halevy, and Igor Tatarinov. Containment of nested xml queries.
In Conference on Very Large Databases (VLDB), pages 132–143, 2004.

136

[51] Donald Eastlake and Joseph Reagle. Xml encryption syntax and processing.
http://www.w3.org/TR/xmlenc-core, 3 October 2002. W3C Proposed Recommen-
dation.

[52] H. Edelsbrunner. Dynamic data structures for orthogonal intersection queries. Tech-
nical report, Technical University of Graz, Austria, 1980.

[53] Charles Elkan. Independence of logic database queries and update. In Principles of
database systems (PODS), pages 154–160, 1990.

[54] Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting pri-
vacy breaches in privacy preserving data mining. In Principles of database systems
(PODS), pages 211–222, New York, NY, USA, 2003.

[55] Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting pri-
vacy breaches in privacy preserving data mining. In Principles of database systems
(PODS), pages 211–222. ACM Press, 2003.

[56] Data encryption standard (DES). Federal Information Processing Standard Publica-
tion 46, 1977.

[57] Digital signature standard. Federal Information Processing Standard Publication 186-
2, 2000.

[58] Secure hash standard (SHA). Federal Information Processing Standard Publication
180-2, 2000.

[59] Advanced encryption standard (AES). Federal Information Processing Standard Pub-
lication 197, 2001.

[60] R. Fagin. Probabilities on finite models. Notices of the Am. Math. Soc., October:A714,
1972.

[61] R. Fagin. Probabilities on finite models. Journal of Symbolic Logic, 41(1), 1976.

[62] Wenfei Fan, Chee-Yong Chan, and Minos Garofalakis. Secure xml querying with
security views. In SIGMOD International Conference on Management of Data, pages
587–598, New York, NY, USA, 2004. ACM Press.

[63] Joan Feigenbaum, Eric Grosse, and James A. Reeds. Cryptographic protection of
membership lists. Newsletter of the Intern Assoc for Cryptologic Research, 9(1):16–
20, 1992.

137

[64] Joan Feigenbaum, Mark Y. Liberman, and Rebecca N. Wright. Cryptographic protec-
tion of databases and software. In Distributed Computing and Crypto, pages 161–172,
1991.

[65] Mary Fernandez, Yana Kadiyska, Dan Suciu, Atsuyuki Morishima, and Wang-Chiew
Tan. Silkroute: A framework for publishing relational data in xml. ACM Transactions
on Database Systems (TODS), 27(4):438–493, 2002.

[66] T. Fiebig, S. Helmer, C.-C. Kanne, G. Moerkotte, J. Neumann, R. Schiele, and
T. Westmann. Anatomy of a native xml base management system. The VLDB
Journal, 11(4):292–314, 2002.

[67] C.M. Fortuin, P.W. Kasteleyn, and J. Ginibre. Correlation inequalities on some par-
tially ordered sets. Communications in Mathematical Physics, 22:89–103, 1971.

[68] Irini Fundulaki and Maarten Marx. Specifying access control policies for xml doc-
uments with xpath. In ACM Symposium on Access control models and technologies
(SACMAT), pages 61–69, New York, NY, USA, 2004. ACM Press.

[69] Alban Gabillon and Emmanuel Bruno. Regulating access to xml documents. Proc.
Working Conference on Database and Application Security, July 2001.

[70] Ruth Gavison. Privacy and the limits of law. Yale Law Journal, 89:421–471, 1980.

[71] Lise Getoor, Benjamin Taskar, and Daphne Koller. Selectivity estimation using prob-
abilistic models. In SIGMOD, 2001.

[72] David K. Gifford. Cryptographic sealing for information secrecy and authentication.
Communications of the ACM, 25(4):274–286, 1982.

[73] G. Grätzer. General Lattice Theory. Birkhäuser Verlag, Basel, 1978.

[74] Patricia P. Griffiths and Bradford W. Wade. An authorization mechanism for a re-
lational database system. ACM Transactions on Database Systems, 1(3):242–255,
1976.

[75] Ashish Gupta and Iderpal Singh Mumick, editors. Materialized views: techniques,
implementations, and applications. MIT Press, Cambridge, MA, USA, 1999.

[76] Ashish Gupta, Yehoshua Sagiv, Jeffrey D. Ullman, and Jennifer Widom. Constraint
checking with partial information. In Principles of database systems (PODS), pages
45–55, 1994.

138

[77] U.s. health insurance portability and accountability act (hipaa). Available at:
http://www.hhs.gov/ocr/hipaa/.

[78] Hakan Hacigumus, Balakrishna R. Iyer, Chen Li, and Sharad Mehrotra. Execut-
ing SQL over encrypted data in the database service provider model. In SIGMOD
Conference, 2002.

[79] Hakan Hacigumus, Balakrishna R. Iyer, and Sharad Mehrotra. Providing database as
a service. In International Conference on Data Engineering (ICDE), 2002.

[80] Alon Halevy. Answering queries using views: A survey. VLDB Journal, 10(4):270–294,
2001.

[81] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Lakshmanan, A. Nierman,
S. Paparizos, J. M. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu. Timber:
A native xml database. The VLDB Journal, 11(4):274–291, 2002.

[82] J. Killian. Efficiently committing to databases. Technical report, NEC Research
Institute, February 1998.

[83] Paul C. Kocher. On certificate revocation and validation. In Fin. Cryptography, pages
172–177, 1998.

[84] D. Koller and A. Pfeffer. Probabilistic frame-based systems. In Conference on Arti-
ficial Intelligence, pages 580–587, 1998.

[85] Hans-Peter Kriegel, Marco Potke, and Thomas Seidl. Managing intervals efficiently
in object-relational databases. In VLDB Conference, pages 407–418, 2000.

[86] M. Kudo and S. Hada. Xml document security based on provisional authorization.
Computer and Communication Security (CCS), November 2000.

[87] Sun Microsystems Laboratory. Xacml implementation.
http://sunxacml.sourceforge.net.

[88] P. Laud. Symmetric encryption in automatic analyses for confidentiality against active
adversaries. In IEEE Symposium on Security and Privacy, pages 71–85, 2004.

[89] T. Lee, Stephane Bressan, and Stuart E. Madnick. Source attribution for query-
ing against semi-structured documents. In Workshop on Web Information and Data
Management, 1998.

[90] Alon Y. Levy and Yehoshua Sagiv. Queries independent of updates. In Conference
on Very Large Data Bases (VLDB), pages 171–181, 1993.

139

[91] David Maier and Lois M. L. Delcambre. Superimposed information for the internet.
In WebDB (Informal Proceedings), pages 1–9, 1999.

[92] Kevin McCurley. As quoted in [6], page 1., August 1998.

[93] Catherine Meadows. Formal verification of cryptographic protocols: A survey. In
ASIACRYPT ’94: Conference on the Theory and Applications of Cryptology, pages
135–150, London, UK, 1995. Springer-Verlag.

[94] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

[95] Ralph C. Merkle. Protocols for public key cryptosystems. In Symposium on Security
and Privacy, 1980.

[96] Ralph C. Merkle. A certified digital signature. In CRYPTO, pages 218–238, 1989.

[97] Ralph Charles Merkle. Secrecy, authentication, and public key systems. PhD thesis,
Information Systems Laboratory, Stanford University, 1979.

[98] Silvio Micali, Michael O. Rabin, and Joe Kilian. Zero-knowledge sets. In Symposium
on Foundations of Computer Science (FOCS), 2003.

[99] Daniele Micciancio and Bogdan Warinschi. Completeness theorems for the abadi-
rogaway logic of encrypted expressions. Journal of Computer Security, 12(1):99–129,
2004. Preliminary version in WITS 2002.

[100] Daniele Micciancio and Bogdan Warinschi. Soundness of formal encryption in the
presence of active adversaries. In Theory of cryptography conference (TCC) 2004,
volume 2951, pages 133–151, Feb 2004.

[101] Gerome Miklau and Dan Suciu. Cryptographically enforced conditional access for
XML. Fifth International Workshop on the Web and Databases (WebDB 2002), June
2002.

[102] Gerome Miklau and Dan Suciu. Controlling access to published data using cryptog-
raphy. In Conference on Very Large Databases (VLDB), pages 898–909, September
2003.

[103] Gerome Miklau and Dan Suciu. Controlling access to published data using cryptog-
raphy. In Proceedings of the 29th VLDB Conference, Berlin, Germany, September
2003.

140

[104] Gerome Miklau and Dan Suciu. A formal analysis of information disclosure in data
exchange. In Proceedings of the 2004 Conference on Management of Data (SIGMOD),
pages 575–586. ACM Press, 2004.

[105] Gerome Miklau and Dan Suciu. Managing integrity for data exchanged on the web.
In WebDB, pages 13–18, 2005.

[106] Makoto Murata, Akihiko Tozawa, Michiharu Kudo, and Satoshi Hada. Xml access
control using static analysis. In ACM conference on Computer and communications
security (CCS), pages 73–84, New York, NY, USA, 2003. ACM Press.

[107] Moni Naor and Kobbi Nissim. Certificate revocation and certificate update. In
USENIX Security Symposium, 1998.

[108] OASIS. eXtensible Access Control Markup Language (XACML). http://www.oasis-
open.org/committees/xacml.

[109] Manuel Oriol and Michael Hicks. Tagged sets: a secure and transparent coordination
medium. In Conference on Coordination Models and Languages (COORDINATION),
volume 3454 of LNCS, pages 252–267. Springer-Verlag, April 2005.

[110] Rafail Ostrovsky, Charles Rackoff, and Adam Smith. Efficient consistency proofs on
a committed database. MIT LCS Technical Report TR-887, Feb 2003.

[111] HweeHwa Pang and Kian-Lee Tan. Authenticating query results in edge computing.
In International Conference on Data Engineering (ICDE), 2004.

[112] F. P. Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag, New
York, NY, 1985.

[113] James Randall. Hash function update due to potential weakness found in sha-1. RSA
Laboratories, Technical Note, March 2005.

[114] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy homo-
morphisms. In Foundations of Secure Computation, pages 169–179. Academic Press,
1978.

[115] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[116] R.L. Rivest. The MD5 message digest algorithm. RFC 1320, April 1992.

[117] Michael Rys, Don Chamberlin, and Daniela Florescu. Xml and relational database
management systems: the inside story. In Conference on Management of data (SIG-
MOD), pages 945–947, New York, NY, USA, 2005. ACM Press.

141

[118] Bruce Schneier. Applied Cryptography, Second Edition. John Wiley and Sons, Inc.,
1996.

[119] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[120] Jayavel Shanmugasundaram, Eugene J. Shekita, Rimon Barr, Michael J. Carey,
Bruce G. Lindsay, Hamid Pirahesh, and Berthold Reinwald. Efficiently publishing
relational data as xml documents. In Conference on Very Large Data Bases (VLDB),
pages 65–76, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[121] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, David J. DeWitt,
and Jeffrey F. Naughton. Relational databases for querying xml documents: Limi-
tations and opportunities. In Conference on Very Large Data Bases, pages 302–314.
Morgan Kaufmann, 1999.

[122] C. E. Shannon. Communication theory of secrecy systems. In Bell System Technical
Journal, 1949.

[123] Claude E. Shannon. A mathematical theory of communication. Bell Systems Technical
Journal, 27(3):379–423, July 1948.

[124] Richard T. Snodgrass, Shilong Stanley Yao, and Christian Collberg. Tamper detection
in audit logs. In VLDB Conference, 2004.

[125] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In IEEE Symposium on Security and Privacy, pages
44–55, 2000.

[126] Douglas R. Stinson. Cryptography: Theory and Practice. CRC Press, 2nd edition,
2002.

[127] Latanya Sweeney. k-Anonymity: a model for protecting privacy. Int. J. on Uncer-
tainty, Fuzziness and Knowledge-based Systems, 10(5), 2002.

[128] Tamino xml server. Available at www.softwareag.com.

[129] Wang-Chiew Tan. Equivalence among relational queries with annotations. In Inter-
national Workshop on Data Base and Programming Languages (DBPL), 2003.

[130] Auguste Kerckhoffs (von Nieuwenhof). La cryptographie militaire. (French) [Military
cryptography]. Journal des Sciences Militaires, IX(1), January 1883.

[131] W3C. Annotea project. http://www.w3.org/2001/Annotea/.

142

[132] Y. Richard Wang and Stuart E. Madnick. A polygen model for heterogeneous database
systems: The source tagging perspective. In VLDB, pages 519–538, 1990.

[133] S. Warren and L. Brandeis. The right to privacy. Harvard Law Review, 4:193–220,
1890.

[134] Alan F. Westin. Privacy and Freedom. Atheneum, New York, 1967.

[135] Alma Whitten and J. D. Tygar. Why Johnny can’t encrypt: A usability evaluation
of PGP 5.0. In 8th USENIX Security Symposium, 1999.

[136] William A. Wulf, Ellis S. Cohen, William M. Corwin, Anita K. Jones, Roy Levin,
C. Pierson, and Fred J. Pollack. Hydra: The kernel of a multiprocessor operating
system. Communications of the ACM, 17(6):337–345, 1974.

[137] Xyleme server. Available at www.xyleme.com.

[138] XSL Transformations (XSLT), version 1.0. http://www.w3.org/TR/xslt, 16 Novem-
ber 1999. W3C recommendation.

[139] Xiaochun Yang and Chen Li. Secure xml publishing without information leakage in
the presence of data inference. In Conference on Very Large Databases, pages 96–107,
2004.

[140] A. Yao. How to generate and exchange secrets. In Symposium on Foundations of
Computer Science (FOCS), volume 13, pages 162–167, 1986.

[141] Andrew Chi-Chih Yao. Protocols for secure computations. In Symposium on Foun-
dations of Computer Science (FOCS), pages 160–164, 1982.

[142] Ting Yu, Divesh Srivastava, Laks V. S. Lakshmanan, and H. V. Jagadish. Compressed
accessibility map: Efficient access control for xml. In Conference on Very Large
Databases (VLDB), pages 478–489, 2002.

[143] Ting Yu, Divesh Srivastava, Laks V. S. Lakshmanan, and H. V. Jagadish. A com-
pressed accessibility map for xml. ACM Transactions on Database Systems, 29(2):363–
402, 2004.

143

VITA

Gerome Miklau was born in Paris and raised in New York City. He received dual

bachelor’s degrees in Mathematics and in Rhetoric from the University of California,

Berkeley in 1995. He received an M.S. in Computer Science in 2001 and a Ph.D.

in Computer Science in 2005, both from the University of Washington. Beginning

September 2005, he will be an Assistant Professor at the University of Massachusetts,

Amherst.

