
A Framework for Utility-Driven Network Trace Anonymization

Abhinav Parate, Gerome Miklau
University of Massachusetts, Amherst

Department of Computer Science
140 Governors Drive, Amherst, MA

aparate@cs.umass.edu, miklau@cs.umass.edu

Technical Report No. 2008-038

Abstract

The publication of network traces is critical for network research but their release is highly constrained by pri-
vacy and security concerns. The importance of a framework for anonymizing traces to provide different levels of
security and utility to promote trace publication has been identified in the literature. However, the current state-of-art
anonymization techniques have failed to provide the guarantees on privacy and security. In this paper, we propose a
framework in which a trace owner can match an anonymizing transformation with the requirements of analysts. The
trace owner can release multiple transformed traces, each customized to an analysts needs, or a single transformation
satisfying all requirements. The framework enables formal reasoning about anonymization policies, for example to
verify that a given trace has utility for the analyst, or to obtain the most secure anonymization for the desired level
of utility. We validate our techniques by applying them to a real enterprise network trace and measuring the suc-
cess of attacks by an informed adversary. The proposed framework is extensible and it allows for the addition of
anonymization techniques as they evolve.

1 Introduction
Sharing network traces across institutions is critical for advancing network research and protecting against cyber-
infrastructure attacks. But the public release of network traces remains highly constrained by privacy and security
concerns[5, 19]. Traces contain highly sensitive information about users in the network, proprietary applications
running in enterprises, as well as network topology and other network-sensitive information that could be used to aid
a cyber-attack.

The most common approach to enabling secure trace analysis is through anonymizing transformations. The orig-
inal trace is transformed by removing sensitive content and obscuring sensitive fields and the result is released to the
public. The appeal of trace anonymization is that the trace owner can generate a single anonymized trace, publish
it, and analysts can perform computations on the trace independently of the trace owner. A number of anonymizing
transformations have been proposed for network traces, with IP packet traces receiving the most attention. Proposed
anonymization techniques include tcpurify [3], the tcpdpriv [2] and Crypto-PAn [8] tools (which can preserve prefix
relationships among anonymized IP addresses), as well as frameworks for defining transformations, such as tcpmkpub
[15].

Unfortunately, reliable standards for the privacy and utility of these transformations has been elusive. A number
of recent attacks on trace transformation techniques have been demonstrated by researchers [18, 7, 12, 4, 6] and the
research community is still actively pursuing metrics for trace privacy that can guide trace owners [18, 7]. In addition,
the utility of anonymized traces to analysts has received less attention than privacy, and the benefits of improved
anonymizing transformations are sometimes at the cost of usefulness to analysts of the published trace.

In this paper we address the problem faced by a trace owner who wishes to allow a group of independent analysts
to study an IP-level network trace. Our trace publication framework allows the trace owner to anonymize a trace
for the needs of a particular analysis, or a related set of analyses. The published traces can be more secure because
they provide only the needed information, omitting everything else. In addition, we provide procedures for formally
verifying that a published trace meets utility and privacy objectives.

1

T

Analyst A

T1

T2

T3

Analyst B

Analyst C

Analyst D

Original Trace Transformed Traces Analysts

T23

Req

A

Req

B

Req

C

Req

D

Figure 1: The proposed trace protection framework: the original trace T may be transformed in multiple ways
(T1, T2, T3, T23) to support the requirements of different analysts.

Our publication framework is illustrated informally in Figure 1. The figure shows an original trace T transformed
in four different ways, for use by different analysts. Trace T1 contains sufficient information for both analysts A and
B. Trace T2 is devised for use exclusively by the analyst C, and trace T3 is customized for the needs of analyst D.
An alternative to publishing both trace T2 and T3 is to derive the single trace T23 which can support analysts C and D
simultaneously.

The goal of this paper is not to propose a novel anonymizing transformation for network traces. Instead, our
goal is to create a framework in which basic trace transformation operations can be applied with a precise, formal
understanding of their impact on trace utility and privacy. Our framework consists of the following:

– Formal transformations A set of simple, formally-defined transformation operators that are applied to the
trace to remove or obscure information. These include encryption, field removal, domain translation, etc. Trans-
formation operators can be combined to form composite transformations. The output of the chosen composite
transformation is published (along with the description of the transformation).

– Input from the analyst We assume the requesting trace analyst provides a description of the information needed
for analysis. We propose a simple language for utility constraints which express the need for certain relationships
to hold between the original trace and the published trace. The constraints can require, for example, that certain
fields are present and unmodified, or that other values can be obscured as long as they preserve the ordering
relationship present in the original trace. It is usually straightforward to determine the constraints that are
needed to support a particular analysis; we provide examples of recent network studies of IP traces and their
utility requirements in Section 2 and Appendix A.1.

– Formally evaluating privacy and utility Because both the transformations and the utility requirements of
analysts are specified formally, it is possible for the trace owner to:

– decide whether a composite trace transformation satisfies an analyst’s requirements, implying that the
desired analysis can be carried out on the transformed trace with perfect utility.

– compute the most secure transform satisfying a given set of analyst requirements.

– compare the security of transforms or analyze the impact of a collusion attack that might allow published
traces to be combined.

Publishing multiple traces Because our trace transformations are often customized to the needs of individual anal-
yses, it is worth comparing our framework with an alternative to trace anonymization recently proposed by Mogul et
al [14]. In that work, the authors propose an execution framework in which analysts submit code to the trace owner.
The trace owner executes the code locally on the trace and publishes only the program output to the trace analyst. The
principle challenge is verifying whether the program output can be safely released without violating privacy.

In our framework, the analyst submits a set of utility constraints – not a general-purpose program. Therefore,
the trace owner does not bear the significant burden of evaluating the safety of a program or the danger of covert
channels. In addition, we still publish a transformed trace which both relieves the trace owner of the need to provide
computational resources, and allows the analyst to refine their computations on the trace. We believe that our utility

2

constraints are therefore the right methodology for supporting a trace publisher in customizing trace transformation to
the needs of analysts.

The advantages of our framework do entail some challenges for the trace owner. Compared with conventional
trace anonymization, the trace owner in our framework must make more fine-grained choices about which transformed
traces to publish to which users, and must compute and publish multiple anonymized traces instead of just one. We
believe that the benefits to trace security warrant this effort. Our transformation operators are efficient to apply, and
we provide a number of tools to help the trace owner make publication decisions. In addition, the trace owner can
choose to publish a single trace supporting multiple analysts. For example, in Figure 1, publishing trace T23 may be
easier than publishing both T2 and T3, but may require a sacrifice in privacy as, intuitively, Analyst C will receive
some additional information used in the trace analysis D.

An additional concern with publishing multiple traces are attacks in which a single party poses as two or more
analysts, or two or more analysts collude. In this case different published views of the trace could be combined
to reveal more information than intended. In the absence of a trustworthy authority validating the identities, it is a
challenge to counter such attacks. We can however analyze the risk of collusion formally: in Section 4 we show that
it is possible to bound how much a group of colluding parties can learn, distinguishing between cases where collusion
is a serious risk and cases where little can be gained from collusion.

The remainder of the paper is organized as follows. In Section 2, we describe a case study in which we apply the
main components of our framework to a trace analysis of TCP connection characteristics. Section 3 describes our trace
transformation operators and our language for specifying analyst requirements. Section 4 details the formal steps in
utility analysis and the computation of most secure transformation for an analysis. Section 5 measures the privacy of
sample transformations quantitatively through experiments on a real network trace. We discuss related work in Section
6 and conclude in Section 7.

2 Example: Inferring TCP Connection Characteristics
In this section, we provide an overview of our framework by describing its use in enabling a real study of TCP con-
nection characteristics carried out by Jaiswal et al. [10]. First, we explain the analysis reseachers wish to perform and
derive the basic requirements that must be satisfied by any usable trace. Then we describe an anonymizing transforma-
tion, and finally, we verify the transformation for the requirements satisfaction and give a brief statement on privacy
of the network trace.
Analysis Description
A TCP connection is identified by two IP addresses (ip1, ip2) and two ports (pt1, pt2), corresponding to the sender
and receiver. Jaiswal et al. study the characteristics of TCP connections through passive monitoring [10]. Their study
focuses on measuring the sender’s congestion window (cwnd) and the connection round-trip time (RTT). In this anal-
ysis, the congestion window of a connection is estimated using a finite state machine (FSM). The transitions in this
FSM are triggered by receiver-to-sender ACKs or by out-of-sequence packet retransmissions. The FSM processes the
packets in connection in the order they were observed at observation point, O. The estimation of variable, RTT, is
done indirectly by adding the trip time of packet from point O to the receiver and then, back to O with the trip time
between point O, the sender and O again. The full details of this estimation can be seen in [10].
Utility Requirements
Based on this description, we present the requirements or the sufficient conditions that must be satisfied by any trans-
formed trace supporting the analysis described.

1. R1 The trace must include the type of the packet (SYN or ACK).

2. R2 The trace must allow the analyst to identify if any given two records belong to the same connection or not.

3. R3 The trace must allow the analyst to order packets in the same connection by sequence numbers(seq no) or
timestamps(ts).

4. R4 The trace should preserve the difference between ts values for packets in same connection.

5. R5 The trace should preserve the difference between seq no for packets in same connection.

6. R6 The sequence numbers of the sender’s packets and the acknowledgement numbers(ack no) of receiver’s
packets of same connection should be comparable for equality in the trace.

3

Table 1: A formal description of utility requirements sufficient to support the example analysis of TCP connection
properties.

Formal Utility Requirements
Any(t)⇒ t.syn = φ(t).syn
Any(t)⇒ t.ack = φ(t).ack
Any(t1, t2)⇒ ((t1.ip1== t2.ip1) && (t1.ip2 ==t2.ip2) && (t1.pt1== t2.pt1)&& (t1.pt2 ==t2.pt2)) =
(φ(t1).ip1== φ(t2).ip1 && φ(t1).ip2 ==φ(t2).ip2 && φ(t1).pt1== φ(t2).pt1 && φ(t1).pt2 ==φ(t2).pt2)
Same-Conn(t1,t2)⇒ (t1.seq no ≤ t2.seq no) = (φ(t1).seq no ≤ φ(t2).seq no)
Same-Conn(t1,t2)⇒ (t1.ts ≤ t2.ts) = (φ(t1).ts ≤ φ(t2).ts)
Same-Conn(t1,t2)⇒ (t1.seq no− t2.seq no) = (φ(t1).seq no− φ(t2).seq no)
Same-Conn(t1,t2)⇒ (t1.ts− t2.ts) = (φ(t1).ts− φ(t2).ts)
Opp-Pckts(t1,t2)⇒ (t1.seq no == t2.ack no) = (φ(t1).seq no = φ(t2).ack no)
Any(t)⇒ t.window = φ(t).window
Any(t)⇒ t.dir = φ(t).dir

Qualifiers
Any(t) { }
Any(t1, t2) { }
Same-Conn(t1,t2){(t1.ip1 == t2.ip1) , (t1.ip2 == t2.ip2) , (t1.pt1 == t2.pt1) , (t1.pt2 == t2.pt2)}
Opp-Pckts(t1,t2) {(t1.ip1 == t2.ip1), (t1.ip2 == t2.ip2), (t1.pt1 == t2.pt1), (t1.pt2 == t2.pt2), (t1.dir! = t2.dir)}

7. R7 The actual value of TCP field, window, should be present in the transformed trace.

The above requirements are specified formally as a set of constraints given in Table 1. The formal requirements
are constraints stating that certain relationships must hold between the original trace and the anonymized trace. The
full description of our specification language is given in Section 3.2.
Trace Anonymization
Next we describe a simple transformation that provably satisfies the above utility requirements. For this transformation,
we concatenate the fields (ip1, ip2), encrypt the concatenated string to obtain anonymized (ip1, ip2) fields. Similarly,
we obtain anonymized (pt1, pt2) by concatenating (pt1, pt2, ip1, ip2) and encrypting it. This will map same (pt1, pt2)
values to different values if they are from different connections. The fields seq no, ack no are anonymized by linear
translation such that minimum value in these fields becomes 0. For example, the values (150, 165, 170) will be linearly
translated to (0, 15, 20). The field ts is anonymized similarly. We do not anonymize any other field. Finally, we remove
any field which is not required in the analysis.

In Section 3.1, we provide a basic set of formal transformation operators. The anonymization scheme mentioned
above can be expressed as a composite function of the formal transformations on individual fields. This composite
transformation function φ is given by:

φ = ΠX ◦ E{ip1,ip2},κ1 ◦ E{pt1,pt2}(ip1,ip2),κ2 ◦ T{ts}(C) ◦ T{seq no,ack no}(C) ◦ I{dir,window,syn,ack}

Here C = {ip1, ip2, pt1, pt2}, E is encryption operator, T is translation operator, Π is projection operator, I is
identity operator, X is the set of required attributes and κ1, κ2 are keys for encryption function.

In Table 2, a simplified example of a network trace is given. The records in this table are then transformed using
above transformation function φ, to obtain the anonymized view given in Table 3. The encrypted values have been
replaced by variables for clarity.
Provable Utility
The utility analysis verifies that the anonymization scheme, defined by the composite transformation function, satisfies
the constraints.

Informally, as we do not anonymize syn and ack bits in the trace, the type information of the packet is available,
satisfying R1. The encryption of connection fields still supports grouping together of records in same connection (R2).
The linear translation of ts and seq no preserves the relative order (R3) and the relative differences in these fields
(R4,R5). By using the same transformation for seq no and ack no, we make sure that R6 is satisfied, allowing the
equality tests on these fields. R7 is satisfied as field,window is not anonymized.

The formal verification process requires formal description of requirements and the anonymization scheme and it
has been described in detail in section 4.1.
Privacy Analysis

4

Table 2: Original Connection Tuples

ts ver ip1 ip2 pt1 pt2 dir seq no ack no window syn ack

30 4 172.31.1.34 172.31.2.212 22 22 → 5000 7280 8760 0 1
30 4 172.31.1.34 172.31.2.89 80 9080 → 1000 1280 17424 0 1
31 4 172.31.1.34 172.31.2.212 80 9080 → 4780 8214 6432 0 1
31 4 172.31.1.34 172.31.2.212 22 22 → 5012 7280 8760 0 1
31 4 172.31.1.34 172.31.2.89 80 9080 → 1012 1280 17424 0 1
32 4 172.31.1.34 172.31.2.212 22 22 ← 7280 5024 65110 0 1
32 4 172.31.1.34 172.31.2.212 22 22 → 5024 7280 8760 0 1
32 4 172.31.1.34 172.31.2.89 80 9080 → 1024 1280 17424 0 1

Table 3: Transformed Tuples

ts ip1 ip2 pt1 pt2 dir seq no ack no window syn ack

0 c1 p1 → 0 2280 8760 0 1
1 c1 p1 → 12 2280 8760 0 1
2 c1 p1 ← 2280 24 65110 0 1
2 c1 p1 → 24 2280 8760 0 1
0 c1 p′

1 → 0 3434 6432 0 1
0 c2 p2 → 0 280 17424 0 1
1 c2 p2 → 12 280 17424 0 1
2 c2 p2 → 24 280 17424 0 1

Any anonymized view of the trace must be checked for the potential leakage of sensitive information about the users
and the network involved. We have described a formal measure for evaluating the trace in section 5. The decision
must be taken by the publisher if this measure indicates risk of information leakage.

Without the measure, we can still give some statements on privacy based on the transformations chosen. In this
example, we can see that the ip addresses and ports have been encrypted together. As a result, the information about
individual hosts is lost. The frequency analysis of individual attributes like IP addresses, which has been key to
many de-anonymizing attacks, is not possible. Also, simple transformation like translation of timestamps can have
significant impact on the privacy and security. Due to the translation, every connection in the anonymized trace starts
at time 0 and hence, inter-arrival information of packets across connections is lost. These translations of ts, seq no,and
ack no make a fingerprinting attack difficult for the adversary. The removal of unrequired fields from the trace prevents
leakage of any undesired fingerprints. Yet, some of the connections and users may have unique feature, which must be
identified using the measure in Section 5 and the decision must be taken by the publisher before releasing the view.

3 The Trace Transformation Framework
In this section we describe the two main objects of our framework: operators, used by the trace owner to define trace
transformations, and constraints, used by analysts to express utility requirements.

3.1 Trace transformation operators
The following transformation operators are applied to a network trace in order to obscure, remove, or translate field
values. Each transformation operator removes information from the trace, making it more difficult for an adversary to
attack, but also less useful for analysts. The trace owner may combine individual operators to form composite trans-
formations, balancing utility and security considerations. The output of a composite transformation will be released to
the analyst.

Operator descriptions

We consider a network trace as a table consisting of records representing IP packets. Each record contains packet
header fields and a timestamp field, but does not include the packet payload.

Projection The simplest operator is projection, which removes from the input trace one or more designated fields.
The term projection is a reference to the relational algebra operator of the same name. Projection is denoted ΠX

5

where X is a set of fields to be retained; all other fields are eliminated in the output trace.

Encryption The encryption operator hides target fields by applying a symmetric encryption function to one or more
fields. The encryption operator is denoted EX(Y),κ where X is set of target fields to be encrypted, Y is an
optional set of grouping attributes for encryption, and κ is a secret encryption key.

The encryption operation is applied as follows. For each record in the trace, the values of attributes from set X
are concatenated with the values of attributes from set Y to form a string. The string is appropriately padded
and then encrypted under a symmetric encryption algorithm using κ as the key. The ciphertext output replaces
the fields of X in the output trace; the values for attributes in Y are not affected.

The encryption key is never shared, so the output trace must be analyzed without access to the values in these
fields. A different encryption key is used for each encryption operator applied, but the same encryption key is
used for all values of the fields in X . Thus, common values in an encrypted field are revealed to the analyst.
However, if two records agree upon values in X but differ in values in Y , then the encrypted values of X will
be different for these records. As a result, the encryption of two records will be same only if they agree upon
values for X as well as for Y .

Table 3 shows the result of applying encryption operators E{ip1,ip2},κ and E{pt1,pt2}(ip1,ip2),κ to Table 2. The
encryption allows connections (identified by source and destination IP, port fields) to be differentiated. However,
it is not possible see that two connections share the same destination port, for example. Further, because source
and destination IP are used as input for encryption of ports, it is not possible to correlate ports across different
connections.

Canonical Ordering The canonical ordering operator is used to replace fields whose actual values can be eliminated
as long as they are replaced by synthetic values respecting the ordering of the original values. The ordering
operator is denoted OX(Y) where X is the set of target fields to be replaced, and Y is an optional set of grouping
fields. If the input set Y is empty, the data entries in fields of X are sorted and replaced by their order in the
sorted list, beginning with zero. If the input set Y is not empty, then the ordering operation is done separately
for each group of records that agree on values for the columns in Y .

Translation The translation operation is applied to numerical fields in the trace, shifting values through addition or
subtraction of a given constant. The operator is denoted TX(Y) where X is a set of target columns that are
translated by the operator. The operator can optionally have another set of columns Y called grouping columns,
which are not affected by the operation.

If the input set Y is empty, all the data-entries in target columns in X are shifted by a parameter c. The shift
is caused by subtracting a random parameter c from each entry in the columns. If the input set Y is not empty,
then all the records in a trace are formed into groups such that the records in each group have same data-entries
for columns in Y . For records in each group, the target columns X are shifted by a parameter c where the value
of parameter is dependent on the group. The parameter value can be chosen randomly or by using a function
that takes data-entry of Y for the group as input.

Scaling The scaling operation scales all the values in a given field by multiplying it with a constant multiplier. The
scaling operator is denoted SX,k for a set of target fields X . The scaling operator acts scales all the values in
fields in X by a factor of k.

It is sometimes convenient to consider the identity transformation, denoted IX , which does not transform field X ,
including it in the output without modification.

Composite Transformations

The operators above can be combined to form composite transformations for a network trace. We assume in the sequel
that composite transformations φ are represented in the following normal form:

φ = ΠX ◦ φ1
X1
◦ φ2

X2
◦ ... ◦ φn

Xn
(1)

where φi
Xi

refers to (i + 1)th operator in φ which acts on attribute set Xi and for all i, φi
Xi

∈ {E, T,O, S, I}. We
denote the set of all such transformations Φ. The last operation applied to the trace is the projection ΠX . Since X is

6

the set of attributes retained by Π, with all others removed, any other operators on fields not in X are irrelevant and can
be disregarded. Thus, without loss of generality we assume ∀i, Xi ⊆ X . Further we restrict our attention to composite
operations in which each field in the trace is affected only by one operation: ∀i, j, Xi∩Xj = {}. In the paper, we will
assume ΠX to be present even if not mentioned in φ. For example, EX1 ◦ TX2 and ΠX1∪X2 ◦ EX1 ◦ TX2 will mean
the same.

Other operators Our framework can easily accommodate other transformation operators. We have found that this
simple set of operators can be used to generate safe transformations supporting a wide range of network analyses
performed in the research literature (in addition to the example in Section 2, we consider other examples in Appendix
A.1). In many cases, adding additional transformation operators to our framework requires only minor extensions to
the algorithms described in Section 4. For example, prefix-preserving encryption of IP addresses could be added as
a special transformation operator. We do not consider it here, since it has been thoroughly discussed in the literature
[8, 15], and we have focused on supporting the wide range of networking studies that do not require prefix preservation.
However, it is worth noting that some potentially important operators (e.g. random perturbation of numeric fields, or
generalization of field values) will lead to analysis results that are approximately correct, but not exact. In this initial
investigation, we are concerned with supporting exact analyses. We leave as future work the consideration of such
operators and the evaluation of approximately correct analysis results.

3.2 Specifying Utility Requirements
In our framework, the analyst seeking access to a network trace must specify their utility requirements formally. These
requirements are expressed as a set of constraints asserting a given relationship between fields in the original trace
and fields in the anonymized trace. The analyst is expected to specify constraints that are sufficient to allow the exact
analysis to be carried out on the trace. Each constraint states which item of information must be preserved while
anonymizing the trace. An item of information in a network trace can be either: (i) the value of some field in the trace,
or (ii) the value of some arithmetic or boolean expression evaluated using the fields from network trace only. The
syntax of notation for the constraint is as follows:

Definition 1 (Utility Constraint). A utility constraint is described by a rule of the following form:

〈qualifier〉 ⇒ (expr(orig) = expr(anon))

A complete grammar for utility constraints is given in Table 4. We use record.field and φ(record).field, which are
terminal symbols in the grammar, to mean any valid field in the original network trace and the transformed trace,
respectively.

The above constraint can be interpreted as “if there are one or more records in a trace that satisfy the qualifying
condition given in 〈qualifier〉, then the value of expression expr evaluated over these records must be equal to the value
of same expression when evaluated over corresponding anonymized records”. We can use this grammar to generate
complex arithmetic expressions involving any fields in the trace.

A constraint rule is unary if its conditions refer to a single record, or binary if it refers to two records. For example,
if an analyst wants to test two port numbers involved in a connection for equality, this can be expressed as the following
unary constraint:

Any(t) ⇒ ((t.pt1 == t.pt2) = (φ(t).pt1 == φ(t).pt2))

The qualifier Any(t) is true for any record in the the trace. The constraint says that if the two port numbers in a record
have same value then the corresponding values in the anonymized record should also be the same. We can see that the
information that needs to be preserved is the equality of port numbers. A transformation need not preserve the actual
values of port numbers in order to satisfy this rule.

A binary constraint requires two records for evaluating its expression. For example, the analyst may want to verify
that the acknowledgement number in one packet is equal to the sequence number of another packet moving in opposite
direction in a TCP connection. This requirement can be expressed as following constraint:

Opp(t1, t2) ⇒ (t1.ack == t2.seq) = (φ(t1).ack == φ(t2).seq)

The information that needs to be preserved here is the equality of two fields across records. The actual values need
not be preserved. The qualifier Opp(t1, t2) is user-defined and it states the conditions that must be true for two

7

Table 4: Constraints Specification Language

constraint-spec: qualifier ⇒ constraint
qualifier: User-defined list of boolean conditions

that must be true for qualifying record(s)
constraint: expr<orig> = expr<anon>
expr<T>: arith-expr<T> | bool-expr<T>

T: orig | anon
arith-expr<T>: arith-expr<T> arith-op arith-expr¡T>
arith-expr<T>: (arith-expr<T>)
arith-expr<T>: field<T>

arith-op: + | - | * | /
bool-expr<T>: bool-expr<T> cond-op bool-expr<T>
bool-expr<T>: (bool-expr<T>)
bool-expr<T>: field<T> bool-op field<T>

cond-op: ′&&′ | ′||′
bool-op: < | > | ≤|≥| == |! =

field<orig>: record.field
field<anon>: φ(record).field

Table 5: Lookup table for unary constraint used for
verifying utility of transformation

expression transformations
t.a ≤ t.b OX(Y), TX(Y),
t.a ≥ t.b IX , SX,k

t.a ≤ t.b Eo
{a}(Y),κ ◦ Eo

{b}(Y),κ

t.a ≥ t.b a /∈ Y ,b /∈ Y , {a, b} ⊆ X
t.a == t.b OX(Y), TX(Y), SX,k

t.a! = t.b E{a}(Y),κ ◦ E{b}(Y),κ, IX

a /∈ Y ,b /∈ Y , {a, b} ⊆ X ,

t.a− t.b
TX(Y), IX

a /∈ Y, b /∈ Y , {a, b} ⊆ X

t.a + t.b
IX

{a, b} ⊆ X

t.a× t.b
IZ

{a, b} ⊆ Z

t.a/t.b
SX,k , IX

{a, b} ⊆ X
t.a IX , a ∈ X

records to belong to packets moving in opposite directions in a connection. In this case, the list of conditions is
{(t1.ip1 == t2.ip1), (t1.ip2 == t2.ip2), (t1.pt1 == t2.pt1), (t1.pt2 == t2.pt2), (t1.dir! = t2.dir)}.

We believe trace analysts will be able to use these constraint rules to accurately describe the properties of a trace
required for accurate analysis. In most cases it is not difficult to consider a trace analysis and derive the fields whose
values must be unchanged, or the relationships between values that must be maintained. (See Appendix A.1 for
examples.) We note that it is in the interest of the analyst to choose a set of constraint rules which specific to the
desired analysis task. Obviously, if all fields of all records in the trace are required to be unmodified, then the only
satisfying trace will be the original, unanonymized trace. Our framework does not impose any explicit controls on
the utility requirements submitted by analysts, except that the trace owner is likely to reject requests for constraint
requirements that are too general.

4 Formal analysis of trace transformations
An important feature of our framework is that it enables the trace owner to reason formally about the relationship
between utility requirements and anonymizing transformations. In this section we show how the trace owner can
determine conclusively that a published trace will satisfy the utility requirements expressed by analysts. In addition,
we show how the trace owner can derive the most secure transformation satisfying a desired set of utility constraints.
Lastly, we show how the trace owner can compare alternative publication strategies and analyze the potential impact
of collusion amongst analysts who have received traces.

We refer to the formal reasoning about trace transformations and utility constraints as static analysis because these
relationships between transformations hold for all possible input traces. Other aspects of trace privacy cannot be
assessed statically; in Section 5 we measure the privacy of real traces under sample transformations.

4.1 Verifying the utility of a transformation
We now show that it is possible to test efficiently whether a given transformation will always satisfy the utility require-
ments expressed by a set of constraints.

Definition 2 (Utility constraint satisfaction). Given a set of constraints C and a transformation φ, we say φ satisfies
C (denoted φ |= C) if, for any input trace, the output of the transformation satisfies each constraint in C.

Checking utility constraint satisfaction is performed independently for each constraint rule in C by matching the
conditions specified in a constraint to the operators which impact the named fields. Recall that the general form for
unary constraints is 〈qualifier〉 ⇒ (expr(t) = expr(φ(t))) where expr can either be conjunctive normal form of one
or more comparisons, or an arithmetic expression. Since the unary constraint has only one record, each comparison

8

expression must involve two attributes from the network trace. For each comparison or arithmetic expression in expr,
we look for the corresponding entry in Table 5 which lists expressions and compatible transformation operators. If the
composite transform function φ has a matching transformations in Table 5, then we proceed to the next comparison or
sub-expression. Otherwise we conclude that φ does not satisfy the constraint. If φ has a matching transformation for
each of the sub-expressions, the constraint is said to be satisfied by the transformation.

The procedure for verifying binary constraints is similar, with some minor modifications. We describe the verifi-
cation process in Appendix A.2.

4.2 A partial order for transformation operators
Since each transformation operator removes information from the trace, some composite transformations can be com-
pared with one another in terms of the amount of information they preserve. We show here that there is a natural
partial order on transformations.

Definition 3 (Inverse Set of a transformed Trace). Let N be a network trace transformed using transformation φ to
get transformed trace φ(N). Then, the inverse set for trace φ(N) is given by all possible network traces that have
the same algebraic properties as in φ(N) and hence, can give φ(N) as output when transformed using φ. We use
notation φ−1[N] to represent this set.

Example

Let us consider a transformed trace φ(N) obtained by applying φ = Π{A} ◦O{A} on N . In our example, we consider
φ(N) to be {1,2,3}. We can see that if we apply φ on network traces {1,5,100} and {4120, 5230, 6788}, the result
will be same as φ(N). Infact there are

(N
3

)
such traces that have same algebraic properties as retained by φ in φ(N)

where N is size of domain of attribute A. Thus, the inverse set φ−1[N] consists of
(N

3

)
traces.

Definition 4 (Equivalence of Traces under transformation φ). Two traces N1 and N2 are equivalent under transfor-
mation φ iff φ−1[N1] = φ−1[N2]. We denote this relation as N1 ∼φ N2.

It can be seen that the relation ∼φ is transitive. Hence, we can divide the entire domain of network traces into
equivalence classes where all the network traces in an equivalence class are equivalent under φ.

Lemma 1 (Equivalence Class). For any network trace N and transformation φ, the equivalence class containing N
(denoted by eφ(N)) is same as the inverse set φ−1[N].

The proof for this lemma is given in Appendix A.3

Definition 5 (Equivalence of Transformations). Two transformations φ1 and φ2 are equivalent if the relations ∼φ1

and ∼φ2 divide the domain of network traces into same equivalence classes.

The implication of this definition is that for any trace N , the inverse sets φ−1
1 [N] = φ−1

2 [N]. In other words, the
information retained under two transformations is exactly the same.

Definition 6 (Strictness Relation). Given two composite transformations φ1 and φ2, we say that φ1 is stricter than φ2

if -
∀ Network Trace N , eφ2(N) ⊆ eφ1(N)

This definition implies that if the transformation φ1 is stricter than φ2, then -

∀ Network Trace N , φ−1
2 [N] ⊆ φ−1

1 [N]

In other words, φ1 contains less information about the original trace and hence, the size of inverse set is bigger than
that obtained using φ2.

Using the definition of strictness, the most strict transformation is Π∅, which removes all attributes of the trace.
The least strict transformation is IX̄ , which simply applies the identity transformation to all attributes, returning the
original trace without modification. All other transformations fall between these two in terms of strictness. For
example, we have EX(Y) ≺ OX(Y) because encryption removes the ordering information from the data-entries. Also,
EX(Y ′) ≺ EX(Y) if Y ⊆ Y ′ as EX(Y ′) removes the equality information of X-entries from records which have the

9

same entries for Y but differ in some attribute in (Y ′ − Y). More strictness relations for basic operators are given in
Lemma 4 in Appendix A.3.

Recall that Φ denotes the set of all composite transformations. Then the following theorems show that the strictness
relation has a number of convenient properties.

Theorem 1. (Φ,,) is a partially ordered set.

Theorem 2. (Φ,,) is a join-semilattice i.e. for any two transformations φ1 and φ2, there is another transformation
in Φ, denoted φ1 ∨ φ2, which is the least upper bound of φ1 and φ2.

The proofs of these results are included in Appendix A.4. Theorem 2 can be easily extended to conclude that any
set of transforms has a unique least upper bound and this fact has a number of important consequences for the trace
publisher:

– First, given a set of constraints C it is important for the trace publisher to compute the most secure transformation
satisfying C. Theorem 2 shows that such a transformation always exists.

– Next, imagine that the trace publisher has derived three transforms φ1, φ2, φ3 specific to three analyst requests.
The publisher may wish to consider publishing a single trace that can satisfy all three requests simultaneously.
The least upper bound of these three transformations, denoted lub(φ1, φ2, φ3) is the transformation the publisher
must consider.

– Similarly, if the publisher has already released the traces derived from φ1, φ2, φ3 and fears that the analysts may
collude, then the least upper bound transformation lub(φ1, φ2, φ3) is a conservative bound on the amount of
information the colluding parties could recover by working together.

Input : Set of Constraints C
Output: Composite Transform

Let S = {} be empty set of attributes;1
Let map = {} Constraint-set to Transformation Map;2
foreach constraint c in C do3

foreach attribute a present in c do4
S = S ∪ {a};5

end6
ρ=Most Secure Operator from look-up table that satisfies c;7
PUT(map,{c},ρ);8

end9
while ∃ dependent sets C1, C2 in map do10

ρ1 = GET(map,C1);11
ρ2 = GET(map,C2);12
ρ = LEAST-UPPER-BOUND(ρ1, ρ2);13
REMOVE(map, C1);14
REMOVE(map, C2);15
PUT(map, C1 ∪ C2, ρ);16

end17
φ =

Q
S ;18

foreach set C in map do19
ρ= GET(map,C);20
φ = φ ◦ ρ;21

end22
return(φ)23

Algorithm 1: Most Secure Transform

4.3 Computing maximally secure transformations
The strictness relation can be used as the basis of an algorithm for finding the most secure transformation satisfying a
set of utility requirements.

10

Definition 7 (Most Secure Transformation). Given a set of constraints C, the most secure transformation is the
minimum element in Φ[C], denoted min(Φ[C]).

We denote by Φ[C] the set of transformations satisfying the constraints of C. Algorithm 1 computes the most
secure transform given a set of constraints. The algorithm uses a map data-structure which keeps the mapping of a
set of constraints to its most secure transform. It starts by forming |C| different constraint sets with each set having
exactly one constraint. Using look-up table for constraints, the strictest operator is obtained for each constraint and
the entry is made in the map (Lines 3-8).

As a next step, two constraint sets (C1, C2) are chosen such that there exist an attribute which is referred by atleast
one constraint in each set. The composite transforms for C1 and C2 can operate differently on this common attribute.
Thus, the least upper bound of these transforms is computed to get the most secure transform having properties of
both the transforms (Lines 11-13). The steps for obtaining lub can be seen in proof of Theorem 2 (given in Appendix
A.4). The constraint sets C1 and C2 are now merged to obtain a single set and is put into the map along with lub. The
previous entries for the two sets are removed from the map. (Lines 14-16).

The above steps are repeated until no dependent constraint sets are left. Now, all the transforms in the map
transform disjoint set of attributes and do not conflict. As a final step, the composition of all these transforms is
done. The resulting composition operator along with the required projection operator is returned as the most secure
transform(Lines 18-23).

4.4 Evaluating collusion risk
Customizing published traces to the needs of analysts means that any given analyst will have the information they need,
but not more than they need. However, if a trace owner publishes a set of traces, we must consider the implications of
one party acquiring these traces and attempting to combine them.

The ability to correlate the information present in two (or more) transformed traces depends greatly on the partic-
ular transformations. As a straightforward defense against the risks of collusion, the trace owner can always consider
the least upper bound, lub, of the published transformations. The lub provides a conservative bound on the amount
of information released since each of the published traces could be computed from it. Therefore the trace owner can
evaluate the overall privacy of publishing the lub transformation; if it is acceptable, then the risk of collusion can be
ignored.

In many practical cases the lub is overly conservative, as it is not possible to merge the traces accurately. For
example, if the two transformations E{ip1,ip2,pt1,pt2},κ1 ◦ Iwin and E{ip1,ip2},κ2 ◦ ITTL are released, it is difficult
to correlate them. One trace includes a window field for each encrypted connection, while the other includes a TTL
field for each pair of hosts. Because distinct port pairs are included in the encryption in the first trace, but removed
from the second, it would be very difficult to relate packets across the two traces. In general, the relationship between
the information content present in two transformations σ1, σ2 and the information present in the lub(σ1, σ2) depends
on (i) the transformation operators applied to fields common to σ1 and σ2, and (ii) the degree to which these fields
uniquely identify packets in the trace. Static analysis tools can be used to evaluate (i), however (ii) may depend on the
actual input trace and requires quantitative evaluation, similar to that described next.

5 Quantifying trace privacy
The techniques in the previous section allow the trace owner to compare the information content of some transfor-
mations, and to find the most secure transformation that satisfies a given set of utility requirements. This provides
a relative evaluation of trace privacy, but it does not allow the trace owner decide whether a specific transformation
meets an acceptable privacy standard.

In this section we measure quantitatively the privacy of sample trace transformations by applying the transforma-
tions to a real enterprise IP trace, simulating attacks by an informed adversary, and measuring the risk of disclosure.
In addition to providing a reliable evaluation of the absolute security of a transformation, the quantitative analysis also
allows us to compare the security of transformations that are not comparable (recall that these cases occur because
the relation , in Section 4 is only a partial order). Also, we can quantify the improved security that results from
publishing two traces customized for separate analyses, as compared with publishing a single trace that can support
both.

11

Figure 2: (a) Five example transformations used in the quantitative evaluation of host anonymity. (b) Tree representing strictness
relationships between the example transformations (i.e. [child] ' [parent] in each case).

σ1 = E{ip1},κ ◦ E{ip2},κ ◦ E{pt1},κ2 ◦ E{pt2},κ2 ◦ T{ts}(C) ◦ T{seq,ack}(C) ◦ I{win}
σ2 = E{ip1},κ ◦ E{ip2},κ ◦ E{pt1,pt2},κ2 ◦ T{ts}(C) ◦ T{seq,ack}(C) ◦ I{win}
ψ1 = E{ip1},κ ◦ E{ip2},κ ◦ E{pt1},κ2 ◦ E{pt2},κ2 ◦O{ts}(C) ◦O{seq,ack}(C) ◦O{ipid}(C)

ψ2 = E{ip1},κ ◦ E{ip2},κ ◦ E{pt1,pt2},κ2 ◦O{ts}(C) ◦O{seq,ack}(C) ◦O{ipid}(C)

φ0 = E{ip1},κ ◦ E{ip2},κ ◦ T{ts}(C) ◦ T{seq,ack}(C) ◦ I{pt1,pt2,win,TTL} ◦O{ipid}(C)

(a)

φ0

ψ1

ψ2

σ1

σ2

(b)

Experimental setup We use a single IP packet trace collected at a gateway router of a public university. The trace
consists of 1.83 million packets and has 41930 hosts, both external and internal. The trace was stored as a relational
table in the open-source PostgreSQL database system running on a Dell workstation with Intel Core2 Duo 2.39 GHz
processor and 2GB RAM. Each transformation was applied to the trace using the database system.

Attack model We focus on one of the most common threats considered in trace publication – the re-identification
of anonymized host addresses. We assume the adversary has access (through some external means) to information
about traffic properties of the hosts participating in the collected trace. We call these host fingerprints. The adversary
attacks the published trace by matching fingerprints of these hosts to the available attributes of hosts in the published,
transformed trace. The result of the attack is a set of unanonymized candidate hosts that could feasibly correspond to
a target anonymized host.

Adversary knowledge We consider a powerful adversary who is able to fingerprint hosts using the collection of
host attributes described in Figure 4. The port1 in Figure 4 refers to the ports on which the fingerprinted host receives
packets, whereas port2 and ip-address2 corresponds to hosts communicating with the fingerprinted host. The rest of
the fields have their usual meanings.

We do not require an exact match of fingerprints and trace attributes. Instead, the adversary applies a similarity
metric to the host pairs, and any un-anonymized host having similarity to the anonymized host, A, above certain
threshold is added to the candidate set of A. A higher threshold value reflects the high confidence of adversary
about the accuracy of his fingerprints. In order to simulate a strong adversary, we compute the fingerprints available
to adversary from the original trace and choose a high threshold value of 0.98. If the fingerprints being matched are
sets of values X and Y , then the similarity is given by sim(X, Y) = 1 − (|X∪Y |−|X∩Y |)

|X∪Y | . The similarity metric for

continuous numeric-value fingerprints is given by sim(x, y) = 1 − |x−y|
max(x,y) Finally, we use the Pearson correlation

coefficient to compare fingerprints which are chains of values (e.g. the chain of seq no for a connection). We average
the similarity of all the available fingerprints to compute overall similarity of the host.

Privacy Measure We measure privacy by computing, for various k, the value of N (k): the number of anonymized
hosts in the trace that have a candidate set of size less than or equal to k. For example out of the total number of hosts
in the trace, N (1) indicates the number of addresses the adversary is able to uniquely de-anonymize. Clearly, a lower
value of N (k) indicates a more privacy-preserving trace.

Transformations We evaluate the anonymity of the five transformations shown in Figure 2(a), which were motivated
by some of the sample analyses considered earlier in the paper. The first two transformations σ1, σ2 support the
example analysis given in Section 2. Using strictness relations in basic operators (Appendix ??), we can see that
σ2 , σ1. In transform σ1, ports are encrypted separately allowing an adversary to use external information on the
entropy of the ports, a host sends traffic on. This information is unavailable in transformation σ2 because ports are
encrypted together.

12

Figure 3: Results giving number of hosts, N (k), whose
candidate set size was ≤ k for k = 1, 5, 10

Figure 4: Fingerprints Table

field finger-prints
port1(pt1) Well-known ports, Entropy
port2(pt2) Entropy

ip-address2(ip2) Entropy
TTL Maxmimum value, Minimum value

timestamps(ts) Duration of each connection
seq number Signature chains
ack number -

window(win) -
IP Identifier(ipid) -

The transformations ψ1 and ψ2 allow the analyst to count the number of hosts which are involved in connections
with a high rate of out-of-sequence packets. The identification of out-of-sequence packets requires only the order-
information of sequence numbers, timestamps, acknowledgement numbers and IP identifiers in a connection. As these
fields have been transformed using the O operator, none of the fingerprints are available for fingerprinting. It is easy
to observe that ψ2 , ψ1.

The transformation φ0 has been chosen as a base case, in which all the fingerprints listed in Figure 4 are available
to the adversary. Also, φ0 is a relaxation of σ1 and ψ1. As such, it is capable of supporting both the above-mentioned
analyses. Figure 2(b) illustrates the strictness relationships between the five transformations studied here.

Results We have summarized our results in Figure 3. The privacy measure N (1) gives the number of uniquely
identified host and is greatest for φ0, as expected. All the fingerprints are available in φ0 leading to identification of
1904 of 41930 hosts. Also, the lower value of N (1) for σ2 when compared with σ1 validates the relation σ2 ≺ σ1. It
can be seen that the results are valid for similar relations among other operators.

In addition, the privacy measure allows us to compare transforms σ2 and ψ2 which are incomparable statically.
The lowest N (1) value for ψ2 indicates that it is the safest transform among the set of transforms considered. We
can also study the significance of fields to the adversary using these results. For example, the significant difference in
N (1) value for ψ1 and ψ2 indicates that the entropy of ports is highly informative for the adversary.

Finally, we can see that releasing two secure views σ2 and ψ2 for two different analysts results in disclosure of
only 66 and 25 hosts respectively and is much less than 1904 hosts disclosed by a general view φ0. This illustrates the
significant gain in anonymity that results from publishing two traces customized for individual analyses, rather than
publishing a single trace to satisfy both.

6 Related Work
Slagell et al [19] recognized the need for a framework to support the trade-off between the security and utility of the
trace and provide multiple levels of anonymization. They stressed the need of metric to compare the utility of two
traces based on fields available in them. In [13], the authors have proposed a measure for evaluating utility of network
trace for intrusion detection. The proposed measure is specific to intrusion detection and cannot be applied to other
analysis.

As described in the introduction, a wide range of anonymizing transformations have been considered for network
traces. In [2], Xu et al proposed a cryptography based prefix-preserving anonymization scheme for the ip-addresses.
This scheme provides one-to-one consistent anonymization for ip-addresses and is not applicable for the transforma-
tion of other fields. In [16], Pang et al have proposed a framework with some of the possible transformation for the
different packet fields. However, its main focus is transforming the information contained in packet payload and not in
the packet header fields. In [15], the various header fields have been studied in some detail and a framework to support
anonymization of different fields is proposed. This framework allows for the anonymization policies to control the
various fields. In theory, it can publish multiple views but it lacks the tools for analyzing utility of the different views.

13

In [14], Mogul et al propose a framework that requires an analyst to write the analysis program in the language
supported by framework. This program is then reviewed by experts for any privacy or security issues. The approved
program is executed by the trace owner and results are provided to the analyst. We compared our framework with this
approach in Section 1.

The PREDICT [1] repository has been established to make network traces available for research. The network
traces are distributed at various data hosting sites, and access to the traces is authorized only after the purpose and
identity of researchers is reviewed and verified. To the best of our knowledge, the anonymization of traces is not
customized to the needs analysts and multiple versions of traces are not published.

7 Conclusion
We have described a publication framework which allows a trace owner to customize published traces in order to
minimize information disclosure while provably meeting the utility of analysts. Using our framework, the trace owner
can verify a number of useful privacy and utility properties statically. Such properties hold for all possible traces, and
can be verified efficiently. However, some aspects of trace privacy must be evaluated on each particular trace. We have
implemented our techniques and quantified trace privacy under example transformations.

Our preliminary implementation suggests that our trace transformation operators can be applied efficiently. In
future work we would like to implement a trace transformation infrastructure to efficiently support multiple transfor-
mations of a trace using indexing and parallel data access. We would also like to extend our framework to support
additional transformation operators, and to pursue further analysis of collusion risks.

References
[1] Predict. https://www.predict.org/.

[2] Tcpdpriv. http://ita.eee.lbl.gov/html/contrib/tcpdpriv.html.

[3] Tcpurify. http://irg.cs.ohiou.edu/ eblanton/tcpurify.

[4] Anonymization of ip traffic monitoring data - attacks on two prefix-preserving anonymization schemes and some proposed
remedies. In Proceedings of the Workshop on Privacy Enhancing Technologies, pages 179–196, May 2005.

[5] K. Claffy. Ten things lawyers should know about internet research. http://www.caida.org/publications/papers/2008/lawyers top ten/.

[6] S. Coull, C. Wright, F. Monrose, M. Collins, and M. K. Reiter. Playing devil’s advocate: Inferring sensitive information from
anonymized network traces. In Proceedings of the 14th Annual Network and Distributed System Security Symposium, pages
35–47, February 2007.

[7] S. E. Coull, C. V. Wright, A. D. Keromytis, F. Monrose, and M. K. Reiter. Taming the devil: Techniques for evaluating
anonymized network data. Proceedings of the 15th Network and Distributed System Security Symposium, February 2008.

[8] J. Fan, J. Xu, M. Ammar, and S. Moon. Prefix-preserving ip address anonymization: Measurement-based security evaluation
and a new cryptography-based scheme. Computer Networks, 46(2):263–272, October 2004.

[9] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley. Measurement and classification of out-of-sequence packets in
a tier-1 ip backbone. In Proceedings of IEEE INFOCOM, pages 1199–1209, April 2003.

[10] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley. Inferring tcp connection characteristics through passive
measurements. In Proceedings of INFOCOMM, 2004.

[11] H. Jiang and C. Dovrolis. Source-level ip packet bursts: causes and effects. ACM Internet Measurements Conference (IMC),
2003.

[12] D. Koukis, S. Antonatos, and K. Anagnostakis. On the privacy risks of publishing anonymized ip network traces. In Proceed-
ings of Communications and Multimedia Security, pages 22–32, Oct 2006.

[13] K. Lakkaraju and A. Slagell. Evaluating the utility of anonymized network traces for intrusion detection. In 4th Annual
SECURECOMM Conference, September 2008.

[14] J. C. Mogul and M. Arlitt. Sc2d: an alternative to trace anonymization. In MineNet ’06: Proceedings of the 2006 SIGCOMM
workshop on Mining network data, pages 323–328, New York, NY, USA, 2006.

[15] R. Pang, M. Allman, V. Paxon, and J. Lee. The devil and packet trace anonymization. ACM SIGCOMM Computer Commu-
nication Review, 36(1):29–38, January 2006.

14

Table 6: Utility Requirements for Different Real Network Analyses along with the supporting transformation

Formal Utility Requirements Transform
Study of TCP connection interarrivals
Any(t)⇒ t.syn = φ(t).syn φ1 = I{syn,ack}◦
Any(t)⇒ t.ack = φ(t).ack E{ip1,ip2,pt1,pt2}◦
Any(t1, t2)⇒ ((t1.ip1== t2.ip1) && (t1.ip2 ==t2.ip2) && (t1.pt1== t2.pt1)&& (t1.pt2 ==t2.pt2)) = T{ts}
(φ(t1).ip1== φ(t2).ip1 && φ(t1).ip2 ==φ(t2).ip2 && φ(t1).pt1== φ(t2).pt1 && φ(t1).pt2 ==φ(t2).pt2)
Any(t1,t2)⇒ (t1.ts− t2.ts) = (φ(t1).ts− φ(t2).ts)
Study of Packet-Bursts: (addition to above requirements) φ2 = I{syn,ack}◦
Same-Conn(t1,t2)⇒ (t1.seq no ≤ t2.seq no) = (φ(t1).seq no ≤ φ(t2).seq no) T{ts}◦
Same-Conn(t1,t2)⇒ (t1.seq no− t2.seq no) = (φ(t1).seq no− φ(t2).seq no) E{ip1,ip2,pt1,pt2}◦
Opp-Pckts(t1,t2)⇒ (t1.seq no == t2.ack no) = (φ(t1).seq no = φ(t2).ack no) T{seq no,ack no}(C)

Classification of Out-Of-Sequence Packets φ3 = φ2◦
Same-Conn(t1,t2)⇒ (t1.ipid == t2.ipid) = (φ(t1).ipid = φ(t2).ipid) I{window,dir}◦
Rest of the requirements for this case are exactly same as given in Section 2 Eipid(C)

[16] R. Pang and V. Paxson. A high-level programming environment for packet trace anonymization and transformation. In
Proceedings of ACM SIGCOMM ’03, pages 339–351, New York, NY, USA, 2003.

[17] V. Paxson and S. Floyd. Wide area traffic: the failure of poisson modeling. IEEE/ACM Transactions on Networking, 3:226–
244, 1995.

[18] B. Ribeiro, W. Chen, G. Miklau, and D. Towsley. Analyzing privacy in enterprise packet trace anonymization. In Proceedings
of the 15th Network and Distributed Systems Security Symposium, 2008.

[19] A. Slagell and W. Yurcik. Sharing computer network logs for security and privacy: A motivation for new methodologies of
anonymization. IEEE/CREATENET SecureComm, pages 80–89, 2005.

APPENDIX

A Formal Analysis of Trace Transformations
A.1 Example of Real World Analyses
We provide some examples of the real world analyses along with their description and the utility constraints. It can
be seen that the utility constraints are easily derivable from the description of the analysis with some backhround
knowledge about the networks.

In [17], TCP connection interarrivals have been studied to determine if it can be modeled correctly with Poisson
modeling. This study requires the starting time(can be relative) for each connection which can be obtained from
SYN/FIN packets.

In [11], the causes and effects of packet bursts from individual flows have been studied. The packet burst is
identified by several packets sent back-to-back in a flow. Their impact on aggregate traffic is studied by observing the
scaling behavior of the traffic in trace over range of timescales.

In [9], the classification of out-of-sequence packets is done. This has similar requirements as given in Table 1.
The additional requirement imposed is the availability of IP Identifier with its equality information preserved across
records in connection.

The utility constraints and the composite transformation satisfying them is given in Table 6.

A.2 Verification of Binary Constraints
Given transformation φ and constraint set C, checking the utility constraint satisfaction requires checking satisfiability
of each constraint (unary or binary) in C. Here we present the key concepts in understanding the verification of binary
constraints.
Qualifying Conditions
The qualifying conditions in a constraint are the set of conditions given in qualifier that must hold true for the records
qualified for constraint satisfaction. These conditions provide the comparisons of the fields in these records. The
example of qualifier and its set of conditions is given in Table 1.

15

Table 7: Lookup table for binary constraint required for verifying utility of a transformation

qualifier-set expression transformations

Q

t1.a ≤ t2.a OX(Y), TX(Y),
t1.a ≥ t2.a IX , SX,k

t1.a ≤ t2.a Eo
{a}(Y),κ

t1.a ≥ t2.a a ∈ X , QY ⊆ Q

t1.a− t2.a
TX(Y), IX

a ∈ X , QY ⊆ Q

t1.a + t2.a
IX

a ∈ X

t1.a× t2.a
IX

a ∈ X

t1.a/t2.a
SX,k , IX

a ∈ X
t1.a IX , a ∈ X

Q

t1.a ≤ t2.b OX(Y), TX(Y),
t1.a ≥ t2.b IX , SX,k

t1.a ≤ t2.b Eo
{a}(Y),κ ◦ Eo

{b}(Y),κ

t1.a ≥ t2.b {a, b} ⊆ X QY ⊆ Q

t1.a− t2.b
TX(Y), IX

{a, b} ⊆ X , QY ⊆ Q

t1.a + t2.b
IX

{a, b} ⊆ X , QY ⊆ Q

t1.a× t2.b
IZ

{a, b} ⊆ Z

t1.a/t2.b
SX,k , IX

{a, b} ⊆ X

Q

OX(Y), TX(Y),
t1.a ! = t2.b IX , SX,k

t1.a == t2.b Eo
{a}(Y),κ ◦ Eo

{b}(Y),κ

{a, b} ⊆ X , QY ⊆ Q

Definition 8. Given two sets of conditions Q1 and Q2 and Q1 .= Q2, we say that Q1 is relaxed as compared to Q2 if
any records which satisfy conditions in Q2, also satisfies the conditions in Q1. Q1 is relaxed as compared to Q2 only
if Q1 ⊆ Q2.

Grouping Conditions

The transformation operators like TX(Y), OX(Y) or EX(Y),κ divides the trace into group of records where each group
agrees upon its values for attributes in set Y . The transformed attributes X can be compared across records only if
these two records belong to the same group. Thus, set Y = {y1, ..., yn} imposes a grouping condition and is given by-

QY = {(t1.y1 == t2.y1), (t1.y2 == t2.y2), ..., (t1.yn == t2.yn)}

Any transformation with grouping condition QY can satisfy constraint with qualifying condition Q only if the
records selected by Q are subset of records grouped by QY . This holds true if QY ⊆ Q.
Verification Process
The general form for the binary constraint is-

qualifier(t1, t2) ⇒ (expr(t1, t2) = expr(φ(t1), φ(t2))

Let us assume that the binary constraint has Q as the set of qualifying conditions and φ is the transformation being
checked. As with the unary constraints, we divide the expression expr into atomic sub-expressions where each sub-
expression can be either comparison or an arithmetic expression. We look for satisfiability of each sub-expression.

For any sub-expression except of type (t1.a == t2.a), we look for the entry for the subexpression in Table 7
which lists the expressions with compatible transformation operators and the requisites. If the transformation φ has
a matching transformation in Table 7 and it satisfies the requisites mentioned, the sub-expression is satisfied and we
look for the next subexpression.

For subexpression of type (t1.a == t2.a), we find out the set X of attributes such that ∀x ∈ X , (t1.x == t2.x)
is present in expr(t1, t2). These sub-expressions are satisfied if following holds true-

16

• For any encryption function of type EY,κ or EY (Z),κ in φ, (Y − X == {}) must be true. In addition, either
(Z ⊆ X) or QZ ⊆ Q must hold.

• For any transformation of type TY (Z) or OY (Z) such that (Y ∩X! = {}) then either Z ⊆ X or QZ ⊆ Q.

If φ satisfies all the sub-expressions in constraint, the constraint is satisfied.

A.3 Strictness Relations and its properties
In this section, we describe the properties of strictness relations. We begin with the proof of Lemma 1.

Lemma (Equivalence Class). For any network trace N and transformation φ, the equivalence class containing N
(denoted by eφ(N)) is same as the inverse set φ−1[N].

Proof. Let us consider any trace N ′ such that N ∈ eφ(N ′) i.e. N ′ ∼φ N ′. Hence, using the definition of equivalence
(refer definition 4), we have φ−1[N] = φ−1[N ′]. Since, N ∈ φ−1[N], N ′ ∈ φ−1[N ′] and φ−1[N] = φ−1[N ′], we
get N ′ ∈ φ−1[N]. Thus, any trace N ′ ∼φ N is present in the inverse set φ−1[N].

Now, we show that any two traces N1 and N2 in φ−1[N] belong to the equivalence class of N . We see that both
the N1,N2 have all the algebraic properties retained by φ in φ(N). Since φ retains only these properties, the traces
φ(N1) and φ(N2) will have the same properties as φ(N). As a result, the inverse set of φ(N1) and φ(N2) will be the
same as the inverse set of φ(N). Hence, proved.

Definition 9 (Independent Transformations). Two transformations are independent of each other if they transform and
project disjoint set of attributes.

Lemma 2. If φ1 ≺ φ2 and φ is a transformation independent of φ1 and φ2, then φ1 ◦ φ , φ2 ◦ φ.

Proof. It is given that φ1 and φ are independent of each other. Thus, if X and Y are the attribute sets transformed and
projected by φ1 and φ respectively, then X ∩ Y = null.

If these two transforms are used to transform a network trace N , then φ1(N) does not retain any information about
attribute set Y . As a result, φ−1

1 [N] contains traces with all possibilities for Y from its domain. However, φ−1[N]
consists of traces with fewer possibilities for Y but it has all the possibilities for X from its domain. But when we
apply φ1 ◦ φ, it retains information about X as well as Y and it can be seen that -

1. (φ1 ◦ φ)−1[N] ⊂ φ−1
1 [N]

2. (φ1 ◦ φ)−1[N] ⊂ φ−1[N]

3. (φ1 ◦ φ)−1[N] = φ−1
1 [N] ∩ φ−1[N]

Similar statements can be made about φ2 ◦ φ because φ2 and φ are independent as well. Thus, we have -

1. (φ1 ◦ φ)−1[N] = φ−1
1 [N] ∩ φ−1[N]

2. (φ2 ◦ φ)−1[N] = φ−1
2 [N] ∩ φ−1[N]

3. φ−1
2 [N] ⊂ φ−1

1 [N] (∵ φ1 ≺ φ2)

From the set theory, we know that if A ⊂ B then A ∩ U ⊆ B ∩ U . Using this, we get

(φ2 ◦ φ)−1[N] ⊆ (φ1 ◦ φ)−1[N]

This is true for any network trace N . Hence, we have shown that φ1 ◦ φ , φ2 ◦ φ.

Corollary 1 (Commutative Property). If φ1 and φ2 are independent of each other, then φ1 ◦ φ2 = φ2 ◦ φ1.

Corollary 2 (Transitive Relation). The strictness relation is transitive i.e. if φ1 ≺ φ2 and φ2 ≺ φ3, then φ1 ≺ φ3.

Corollary 3 (Strictness Chain). If there exists a chain of strictness relations from φ2 to φ1 such that φ1 ≺ ρ1 ≺ ... ≺
ρn ≺ φ2 then φ1 ≺ φ2

The proofs for these corollaries are straightforward using strictness definition (refer 6). The Corollary 3 allows us
to compute the strictness relations from the known strictness relations.

17

Example

Assuming that we have already computed the following strictness relations using the definition of strictness - EX1 ◦
EX2 0 EX1∪X2 and TY 0 OY for any X1, X2 and Y . Let us compare EX1 ◦ EX2 ◦ TY and EX1∪X2 ◦OY .

EX1 ◦ EX2 ◦ TY 0 EX1∪X2 ◦ TY

0 EX1∪X2 ◦OY

Thus, there exists a chain where each step in chain has been obtained using the precomputed relations, Lemma 2 and
the commutative property given in Corollary 1. Finally, Corollary 3 implies that EX1∪X2 ◦OY ≺ EX1 ◦ EX2 ◦ TY .

Now, we give a theorem which allows us to get the minimal set of strictness relations that must be pre-computed
in order to compare any two transformations.

Lemma 3. If φ1, φ2, ...,φn are composite transforms independent to each other and each φi ≺ φ, then

φ1 ◦ φ2 ◦ ... ◦ φn , φ

Proof. We provide the informal proof to this lemma as follows- As each φi is stricter than φ, the information contained
in each φi is upper-bounded by the information in φ. Since φis are independent, each has information about distinct
set of attributes. As a result, the overall information contained in φis can be at most equal to the information in φ.
Thus, the composition of φis is stricter or equal to φ.

Theorem 3 (Basis Set of Strictness Relation). If S is the set of basic operators, then we can derive a relation between
any two comparable composite transforms (in normal form) using the basis set of strictness relations which is given
by the relations for following pairs-

1. {αX(Y), αX(Y ′)} where Y ⊂ Y ′ ∀α ∈ S.

2. {αX(Y), αX′(Y)} where X ⊂ X ′ ∀α ∈ S.

3. {αX(Y), αX1(Y) ◦ αX2(Y)} where X = X1 ∪X2 ∀α ∈ S.

4. {αX(Y), βX(Y)} ∀α,β ∈ S.

Proof. We need to prove that we can find a strictness chain for any two comparable composite transformations φ1 and
φ2. Let φ1 ≺ φ2. Let X1, X2 be the set of attributes transformed and projected by φ1 and φ2 respectively.

First, we show that X1 ⊆ X2. It is because if X1 had some attribute which is not in X2, then the transformation
φ1 will have atleast some information about this attribute and can be used to reduce the possible values of this domain.
This is not possible in φ2. Hence, for any network trace N , φ−1

2 [N] .⊂ φ−1
1 [N]. This is contradiction as φ1 ≺ φ2.

Hence, X1 ⊆ X2.
Case I: φ1 = αX1(Y1), φ2 = αX2(Y2) where X1 ⊆ X2

First, we observe that in order to have φ1 ≺ φ2, we must have Y2 ⊆ Y1. It is because if Y1 was subset of Y2, then
φ1 will have records grouped by Y1 which will be bigger than the group of records formed by Y2. Thus, φ1 will have
more information retained. Hence, we cannot have Y1 ⊆ Y2. These two sets cannot be disjoint either as that will make
operators incomparable. Thus, Y2 ⊆ Y1.

From the basis set, we can compare φ2 = αX2(Y2) with φ3 = αX2(Y1) using relation of type 1. This relation must
imply that φ3 ≺ φ2. (∵ φ1 ≺ φ2 for any X1, Y1, X2, Y2 where X1 ⊆ X2 and Y2 ⊆ Y1, then we must have φ3 ≺ φ2).
Now, we can compare φ3 with φ1 using relation of type 2 in basis set. This relation must imply that φ1 ≺ φ3. Thus,
we can have a chain of comparisons φ1 ≺ φ3 ≺ φ2 obtainable from basis set of relations.

Case II: φ1 = αX1(Y1), φ2 = βX2(Y2) where X1 ⊆ X2

From the basis set, we can compare φ1 = αX1(Y1) with φ3 = βX1(Y1) using relation of type 4. This relation must
imply that φ1 ≺ φ3 (∵ φ1 ≺ φ2 for any X1, Y1, X2, Y2 where X1 ⊆ X2, then we must have φ1 ≺ φ3). Now, we
look at φ4 = βX2(Y1). We can compare φ4 to φ3 using relation of type 2 in basis set. As X1 ⊆ X2, we can argue that
φ3 ≺ φ4. As in Case I, we can show that Y2 ⊆ Y1. Now, using relation of type 1, we can compare φ4 to φ2. Also, it
must imply φ4 ≺ φ2. Since Y2 ⊆ Y1 implies that φ2 must have more information than φ4. Thus, we can have chain of
comparison from φ2 to φ1 using relations in basis set only.

Case III: φ1 = αX(Y), φ2 = β1
X1(Y1)

◦ β2
X2(Y2)

... ◦ βk
Xk(Yk) where X ⊆

⋃k
1 Xi

Let us consider φ3 = β1
X′

1(Y) ◦ β2
X′

2(Y)... ◦ βk
X′

k(Y) where X ′
i = Xi ∩ X ⊆ X . Using case I, we can get the chain

18

of relations from φ2 to φ3 such that φ3 , φ2. Using relations of type 4 in basis set, we can get a chain of relations
from φ3 to φ4 = α1

X′
1(Y) ◦ α2

X′
2(Y)... ◦ αk

X′
k(Y) such that φ4 ≺ φ3. Finally, relations of type 3 in basis set allows us to

get a chain of relations from φ4 to φ1 = αSk
1 X′

i(Y) = αX(Y). Thus, we have a chain of relation from φ2 to φ1 using
relations in basis set only.

Case IV: φ1 = α1
X1(Y1)

◦ α2
X2(Y2)

... ◦ αm
Xm(Ym), φ2 = β1

X′
1(Y

′
1) ◦ β2

X′
2(Y

′
2)... ◦ βn

X′
n(Y ′

n) where
⋃m

1 Xi ⊆
⋃n

1 X ′
i

Since φ1 ≺ φ2 and φ1 and φ2 are such that each attribute is transformed by exactly one operator, the information
retained by each operator in φ1 is unique and is less than the overall information in φ1. Thus, we have each αi

Xi(Yi)
≺

φ1. Since, φ1 ≺ φ2, we must have αi
Xi(Yi)

≺ φ2. Using the steps in Case III, we can prove that each αi
Xi(Yi)

≺ φ2

using relations from basis set. Now, using lemma 3, αi
Xi(Yi)

≺ φ2 for i = 1 to m implies that -

α1
X1(Y1)

◦ α2
X2(Y2)

... ◦ αm
Xm(Ym) ≺ φ2

The above expression implies φ1 ≺ φ2. Since, Case IV represents the most general case, we have shown that we can
compare any two comparable composite transforms φ1 and φ2 using only relations present in basis set.

In the following lemma, we have listed the minimal set of strictness relations among basic operators in {E,O, T, S, I,Π}.
These relations can be verified using the definition of strictness. Any pair of composite transformations can be com-
pared using these relations.

Lemma 4. Strictness Relation among Basic Operators

1. φX(Z) ≺ φX(Y) if Y ⊂ Z and φ ∈ {E,O, T, S}
2. φX1(Y) ◦ φX2(Y) ≺ φX(Y) if X = X1 ∪X2 and φ ∈ {O, T, S}
3. EX(Y) ≺ EX1(Y) ◦ EX2(Y) if X = X1 ∪X2

4. EX(Y) and EX′(Y) are incomparable if X ⊂ X ′

5. φX(Y) ≺ φX′(Y) where X ⊂ X ′ and φ ∈ {O, T, S, I}.

6. Π{} ≺ EX(Y) ≺ OX(Y)

7. OX(Y) ≺ SX

8. OX(Y) ≺ TX(Y)

9. φX(Y) ≺ IX if φ ∈ {E,O, T, S}
10. ΠX ≺ ΠX′ if X ⊂ X ′

11. φX1 ◦ φX2 = φX where φ ∈ {Π, I}

A.4 Proof of Theorem 2
The proof for Theorem 2 requires a small result which we have given here as a lemma. This states that there exists a
least upper bound in set of composite transforms Φ for any two basic operators.

Lemma 5 (Most Secure Transform for Basic Operators). If ρX1(Y1) and ψX2(Y2) are two operators from set {E,O, T, S, I},
then the most secure transform is the least upper bound ρX1(Y1) ∨ ψX2(Y2), and it is given by φ -

• φ = ρX1(Y1) ◦ ψX2(Y2) if (X1 ∩X2) = {}
• φ = EX(Y) ◦ EX1−X(Y1) ◦ EX2−X(Y2) if ρ = ψ = E

• φ = ρX1∪X2(Y) if ρ , ψ,ψ .= E and (X1 ∩X2)! = {}
• φ = EX1−X(Y1) ◦ ψX2(Y) if ρ = E,ψ ≺ E

• φ = IX1∪X2 if ρ = S, ψ = T and (X1 ∩X2)! = {}

where X = X1 ∩X2 and Y = Y1 ∩ Y2.

Theorem. (Φ,,) forms a join-semilattice i.e. any two elements in Φ have a least upper bound in Φ.

∀φ1, φ2 ∈ Φ ∃(φ1 ∨ φ2) ∈ Φ

19

Proof. We will use notation {φ, ψ,χ, ω} for composite transforms and {σ, δ, ξ} for basic operators. We will say that
two transforms are independent if they transform disjoint set of attributes. We will say one transform is in conflict with
another if there exists an attribute which is transformed by both.
Case I φ1 = σ and φ2 = δ
For any two basic operators, there exists a least upper bound(lub) and is given in Lemma 5.
Case II φ1 and φ2 are independent.
This is a trivial case. Since the transforms φ1, φ2 act on two disjoint attribute sets, the information in one is unrelated
to another. Thus, the lub is given by composition φ1 ◦ φ2.
Case III φ1 = ψ ◦ σ and φ2 = δ, ψ and δ are independent but δ and σ are in conflict..
We show that there exists a lub for {(ψ ◦ σ), δ} in Φand is given by ω = (σ ∨ δ) ◦ ψ.
From Case II, we know that ω is lub of ψ and (σ ∨ δ). Since, (σ ∨ δ) is lub of σ and δ. Hence, ω is lub of {ψ,σ, δ}.
Also, anything greater than ψ and σ is also greater than ψ ∨ σ. Thus, ω 3 (ψ ∨ σ) and ψ ∨ σ = ψ ◦ σ implies
ω 3 (ψ ◦ σ). Using this with ω 3 δ, we get ω 3 lub((ψ ◦ σ), δ). Thus, ω is upper bound of φ1 and φ2.
Let us say χ be some upper bound of {(ψ ◦ σ), δ}. Hence, χ 3 (ψ ◦ σ) ⇒ (χ 3 ψ) and (χ 3 σ). Also, χ 3 δ.
We conclude that χ 3 σ, χ 3 δ and χ 3 ψ. The first two conclusion implies that χ 3 (σ ∨ δ). Since ψ and σ ∨ δ
transform disjoint sets, χ 3 (σ ∨ δ) and χ 3 ψ implies χ 3 ((σ ∨ δ) ◦ ψ). Hence, we have shown that any upper
bound χ for {φ1, φ2} is greater than ω which itself is an upper bound. Hence, ω is the lub.
Case IV φ1 = σ1 ◦ σ2 ◦ ... ◦ σn and φ2 = δ. δ in conflict with more than one σi.
Let us begin with computing χ = δ∨σ1. From Lemma 5, we can observe that there can be atmost one basic operator ξ
in χ which transforms attributes of δ only. Other basic operators in χ contains attributes of σ1. Hence, there is atmost
one operator in χ which can conflict with σ2 as it can conflict with operator containing attributes of δ only. Using case
III, there exists lub χ ∨ σ2. We can continue to get ω = ((...(δ ∨ σ1) ∨ σ2)...σn). Now, we prove that ω is the lub of
{δ, σ1 ◦ ... ◦ σn}.Let there be some upper bound χ of {δ, (σ1 ◦ ... ◦ σn)}. Then, we have χ 3 (σ1 ◦ ... ◦ σn) which
implies χ 3 σ1, χ 3 σ2 and so on. We have-

χ 3 δ

3 δ ∨ σ1 (∵ χ 3 σ1)
3 (δ ∨ σ1) ∨ σ2 (∵ χ 3 σ2)
3 (...(δ ∨ σ1) ∨ σ2... ∨ σn) = ω

Thus, any upper bound χ is greater than ω. Also, ω can be shown to be upper bound. Hence, ω is the least upper
bound.
Case Vφ1 = σ1 ◦ σ2 ◦ ◦ σn and φ2 = δ1 ◦ δ2 ◦ ◦ δm.
Using case IV, we can compute (φ1 ∨ δ1). Similarly, we can compute ((φ1 ∨ δ1) ∨ δ2). We can continue to get
ω = (..(φ1 ∨ δ1)∨ δ2)...∨ δm). Using similar steps as in case IV, we can prove that any upper bound χ of {φ1, φ2} is
also an upper bound of ω. Also, we can show that ω itself is upper bound of φ1 and φ2. Thus, ω is the lub. Hence, we
proved that there exists a least upper bound in Φ for φ1 and φ2 in Φ. In addition, the proof outlines the way it can be
obtained.

20

