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1 Introduction

Many phenomena can be modeled as networks in which entities (represented by nodes) partici-
pate in binary relationships (represented by edges). In a social network, nodes are individuals
and edges are personal contacts or relationships. In a communication network, nodes are individ-
uals and edges are flows of information such as phone calls or email messages. In a technological
network, nodes are machines, such as computers or power stations, and edges are some means
of transmission.

Research into the structure and function of networks has wide-ranging applications. Network
analysis is being used by businesses to market products [31], by epidemiologists to combat the
spread of diseases [32], and by financial regulatory agencies to detect fraud among securities
dealers [20]. Network analysis has also been applied to national security, industrial engineering
and computer network design.

The collection, dissemination, and analysis of networks has become much easier in recent
years. In the early days of social network analysis, data was often collected manually through
interviews or surveys. As a result of the cost of data collection, few networks were available
to researchers, and those available were small—sometimes consisting of fewer than 100 nodes.
Figure 1 reproduces a widely studied 34-node social network of karate club members, taken
from Zachary [66]. Now, because so many of our interactions leave electronic traces, networks
can be systematically recorded, sometimes on a nearly global scale. For example, Leskovec and
Horvitz’s [38] study of Microsoft Messenger users examined a network of 180 million nodes and
1.3 billion edges.

Some speculate that data at this scale can revolutionize the social sciences—much the way
data has transformed biology and physics—leading to a data-driven “computational social sci-
ence” [35]. However, scientific progress has been impeded because much of the data is not yet
available to the scientific community at large. The institutions and service providers that collect
the data are often unwilling to release it. Their reluctance is due, in part, to concerns about
privacy, since network data can reveal sensitive facts about participating entities and their con-
nections. As a result, computational social science is happening, but only at the institutions
that own the data or by a limited set of researchers who have negotiated access to the data (e.g.,
[22, 34, 38, 49, 53]). If the data is not accessible to the larger scientific community, then results
cannot be replicated and findings cannot be challenged. For the field of computational social
science to flourish, we must remove the obstacles to data sharing caused by privacy concerns.

This article describes techniques for the private and accurate analysis of network data. We
assume the data owner possesses a graph representing a network of interest to analysts, and we
consider two strategies for the safe release of the data. In private data publication, a transformed
network is released for analysis by the data owner. In private query answering, an analyst
submits queries to the data owner and receives answers, often transformed or perturbed by
the data owner to protect privacy. In order to be useful to the analysts, the transformed data
must accurately reflect the original graph, and the techniques that transform this data must be
efficient enough to scale to large data sets.

Both strategies have an important role in enabling safe dissemination of network data. In
data publication, the analyst receives a transformed graph and performs analysis using local
resources. This means the data owner does not have to devote resources on behalf of the analyst.
It also allows the analyst to carry out tasks that are difficult to do through a query interface,
such as data cleaning, exploration, and transformations. Lastly, the analyst’s processing of the
graph is not revealed to the data owner. In query answering, the analysts receive only the
answers to specific queries. The main advantage of this strategy is that it can typically offer
more accurate results since the distortion introduced to protect privacy is targeted to specific
queries.

Both of these approaches have been explored in the literature, but most existing work as-
sumes that the private data can be represented using a single table. Typically each record in
the table corresponds to a separate entity and, in contrast to network data, and there are no
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Id Name Gender Age Belt Injury

A Alice F 18 yellow ankle
B Bob M 21 white ankle
C Carol F 42 white elbow
D Dave M 16 white none
E Ed M 19 white clavicle
F Fred M 21 white knee
G Gail F 21 white none
H Mr. Hi M 36 black none
I Ingrid F 22 brown none
J John M 45 black ribs

...

(b)

Edge YearsKnown

{ A, I } 2
{ A, J } 3
{ B, I } 10
{ B, J } 11
{ C, J } 20
{ C, E } 1

...

(c)

Figure 1: Empty caption
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G Gail F 21 white none
H Mr. Hi M 36 black none
I Ingrid F 22 brown none
J John M 45 black ribs
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(b)
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{ A, I } 2
{ A, J } 3
{ B, I } 10
{ B, J } 11
{ C, J } 20
{ C, E } 1

...

(c)

Figure 1: Empty caption
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(c)

Figure 1: (a) A social network representing friendships among karate club members,
from Zachary [66]. (b) An example vertex table V . The rows correspond to vertices
(nodes) in the graph shown in (a). (c) An example edge table E. The rows correspond
to edges in the graph shown in (a).

relationships between the entities. Data publishing techniques for tabular data are not well-
suited for network data because they fail to account for the interconnectedness of the entities.
Naively applied, they tend to destroy the network structure, which can be a crucial part of the
analysis of such data. At the same time, threats considered for tabular data do not account for
the vulnerabilities posed by the connections in a network.

Existing query answering techniques can be applied to network data, however, the kinds of
queries posed on network data differ from the typical queries posed on tabular data. We review
recent work that adapts existing query answering techniques to accurately carry out important
network analyses.

While the algorithms designed for tabular data do not always apply to network data, some
of the definitions of privacy, such as k-anonymity [57, 58, 61] and differential privacy [13, 15],
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can be adapted to network data.
Much research has explored related privacy problems in network data, particularly on prob-

lems that surface with online social networks [1, 7, 18, 21, 23, 29, 33, 41, 67, 68]. While all of
this work shares a common goal of keeping sensitive information private, the privacy issues that
arise with data analysis are distinct from those that arise with, say, access control. Typically,
the analyst is interested in facts about the network’s overall topology and not with the partic-
ular connections between individuals. Thus, the overarching goal is to reveal properties of the
network (in the aggregate) but hide sensitive properties of particular entities and their relations.

1.1 How are networks analyzed?

If the techniques for protecting privacy are to have practical application, they must allow an
analyst to measure important network properties and carry out common analyses. After in-
troducing a network that will serve as a running example, we briefly review some ways that
networks are studied.

We represent a network as a graph consisting of vertices, described by vertex table V , and
edges, described by edge table E. Figure 1 shows the vertex and edge table for the karate club
network. Each node has a unique identifier (e.g., A,B,C . . . ), and edges are unordered pairs of
node identifiers (e.g., {A, I}). In some networks, nodes and edges may have attributes, which
are represented as auxiliary columns in tables V and E. A directed graph can include a direction
attribute in E. In the figure, the node attributes are Name, Gender, Age, Belt, and Injury, and
the edge attribute is YearsKnown. (The attributes on the nodes and edges have been created
for the purpose of illustration and were not present in the original network from Zachary [66].)

Many analyses focus solely on measuring the topology of the network as defined by the
edge table. Such analyses include the distribution of node degrees, the distribution of path
lengths (including the diameter—the longest minimum length path between two nodes), and
measures of transitivity (defined as the likelihood that a node’s neighbors are directly connected).
Significant research effort has been devoted to models of network formation that generate graphs
possessing the structural properties seen in the real world [3, 8, 6, 24, 39, 37, 36, 63].

Some analyses pinpoint specific structural features of the network. Analysis of network
centrality [19] seeks to identify influential nodes. For example, in Figure 1, node H may be
considered influential because a large number of shortest paths include H. In addition, commu-
nity discovery [50] divides the network into meaningful clusters. Motif analysis [46] identifies
interesting structures that occur repeatedly in a network.

Another category of research focuses on understanding the function of the network by mod-
eling processes that occur within the network. Such processes include search or navigation
within networks [59, 62] and diffusion across networks (e.g., rumors or epidemics spreading in a
group) [31].

While the above analyses focus on the structure of the graph, the presence of attributes
on edges or nodes allow for some new analyses and variants of those above. For example,
homophily, the tendency for associations to form among similar individuals, can be measured
in a network with attributes on nodes [44, 54]. Network models have been developed that
model the correlation between structural features and attributes [24]. Finally, network data
can include temporal information, allowing the study of network dynamics. This study includes
the development of models of network formation and evolution [36] and models to accurately
predict future links [34, 40].

The above summary is incomplete but shows the diversity of analyses that are performed on
network data. More complete surveys of network analysis appear in the literature [51, 12].

1.2 Why should network data be kept private?

Many networks contain sensitive information, which may be disclosed through network analysis.
In cases where entities represent individuals, network data often contains personal information.
Even if the entities in a network are not individuals, network data may still be sensitive. For
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example, detailed topological information about the power grid may reveal vulnerabilities to
potential terrorists, or records of information flow between host machines in a computer network
may reveal applications running on those hosts or facts about host operators.

The vertex table of a network raises the common privacy problems of tabular data: descrip-
tive attributes associated with an entity may be sensitive, and even the inclusion of an entity in
the data can itself be sensitive. For example, the first tuple in Figure 1b reveals that Alice is in
the karate club, that she is 18 years old, and that she has injured her ankle.

Of course, the distinctive feature of graph data is the presence of relationships between
entities represented by the edge table. The existence of an edge may be sensitive. For example,
Alice may want to hide the fact that she and Ingrid are friends. Alternatively, Dave may be
willing to disclose that Ingrid and John are his friends, but he may wish to hide the fact that he
has only two friends. Other aspects of connections may also be sensitive. For example, Ingrid
may prefer to hide the fact that she is friends with a 45 year-old man, or that she associates
primarily with white belts. Or the degree of a vertex may be sensitive: academics in a scholarly
collaboration network may wish to hide their low degree, while participants in a network of
romantic contacts may wish to hide their high degree.

In summary, both the attributes of a node and the structure of connections around a node
can be sensitive. The diversity of sensitive information in network data pose challenges for
privacy mechanisms.

1.3 Are privacy and utility compatible?

Given the range of sensitive information to be protected in networks, maintaining privacy and
enabling accurate analysis may be impossible. As our review will show, existing work has
encountered some limits on what analyses can be accurately studied. With each of the data
publishing approaches, the transformations that are applied to protect privacy systematically
distort some important network properties, and it is not clear how to lessen the distortion
without weakening the privacy protection. With the query answering approaches, it has been
shown that there are some network analyses that are impossible to answer accurately under
existing privacy definitions.

At the same time, some positive results have emerged. Many network properties are pre-
served in the transformed networks, and the transformations provide practical privacy protec-
tion. In the query answering setting, it is possible to answer some queries with extreme accuracy
while also guaranteeing extremely strong privacy guarantees.

These results are encouraging, but leave many open questions about the nature of the rela-
tionship between privacy and utility. Understanding what properties of networks can be safely
released remains one of the main open questions in this area of research.

1.4 Organization

In the remainder of this article, we first discuss attacks on network data and then discuss
strategies for protecting privacy, reviewing both data publishing techniques and query answer-
ing techniques. In Section 2, we discuss attacks on networks that are anonymized simply by
removing identifiers from nodes, showing that this common approach is insecure. We review
three specific attack strategies, show how they can lead to the disclosure of sensitive informa-
tion, and evaluate their effectiveness through simulated attacks on real networks. In Section 3,
we review approaches that protect privacy by transforming the graph either through directed
alteration, generalization, or random alteration. In Section 4, we review private query answer-
ing approaches, in which perturbed query answers are returned to the analyst. We conclude in
Section 5 by addressing future challenges in the private analysis of networks.
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Figure 2: (a) Naive anonymization of the network from Figure 1; (b) Secret mapping
between names and synthetic identifiers; (c) Anonymized vertex table and (d) Anon-
ymized edge table.

2 Attacks on Anonymized Networks

A common strategy for protecting sensitive networks is naive anonymization. Naive anonymiz-
ation is a simple transformation of a graph in which names of nodes (or other unique identifiers)
are removed and replaced by synthetic identifiers. For example, Figure 2 shows the naively
anonymized version of the karate club network in Figure 1. Also shown (Figure 2b) is the ran-
dom mapping between names and synthetic identifiers. This is secret and known only by the
data owner.

A naively anonymized network can support many analyses accurately since the topology
of the graph and non-identifying attributes are unmodified. Unfortunately, this also makes it
vulnerable to attack by an adversary with some prior knowledge about entities in the network.
Using knowledge of attribute values, graph structure, or both, the adversary may be able to
re-identify targeted individuals in the naively anonymized network.
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In this section, we categorize attacks on naively anonymized networks, and review empirical
results on the effectiveness of these attacks. The results demonstrate that naive anonymization
has considerable privacy risk. Equally important, the vulnerabilities of naive anonymization
exposed by the attacks provide insight into strategies for improved anonymization techniques,
such as those discussed in Section 3.

2.1 Threats: re-identification and edge disclosure

Most researchers have focused on one of two threats to naively anonymized data: node re-
identification and edge disclosure. Node re-identification occurs when an adversary accurately
identifies the named individual corresponding to a node in the naively anonymized graph. Once
node re-identification occurs, further disclosures are likely. If the published network includes
attributes, those attributes are now associated with the identified individual. In addition, the
position of the individual in the network is now revealed, which can lead to disclosure of various
structural properties, as discussed in Section 1.2.

Re-identification can either be complete or partial. Given a target individual, we say that
the adversary has completely re-identified the target if the adversary knows which node in the
anonymized graph corresponds to the target. For example, the adversary knows that Ed is node
9. With partial re-identification, the adversary may be uncertain about which node corresponds
to the target, but the adversary has succeeded in winnowing the possibilities down to a small
set of candidates. For example,the adversary may know that Ed is one of {7, 9, 17, 25, 28, 29}.
The size of the candidate set is a natural measure of re-identification risk.

Edge disclosure occurs when an adversary is able to accurately infer the existence of an edge
between two named individuals. Disclosing the absence of an edge may also be considered a
violation of privacy. However, since most real networks are sparse—meaning most edges are
absent—the adversary’s ability to infer the presence of an edge tends to be a greater concern.

Node re-identification and edge disclosure are distinct threats, and researchers have often
considered them separately. Of course, in a naively anonymized graph, re-identification of
multiple nodes leads to edge disclosure: if both Alice and John are re-identified, then the pres-
ence of an edge between them can be determined by inspection. However, when we move
beyond naive anonymization to more complex transformations in Section 3, we will see that
re-identification does not necessarily imply edge disclosure since some of the edges in the anon-
ymized network may be artificial. Edge disclosure can also occur without complete node re-
identification. For example, suppose the adversary has identified a set of candidate matches for
Alice—{6, 9, 11, 16, 28}—and a set of candidate matches for John—{2, 8}. The adversary can
conclude that Alice and John must be connected because each candidate for Alice is connected
to each of the candidates for John.

Node re-identification and edge disclosure are simple instances of disclosure and the two
most commonly considered in the literature. In some settings, more complex disclosures may
be of interest to an adversary, such as the disclosure of specific attributes or structural patterns.
For example, in a network of sexual interactions, revealing a person’s degree (i.e., the number
of sexual partners) constitutes a sensitive disclosure.

2.2 Adversary knowledge

The adversary’s ability to attack a naively anonymized network depends critically on the ad-
versary’s background knowledge. Here we discuss adversary knowledge and its implications for
attacks on naively anonymized networks. Section 2.3 reviews some specific attacks.

The adversary may use knowledge of node attributes to attack an anonymized graph. Such
attacks have been widely studied in the context of tabular data (e.g., the widely reported attack
of Sweeney [60] which re-identified anonymized medical records using voter registration data).
Because attribute-based attacks are relatively well-understood, research on network attacks has
focused on the novel threat of an adversary obtaining knowledge about the structure of the
graph.

8
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A common assumption is that the adversary has structural knowledge of a small subgraph
surrounding the target(s) [2, 43, 27, 26, 67, 69]. For example, the adversary may know that Alice
has degree 2, or that Alice has two neighbors who are themselves connected. The adversary
may know about multiple targets—e.g., the adversary may know that Alice and Bob share two
neighbors.

The above structural patterns describe what the adversary knows, but not how the knowledge
was acquired. The adversary’s knowledge could be derived from many possible sources (specific
sources are discussed in Section 2.3). The source of the knowledge, particularly its credibility, is
important because it affects the strategy that the adversary uses to find matches in the naively
anonymized network.

We can distinguish sources in terms of whether they provide precise or approximate infor-
mation. If the adversary’s source is precise, then any facts learned about a target are also true
of the corresponding node in the anonymized graph. In contrast, if the adversary’s source is
approximate, then it may assert properties about a target that are inaccurate or only roughly
describe the corresponding node in the anonymized graph. Typically, it is assumed that the
adversary knows whether the information source is precise or approximate.

Example 1 An example of an adversary with precise knowledge is one that learns that Alice
has degree exactly 2. Therefore, the node in the anonymized network that corresponds to Alice
also has degree 2.

An example of an adversary with approximate knowledge is one that learns that the network
is dynamic and, at some point in recent time, Alice’s degree was 3. Therefore, the node in the
anonymized network that corresponds to Alice is likely to have degree 3 but may also have a
smaller or larger degree.

In practice, we might expect the adversary’s knowledge will be approximate rather than
precise. As Example 1 suggests, one reason is that networks change over time and the adversary’s
knowledge may be derived from a different snapshot than the published network. Approximate
knowledge also arises when the adversary lacks direct access to the true network data but instead
derives knowledge from a related auxiliary source, as is the case with the auxiliary-network attack
discussed in Section 2.3.

While approximate knowledge may be more realistic, precise knowledge is nevertheless very
useful to study. First, when assessing privacy risk, it makes sense to evaluate the worst-case
scenario, and an adversary is most powerful when the knowledge is precise. Second, in some
cases, the adversary can, in fact, acquire precise knowledge (see the injection attack discussed
in Section 2.3). Finally, approximate knowledge is difficult to model: it is not always clear what
kinds of uncertainty will arise in practice.

When knowledge is precise, the adversary can execute an attack on the anonymized network
by simply looking for matching subgraphs. The anonymized network will contain at least one
match, and if it contains only one match, then the adversary has re-identified the target. How-
ever, with approximate knowledge, the adversary must somehow account for the uncertainty of
the knowledge about the target. Thus, the adversary may consider subgraphs that only partially
match, and perhaps rank them based on the quality of the match. An appropriate measure of
match quality will depend on the information source and what kinds of errors are likely.

2.3 Attacks

We highlight three attacks that have been proposed in the literature. First, we describe a
family of attacks, proposed by Hay et al. [27, 26], that cover a range of adversaries and can
be a useful tool for assessing re-identification risk. Second, we describe the injection attack of
Backstrom et al. [2], in which an adversary injects a distinctive subgraph into the network prior
to anonymization. Finally, we describe a recent attack of Narayanan and Shmatikov [48] which
exploits the availability of noisy, approximate knowledge to conduct a large-scale attack.
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2.3.1 Degree signature attacks

Hay et al. [27, 26] describe a sequence of attacks, of increasing power, that use knowledge of
local graph structure to re-identify a single target node.

The attacks model an adversary who is capable of learning about node degrees. Specifically,
given a target x, the adversary learns the degree signature of x, which is denoted Hi(x) for
i = 1, . . . . At i = 1, the signature H1(x) simply reveals the degree of target x to the adversary.
Each signature in the sequence reveals an increasingly detailed description of the neighborhood
around the target: H2(x) reveals the degrees of the target’s neighbors, H3(x) reveals the degrees
of the neighbors’ neighbors, etc. The signatures can be defined iteratively, where Hi(x) is a
multi-set of the Hi−1 signatures of x’s neighbors:

Hi(x) = {Hi−1(z1),Hi−1(z2) . . . ,Hi−1(zm)}

where z1 . . . zm are the neighbors of x. Degree signatures, which are called vertex refinement
queries by Hay et al. [27, 26], are inspired by a process called iterative vertex refinement that
was originally developed to efficiently test for the existence of graph isomorphisms [11].

Example 2 If Ed is the adversary’s target, then H1(Ed) = {4} since Ed has 4 neighbors.
H2(Ed) = {2, 12, 16, 5} because these are the degrees of Ed’s neighbors {C, I, J, Y }.

Suppose the adversary attacks the naively anonymized network (Figure 2) using knowledge
of Ed’s H1 signature. Any node who has degree 4 is considered a match, so the candidates
for Ed are {7, 9, 17, 25, 28, 29}. However, if the adversary attacks using knowledge of Ed’s H2

signature, the adversary can re-identify Ed as node 9 because Ed’s H2 signature is unique.

Although degree signatures Hi for i ≥ 2 might be considered unrealistically powerful knowl-
edge, they are appealing as a tool for assessing re-identification risk. First, since they are
parameterized, the data owner can assess risk across a range of adversaries. Second, it can
be shown that for almost all graphs, the sequence of degree signatures converges to complete
knowledge of graph structure, representing a worst-case adversary [26, 27]. Finally, degree signa-
tures can be computed efficiently; in contrast, to measure risk using models based on subgraph
patterns requires solving instances of the subgraph isomorphism problem, which is NP-Hard.

Degree signatures have also been used to understand what properties of a graph make it
more or less vulnerable to adversary attacks. For example, density appears to play a key role,
with re-identification risk increasing as graphs become more dense [26].

2.3.2 Injection attack

Backstrom et al. [2] introduce the idea of an injection attack. It is a special case of a subgraph
matching attack where the adversary is a participant in the network and capable of altering the
network structure prior to its publication. Specifically, the adversary can create new nodes and,
from these nodes, add edges to any other node in the network. For example, in a network of
email communication, the adversary could add a node by creating a new user account and add
an edge by sending an email from this account to another account.

The idea behind the attack is to insert a group of nodes with a distinctive pattern of edges
among them. The adversary then links this distinctive structure to some set of targeted individ-
uals. When the naively anonymized network is published, the adversary uses precise knowledge
of the injected subgraph to perform a matching attack. If successful, the targets, who are
connected to the subgraph, are re-identified and the edges between them are disclosed.

Example 3 To illustrate the injection attack, we imagine that the karate club network of of
Figure 1 is, in fact, a virtual karate club. A person can join the virtual karate club by creating
an account on the club website; one can also create friendship links to other accounts. Thus, the
graph represents user accounts connected by friendships.

The adversary performs an injection attack to determine whether there is an edge between
Alice and John. First, the adversary creates four new accounts—{Ii, Jj,Kk, Ll}—and links
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Figure 3: Example of injection attack: (a) injected subgraph {Ii, Jj,Kk, Ll} connects
to targets A and J; (b) Naive anonymization of the graph shown in (a). The injected
subgraph is unique and can be re-identified.

them together in a distinctive pattern. Then the injected subgraph is connected to the targets,
Alice and John. Figure 3a shows the injected subgraph.

When the anonymized network is published (Figure 3b), the adversary can re-identify the
injected subgraph as the subgraph of nodes {17, 19, 22, 37} because it is the only 4-clique in the
graph. In turn, this allows the adversary to re-identify Alice and John as nodes {2, 16}, disclosing
the edge between them.

Designing a successful injection attack is challenging. The injected subgraph must be distinc-
tive so it can be re-identified, but the adversary must inject the subgraph before seeing the rest
of the graph. So the adversary must somehow create a subgraph that is likely to be distinctive
regardless of the structure of the graph. In addition, the adversary must create a structure that
can be re-identified efficiently, as solving the subgraph isomorphism problem is intractable in
general. Finally, while the inserted structure should be distinctive to the adversary, it should
not be so distinctive that the data owner can see that the network has been compromised. At
the very least, this suggests that the inserted subgraph should be small relative to the size of
the network.

Backstrom et al. [2] describe an injection attack that relies on randomness to ensure that
the injected subgraph is distinct. They show theoretically that for a graph with n nodes and
an injected subgraph with k = Θ(log n) nodes, it is possible to construct a subgraph H that is
unique with high probability regardless of both the structure of G and how H is connected to
G. The argument relies on the fact that the number of subgraphs of size k in G is small relative
to the the number of possible subgraphs of size k; thus, by choosing a subgraph uniformly at
random, the adversary is unlikely to choose a subgraph that already exists in G. Furthermore,
the subgraph is efficiently re-identifiable. This identifiable subgraph can be linked to as many
as Θ(log2 n) targets.

Injection attacks are particularly effective for online networks, where it is possible to create
new accounts and connections among them. However, executing an injection attack in a network
of human contacts can be very difficult as it requires forming a coalition of adversaries who then
physically interact with the targets.

2.3.3 Auxiliary-network attack

Most proposed attacks (including the ones described above) assume that (a) the adversary only
has information about a small number of targets and (b) the information is precise. An exception
is the attack recently proposed by Narayanan and Shmatikov [48]. It is a large-scale attack in
which potentially all of the nodes in the graph are re-identified. Further, it relies on information
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Figure 4: Example of an auxiliary-network attack: (a) Auxiliary network of the bridge
club, which overlaps partially with the karate club of Figure 1; (b) Adversary’s proposed
mapping between the bridge club and the nodes in the anonymized karate club of
Figure 2.

that may be noisy and imprecise, thus the adversary must attempt to re-identify the targets
using approximate knowledge.

The basis of the attack is that the adversary has access to an auxiliary network whose
membership overlaps with the anonymized network. For example, suppose an online social
network site decides to publish an anonymized version of its network. Often a single person has
accounts on multiple sites. Furthermore, some sites are public and it is possible for the adversary
to obtain a copy of a public network through crawling [47]. The adversary could use knowledge
of this auxiliary network to re-identify nodes in the anonymized network. An auxiliary-network
attack can lead to breaches of privacy if for instance the anonymized network includes sensitive
attributes and/or additional edges that are not present in the auxiliary network.

Example 4 Suppose an adversary wants to re-identify nodes in the anonymized karate club
network (Figure 2). While the adversary lacks access to the private karate club network (Fig-
ure 1), the adversary does have knowledge of the social network of the bridge club, shown in
Figure 4a. Some individuals, specifically {A,B,C, I, J,M, V }, appear in both networks. Fur-
ther, the friendships among these nodes in the bridge club are similar to those of the karate
club. However, they are not identical: e.g., Carol is connected to John in the karate club but
not the bridge club. Figure 4b shows a possible mapping between the auxiliary bridge network
and the anonymized network, where “-” indicates that Julia is not mapped to any node in the
anonymized karate club.

An attack based on auxiliary network raises interesting challenges for the adversary. One
such challenge is addressing the approximate nature of the information source. As Example 4
suggests, the networks are likely to have different sets of entities, plus, even where the entities
overlap, the relationships in the anonymized network may differ from the relationships in the
auxiliary network. This requires a more flexible matching strategy than when the knowledge is
assumed to be precise. It also requires some way of scoring or ranking an inexact match.

A related challenge is the complexity of the attack. As discussed previously, a subgraph
matching attack is in general NP-Hard. Earlier attacks circumvent the problem complexity by
either using efficiently computable structural signatures (the degree signatures) or by considering
small subgraphs with a highly constrained structure (the injection attack). With an auxiliary
network attack, the subgraph can be arbitrarily large. Further, the matching is not restricted
to exact matches.

Narayanan and Shmatikov [48] propose a heuristic, two-stage algorithm for auxiliary-network
attacks. First, a small set of “seed” nodes are re-identified in the anonymized network. The as-
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sumption is that seeds can be re-identified using, for example, the injection attack of Backstrom
et al. [2]. Importantly, the seeds must also appear in the auxiliary network, thereby giving the
adversary a partial mapping between the auxiliary network and the anonymized network. In the
second stage, called propagation, the partial mapping is iteratively extended. At each step, an
arbitrarily chosen unmapped node u is mapped to a node v in the anonymized network, based
on how many neighbors of u have been mapped to neighbors of v.

To help mitigate the uncertainty in the adversary’s knowledge, Narayanan and Shmatikov [48]
propose various heuristic strategies, such as early termination, revisiting mapped nodes and re-
verse mapping. However, the final output is a single mapping and does not reflect the adversary’s
uncertainty about its accuracy.

2.4 Attack effectiveness

The effectiveness of these proposed attacks has been demonstrated on real networks. Below, we
highlight some of the results.

2.4.1 Effectiveness of degree signature attacks

Hay et al. [27, 26] simulate degree signature attacks on three real-world datasets: HepTh, a
dataset of co-authorship relations among high-energy physicists; Enron, a network derived from
email communication among Enron employees; and NetTrace, a bipartite graph derived from an
IP packet trace. For each graph, a separate attack is simulated for each node and each degree
signature Hi for i = 1, . . . , 4.

Figure 5 summarizes the results, showing for what percentage of nodes the attack succeeds.
For each degree signature Hi along the horizontal axis, the nodes are categorized based on the
size of their candidate set under that Hi. For example, the black region shows the percentage
of nodes that have a candidate set of size 1 (i.e., are re-identified) under the specified Hi.
For those nodes not uniquely re-identified, the other shades of gray give an indication of their
re-identification risk. For example, the lightest gray region corresponds to nodes that have a
candidate set of size 21 or larger, and are therefore at relatively low risk of re-identification.

Overall, we observe that the vulnerability to attack varies significantly across different
datasets. However, across all datasets, the most significant change in re-identification is from
H1 to H2, illustrating the increased power of adversaries that can explore beyond the target’s
immediate neighborhood. Re-identification tends to stabilize after H3—more information in
the form of H4 does not lead to an observable increase in re-identification in any dataset. Fi-
nally, even though many nodes are re-identified, a substantial number of nodes are not uniquely
identified even with H4 knowledge.

In addition, to simulating attacks on real networks, Hay et al. [26] also study random graphs
to gain insight into what properties of a graph make it more or less vulnerable to re-identification
attacks.

2.4.2 Effectiveness of injection attacks

Backstrom et al. [2] evaluate their injection attack on a real network, finding that in practice
the attack can be successful even when the injected subgraph is smaller than required by their
worst-case theoretical analysis. On a 4.4 million-node graph derived from LiveJournal, an online
blogging and social network site, attacks succeed over 90% of the time with as few as k = 7
injected nodes. A successful attack re-identifies the injected subgraph along with roughly 70
targets, disclosing the presence or absence of the

(
70
2

)
possible edges among the targets.

2.4.3 Effectiveness of auxiliary-network attacks

Narayanan and Shmatikov [48] demonstrate their auxiliary-network attack using graphs derived
from two online social networks, Twitter (224K nodes) and Flickr (3.3M nodes). Since both of
these networks are in the public domain, the authors simulate an attack by naively anonymizing
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Figure 5: Effectiveness of degree signature attacks across three network datasets. For each
node in a given network, we simulate an attack and measure the size of the resulting candidate
set. The attack is simulated for increasingly refined degree signatures Hi from i = 1, . . . , 4
(horizontal axis). Nodes are partitioned based on the size of their candidate set (vertical
axis). The size of the candidate set is indicated by color: 1 (black), 2 . . . 4 (dark gray),
5 . . . 20 (gray), 21 . . . (light gray).

the Twitter graph, using the Flickr graph as the auxiliary network. A total of 150 nodes (less
than 0.1% of the anonymized graph) were randomly selected as seeds.

To evaluate the attack, the authors must establish ground truth—the true mapping between
nodes in Twitter and nodes in Flickr. This is done by matching the identifying attributes,
such as username and geographic location. These attributes are available in both networks, but
are not used in the attack, only to establish ground truth. Matching on identifying attributes
produces a mapping of roughly 27K nodes, about 12% of Twitter users.

To measure the success of the attack, the authors argue that simply reporting the fraction of
re-identified nodes is a “meaningless” metric since many nodes cannot be re-identified by graph
structure. Instead, they propose a measure that gives more weight to correctly re-identifying
nodes that are “central” in the graph. The success rate of an attack is defined as:∑

v∈V I [µ(v) = µA(v)]λ(v)∑
v∈V λ(v)

where V is the set of nodes that appear in both the auxiliary network and the anonymized
network, µ is the ground-truth mapping, µA is the adversary’s mapping, and λ is the measure
of centrality (the authors use degree).

Using this weighted measure of re-identification success, the attack has a success rate of over
30%. Furthermore, they report that many of the incorrectly mapped entities were mapped to a
node that was close, either graphically or geographically, to the true node.
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3 Algorithms for Private Data Publication

In this section, we review data publishing techniques for graphs. The goal of data publishing is
to construct a graph or graph-like object that resists attacks and can be studied accurately by
analysts. As discussed above, simply removing identifiers fails to provide privacy protection since
an adversary can use background knowledge to re-identify target individuals. All techniques
begin by removing identifiers, and then apply further transformations prior to publication so that
the adversary’s ability to re-identify nodes or infer edges is greatly diminished. The transformed
graph should protect privacy and be useful, and the transformation process should be efficient
to execute.

The graph transformations proposed in the literature to date can be categorized as directed
alteration, generalization, and random alteration. With directed alteration, the graph structure
is altered, using operations such as edge insertions, to create common structural patterns. Nodes
in the output graph are more likely to look more similar to one another, but the graph may be
missing data or contain spurious information. With generalization, the structure of the graph
is generalized at a granularity that is coarse enough to provide some privacy but fine enough to
reveal the essential features of the network’s topology. Most approaches to generalization are
based on clustering nodes into groups and then describing the graph at the group level. Finally,
with random alteration, the graph is altered stochastically, through random edge additions and
deletions. Structural patterns in the original graph are disguised by the random alteration.

The transformations are applied to produce an output graph satisfying some privacy or
anonymity criterion. Many techniques measure privacy in terms of the transformed graph’s
resistance to subgraph matching attacks and are variants of k-anonymity [58, 57, 61]. Essentially,
they ensure that, for given assumptions about an adversary’s external information, any target
node will have at least k matches in the transformed graph. This uncertainty hinders adversary’s
ability to infer sensitive information.

Of course, the transformed graph should be useful to analysts. Each approach defines (some-
times implicitly) a measure of utility which is typically used to guide the transformation pro-
cess. Utility is an important concern in existing work, but is typically secondary to privacy.
While privacy is often guaranteed—for any input, an algorithm’s output will satisfy the pri-
vacy condition—utility is typically only evaluated empirically and worst-case analysis is not
considered.

Finally, the techniques presented below differ on the kind of network data considered. Some
allow attributes on nodes or focus on limited graph structures, such as bipartite graphs. As
a default case, we assume a graph without attributes and therefore an adversary with only
structural knowledge. Differences are noted below.

3.1 Directed alteration of networks

One of the findings from Section 2 was that nodes can be distinguished by the local structure
around them, making them vulnerable to re-identification in an naively anonymized graph.
To counter the threat of re-identification, directed alteration techniques insert edges to make
the nodes more structurally uniform. Uniformity ensures that when an adversary attacks the
anonymized network, many nodes will match the target’s structural pattern, hence preventing
the adversary from uniquely identifying the target.

3.1.1 Degree anonymity

The algorithm developed by Liu and Terzi [43] alters the graph to resist matching attacks by an
adversary with knowledge of node degree. Edges are inserted into the graph until every node has
the same degree as at least k− 1 other nodes—thus, the graph can be considered k-anonymous
with respect to degree. This privacy condition can be satisfied trivially by inserting edges until
the graph is complete, but this destroys the utility of the data. To preserve utility, the objective
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of the algorithm is to find the minimal set of edge insertions to render the graph k-anonymous
with respect to degree.
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Figure 6: Examples of directed alteration applied to the anonymized karate club net-
work of Figure 2. The original edges are shown in light gray. With directed alteration,
edges are inserted until each degree occurs at least k = 3 times (inserted edges in solid
black).

Example 5 Figure 6 gives an example of a graph that has been altered to ensure the graph is
3-anonymous with respect to degree.

While this privacy condition may not protect against more powerful adversaries (whose
knowledge extends beyond node degree), this problem formulation satisfies another important
criterion: scalability. A key insight is that the privacy condition can be assessed using only the
graph’s degree sequence, motivating a two-stage approach: first find the minimum change to the
degree sequence to satisfy the privacy condition; then alter the graph to match the new degree
sequence. This decoupling leads to a simple, efficient, and scalable solution. The first stage
can be computed using an O(kn) dynamic program over the degree sequence. In addition to
being efficient, the output sequence has “optimal” utility in the sense that it corresponds to the
minimum change necessary to meet the privacy condition.

However, some challenges remain in completing the second stage of altering the graph to
match the k-anonymous sequence. First, it may be impossible to realize a graph whose degree
sequence matches the k-anonymous sequence. Degree sequences must obey certain constraints
(e.g., the sum of the degrees must be even) and the first stage may produce a sequence that
is not realizable. Second, even if the sequence is realizable, the second stage requires that it
is possible to realize the degree sequence by inserting edges to the original graph. This may
not be possible (unless one allows self-loops or multiple edges between a pair of nodes). To
address these challenges, Liu and Terzi draw on existing graph theoretic results and devise some
heuristic strategies that are efficient and appear to work well on realistic graphs. The algorithm
has a worst-case running time that is quadratic in the size of graph, but in practice, run-time is
closer to linear. Finally, they also present an extension that alters the graph using edge deletions
as well as insertions.

3.1.2 Neighborhood anonymity

Zhou and Pei [69], in some of the earliest work in this area, propose a similar problem formulation
as Liu and Terzi [43] but with a stronger privacy condition. The condition requires that for each
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node in the graph, its neighborhood—the subgraph induced by the node and its neighbors—is
isomorphic with at least k−1 other neighborhoods. Any graph satisfying this condition will also
satisfy the condition of Liu and Terzi [43] because if two nodes have isomorphic neighborhoods,
then they must have equal degrees. Another difference is that the data model includes labels
on the nodes, which must also be anonymized.

Zhou and Pei seek to create isomorphic neighborhoods by inserting edges into graph. Their
utility objective, similar to Liu and Terzi [43], is to minimize the number of edge insertions.
They show that the problem of determining the minimal set of edge insertions that satisfy the
privacy condition is NP-Hard.

Since computing the optimal solution is intractable, Zhou and Pei give a greedy algorithm
that iteratively anonymizes the nodes in batches of size k. In each round, a seed node is chosen
from the remaining un-anonymized nodes, then k − 1 nodes are chosen greedily based on their
structural similarity to the seed node. Edges are inserted until the batch of neighborhoods
becomes isomorphic. To facilitate comparisons between neighborhoods, existing graph coding
techniques, called minimum depth-first-search (DFS) codes, are employed. Minimum DFS-codes
have the property that graphs are isomorphic if and only if they have matching minimum DFS-
codes [64]. While computing the minimum code can require time that is super-polynomial in the
size of the neighborhood, the average-case complexity appears to be much lower: the algorithm
can anonymize graphs with 25K nodes in under 10 minutes.

With this iterative approach, a subtle issue can arise when an edge is inserted that connects
to a node that has already been marked as anonymized. This causes the marked node to
no longer be isomorphic with the other nodes in its batch. The algorithm addresses this by
unmarking these nodes and returning them to the list of un-anonymized nodes. In the worst
case, the algorithm returns a complete graph. This highlights a challenge with anonymizing
graph data: the alterations that modify the local structure around a node can have unintended
consequences on the global structure of the network.

The problem formulations of Zhou and Pei [69] and Liu and Terzi [43] are quite similar, and it
is not clear which approach provides better utility. Since Zhou and Pei impose a more stringent
privacy condition, one would expect more edge insertions, and thus perhaps lower utility. In
general, the literature contains few direct comparisons of graph anonymization techniques. A
thorough evaluation of their privacy-utility tradeoffs would be valuable to data owners who must
choose among these competing techniques.

The empirical results of Liu and Terzi [43] provide some insight into how these techniques
affect graph structure. First, edge insertion introduces bias into some common measures: degrees
increase and average path length becomes shorter. The magnitude of the bias depends on
the topology of the graph. For instance, Liu and Terzi evaluate their approach on power-
law graphs—random graphs with power-law degree distributions—and on small-world graphs—
random graphs with binomial degree distributions. For the same level of privacy, more edges
must be inserted into power-law graphs than small-world graphs because the degree distribution
of a power-law graph contains some large, outlying degrees. For example, at k = 15, the
average degree increases by about 1 for a power-law graph but by less than 0.2 for a small-world
graph [43].

Finally, the utility objective of both algorithms is to minimize the number of edge insertions.
This assumes that the utility cost of an edge insertion is uniform across all edges. In fact, given
that many graphs exhibit “community” structure—relatively dense subgraphs that are sparsely
interconnected—the insertion of some edges (say, within community edges) would distort the
graph topology “less” than others (say, between community edges). The generalization-based
approaches (described next) present alternative utility objectives that explicitly attempt to
minimize some measure of information loss.

3.2 Network Generalization

The goal of generalization techniques is to obscure the details of local structure while preserving
global properties of the graph. Rather than create structural uniformity through alteration,
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node identity is hidden and local structure is summarized.

3.2.1 Anonymity through clustering

Hay et al. [26] introduce a network anonymization algorithm that is based on generalizing
the network to resist re-identification attacks. The algorithm outputs a generalized graph,
which represents a coarse summary of the original input graph. Since a similar idea of graph
generalization is also considered elsewhere [10, 5, 67], we now describe it in some detail.

The generalized graph, denoted G, is based on a partition of the nodes into disjoint sets.
Each subset can be thought of as a super-node since it contains nodes from G but is itself a node
in G. The edges of G are called super-edges, and there is a super-edge between two super-nodes
if there is at least one edge in the original graph between their corresponding sets of nodes. If
two nodes in the same super-node share an edge in the original graph, then their super-node
has a self-loop in G. Finally, the super-edges are assigned non-negative weights which report
the number of edges in the original graph that exist within and between the partitions.
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Figure 7: Examples of generalization applied to the anonymized karate club network
of Figure 2. With generalization, nodes are grouped into super-nodes until each group
contains at least k = 3 nodes (super-nodes in gray; super-edges in black).

Example 6 A generalized graph is shown Figure 7. The gray enclosing circles denote super-
nodes and the thick black edges denote super-edges. The super-edge between super-node {1, 20, 26, 34}
and super-node {19, 25, 29} has a weight of 4 because there are 4 edges between these two sets of
nodes in the original graph.

A generalized graph summarizes the structure of the original graph, but the accuracy of
the summary depends on the choice of super-nodes. At one extreme, if the generalized graph
contains a single super-node, then the only facts revealed about the input graph are its size
(number of nodes) and density (number of edges). This provides considerable privacy but very
low utility. At the other extreme, if there is a one-to-one correspondence between nodes and
super-nodes, then the generalized graph encodes the original graph, providing perfect utility but
no additional privacy. A generalized graph defines a set of graphs that are consistent with its
summary description. The graphs in this set are called possible worlds.

Hay et al. [26] specify a privacy condition that each partition (super-node) must contain at
least k nodes. Since nothing in the published output allows an adversary to distinguish between
two nodes in the same partition, the output is k-anonymous with respect to any knowledge
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of graph structure. Therefore, this privacy condition is stronger than the conditions of the
directed-alteration approaches, which assume bounds on adversary knowledge.

Example 7 In Figure 7, the generalized graph has a minimum group size of k = 3, thus ensur-
ing that an adversary cannot re-identify a node beyond 3 possible candidates.

To balance the competing goals of privacy and utility, Hay et al. [26] introduce an algorithm
that outputs a generalized graph G such that each super-node contains at least k nodes and the
number of possible worlds is minimized. The number of possible worlds is a measure of the utility
of the output: more possible worlds implies greater uncertainty about the input graph. The
algorithm uses local search over the exponential space of generalized graphs, applying operations
such as merging/splitting super-nodes and moving a node between super-nodes. The output is
a local optimum in the search space. The algorithm appears to scale roughly quadratically with
the size of the graph.

In terms of utility, an analyst can study the generalized graph by sampling a graph from
the set of possible worlds. This graph is a standard graph (not a summarized graph) and
can be analyzed using standard techniques. The experiments of Hay et al. [26] suggest that
graph generalization appears to preserve some important global properties such as network
resiliency and the distribution of path-lengths. However, some local properties, such as clustering
coefficient can be substantially diminished. This is because within a super-node, the sampled
graph structure is a random graph, and random graphs tend to have low clustering coefficients.

Campan and Truta [5] Concurrently with the above work, Campan and Truta [5] de-
vise a similar approach. In terms of graph structure, their masked social network appears to be
equivalent to the generalized graph described above. Campan and Truta also include identifying
attributes on the nodes. These attributes are generalized using conventional techniques from
tabular data anonymization with the result that each super-node is assigned a vector of gen-
eralized attribute values. Aside from the additional condition on attribute values, the privacy
condition is the same as above. Thus, the k-anonymous masked social network is k-anonymous
with respect to knowledge of attributes and structure.

Campan and Truta formulate a slightly different utility objective than Hay et al. [26], with the
main differences having to do with the inclusion of attributes. Subject to the privacy condition,
the objective is to minimize a measure of information loss that combines both attribute and
structural information loss. Campan and Truta adopt a measure of attribute information loss
from existing work in tabular data anonymization. For structural information loss, they use a
measure that is approximately equivalent to minimizing the number of possible worlds. These
two loss functions are combined linearly, with weights that can be chosen by the user. So if the
attribute information loss is given zero weight, this formulation appears to be roughly equivalent
to the formulation of Hay et al. [26].

To generalize the graph, Campan and Truta apply an iterative, greedy algorithm that
anonymizes nodes in batches of k, similar to the algorithm of Zhou and Pei [69]. At each
iteration, a new super-node is created by choosing a seed node. Then k − 1 other nodes are
added to the super-node based on their similarity (in terms of attributes and neighborhood) to
the super-node.

3.2.2 Safe groupings

Cormode et al. [10] also present a generalization algorithm for anonymizing graph data; however,
the graphs considered have different semantics than the graphs discussed above. The data model
is a bipartite graph (V,W,E) where V and W correspond to two distinct types of entities and E
corresponds to the associations between them. (In addition, there is an attribute table associated
with each of V and W .) For example, V could be customers at a pharmacy and W could be
medications, and the edges in E connect each customer with the medications they have have
purchased. In this setting, the private information is the association between customer and
product. Their generalization algorithm prevents the disclosure of edges (e.g., who bought what
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medication). This is a departure from the above approaches which focus on preventing node
re-identification.

The approach taken by Cormode et al. assumes that the adversary will use knowledge of
attributes rather than graph structure in a matching attack. As a result, it is not considered a
privacy risk to publish the exact graph structure. This is also a departure from the adversary
models considered above. To prevent matching attacks based on attributes, their technique
masks the mapping between nodes in the graph and real-world entities (with their associated
attribute vectors). This is done by partitioning the nodes, and the corresponding entities, into
groups. Within a group, the mapping between node and entity is secret. The most basic privacy
definition used is a (k, `)-grouping, essentially requiring that the minimum group size is k and
` for V and W , respectively. For a graph with a (k, `)-grouping, the set of possible worlds
corresponds to every possible bijective mapping of nodes and entities in each group.

Of course, a (k, `)-grouping may not necessarily prevent edge disclosure. For example, if every
customer in a group purchased the same group of medications, then the subgraph between this
customer group and the medication group would be complete. Cormode et al. propose a notion
of a safe grouping, which requires that no two nodes in the same group share a neighbor—in
other words, the edges in the subgraph between any pair of groups must form a matching (i.e.,
edge-independent set). This definition necessarily imposes some constraints on the graph—it
must be sparse for such a grouping to exist. Cormode et al. demonstrate the advantage of a
safe grouping and prove that with a safe grouping, associations cannot be inferred using the
published data alone. Further, they present a greedy algorithm for anonymizing the graph using
groupings. While the algorithm is not guaranteed to find a safe-grouping (even if one exists), in
practice it appears to work well for small values of k, `.

3.3 Randomly altering networks

In contrast with the above approaches—which thwart the adversary by systematically transform-
ing the graph to make it more general or structurally uniform—random-alteration approaches
alter the graph structure randomly, thereby making the adversary uncertain about the true
structure of the graph. It is an appealing approach that has been successfully applied to protect
privacy in tabular data [4, 17, 56]. The algorithms developed for tabular data are quite simple,
yet provide strong privacy guarantees and good utility. However, extending these techniques to
network data appears challenging. We review one technique for tabular data and then discuss
the challenges that arise with network data.

For tabular data anonymization, Rastogi et al. [56] give a simple randomized algorithm in
which each record from the table is added to the output table with probability less than one.
In addition, synthetic records are randomly sampled from the table’s domain and added to
the output. This ensures privacy because the adversary cannot determine whether a particular
record in the output is genuine or synthetic. It also provides utility: one can estimate answers
to any counting query—the number of records satisfying a predicate—with reasonably high
accuracy (error scales with the square-root of the domain size). Note that computing query
answers requires some post-processing: simply evaluating the query on the randomized output
will give an inaccurate answer because the output contains many synthetic records. Instead,
one must use statistical inference techniques to derive an estimate.

While such random alteration preserves utility for tabular data, a number of challenges arise
in devising random-alteration techniques for network data. The first problem is choosing a
natural randomization operation. A direct application of the techniques of Rastogi et al. [56]
would randomly remove some edges and insert others, resulting in an output graph that is a
mixture of the input graph and a random graph. This limits the disclosure of individual edges,
but the utility of the output is also limited. With network data, the queries of interest are
not typically counting queries over the set of edges but instead often involve computing paths
(self-joins on the edge table). Since the insertion or removal of a single edge can make or break
many paths, accurate estimates are difficult to achieve. In fact, for a query such as the number
of triangles (cycles of length 3), one can construct worst-case input graphs where the expected
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Figure 8: Examples of random alteration applied to the anonymized karate club network
of Figure 2. The original edges are shown in light gray. With random alteration, edges
are randomly chosen and rewired until m = 10 edges have been altered (deleted edges
in dashed black; inserted edges in solid black).

error is linear in the size of graph [55].

3.3.1 Uniform randomization

There have been some initial efforts to apply random alterations to network data. Hay et al. [26]
considered randomly permuting some fraction of the network’s edges.

Example 8 An example of random alteration is shown in Figure 8. The network is altered by
deleting m = 10 edges uniformly at random and then inserting m edges uniformly at random.

Hay et al. show that this was effective at limiting an adversary’s ability to re-identify a target
based on node degree (see Ying and Wu [65] for a theoretical analysis of privacy). However,
the graph structure was changed considerably: a 10% change in the edge structure resulted in a
roughly 33% change in the value of some important graph metrics. Although the analyst may
be able to reduce the error through statistical post-processing, the results suggest that the gain
in privacy is offset by a substantial loss in utility.

3.3.2 Spectrum-preserving randomization

To address the loss of utility, Ying and Wu [65] considered a more complex randomization
strategy that was guided by the graph structure, choosing a random alteration that preserves
key properties of the network. The technique is based on the observation that many important
network properties are related to the graph’s spectrum—i.e., the set of eigenvalues of the graph’s
adjacency matrix or other matrices derived from it. Thus, they develop a random-alteration
algorithm where edges are randomly added and deleted, but the random choice is guided based
on how the change affects the graph’s spectrum. They show that the utility of the randomly
altered network—measured both in terms of common metrics and spectral properties—is much
improved. However, they do not assess what impact spectrum-based randomization has on
privacy. The protection must necessarily be weaker than pure randomization: the noise is
influenced by the structure of the graph which means the adversary may be able to use his
knowledge of graph structure to infer likely edge swaps. It is unclear how much this improves
the adversary’s ability to breach privacy.

21



Draft chapter for forthcoming book Privacy-Aware Knowledge Discovery, Chapman & Hall

4 Algorithms for Private Query Answering

The above approaches protect privacy by transforming the data prior to publication. The
published output is an altered or a generalized graph. In this section, we review an alternative
approach, in which a graph is never published. Instead, the only published information consists
of the answers to specific queries. To ensure privacy, often the exact answer is not revealed;
instead, the data owner publishes an approximate answer, perhaps by adding random noise to
the true answer.

The distinction between these two approaches can be blurred, since a “query” could, in
principle, be any request for data. Typically, however, the query is a summary statistic, such
as the clustering coefficient of the graph, rather than a request for raw data. An advantage
with the query answering approach is that the distortion can be tailored to the specific query,
allowing for better utility. Intuitively, statistics that summarize the data at a coarse granularity
can be answered more accurately than a query that asks about specific records.

Much of the recent work in query answering techniques has used a notion of privacy called
differential privacy [13, 15]. It is an extremely robust notion of privacy that guarantees protec-
tion even against extremely powerful adversaries. Despite this strong guarantee, it is possible to
satisfy differential privacy and yet provide accurate answers in a variety of practical applications.

While most work in differential privacy focuses on the query-answering setting, the privacy
definition can also be applied to the data publishing setting as well. In fact, some differentially
private data publishing algorithms have been proposed recently [4, 16, 56], but they are designed
for tabular data. Developing differentially private algorithms for publishing network data is an
interesting direction for future work.

While differential privacy has been the basis of an active area of data privacy research, most
work assumes the data is tabular. For a survey of the tabular data results, see Dwork [13]. In
this section, we highlight some of the results oriented specifically to network analysis. After
formally defining differential privacy, we discuss how the definition can be adapted to network
data. Then, we review the differentially private algorithm of Dwork et al. [15] that can be used
to answer arbitrary queries. Finally, we describe some positive results for network analyses as
well as some the remaining challenges.

4.1 Differential privacy

The formal definition of differential privacy assumes that the database consists of a single table
of records where each record describes an individual’s private information. We review the formal
definition and then discuss how it can be adapted to network data.

Differential privacy is a property of an algorithm. Informally, it requires that an algorithm
be insensitive to small changes in the input, such as the addition or removal a single record.
The formal definition uses the concept of neighboring databases: two databases I and I ′ are
neighbors if they differ in at most one record, i.e., |(I− I ′)∪ (I ′− I)| = 1. Let nbrs(I) to denote
the neighbors of I. Differential privacy is defined as follows:

Definition 4.1 (ε-differential privacy) An algorithm A is ε-differentially private if for all
instances I, any I ′ ∈ nbrs(I), and any subset of outputs S ⊆ Range(A), the following holds:

Pr[A(I) ∈ S] ≤ exp(ε)× Pr[A(I ′) ∈ S]

where probability Pr is over the randomness of A.

An example illustrates why a differentially private algorithm protects privacy. Suppose a
trusted party is conducting a poll. Once responses have been collected, the pollster plans to
analyze the responses using a differentially private algorithm and publish the output. The indi-
vidual’s concern is that if they respond, the output will reveal something about them personally
and thus violate their privacy. The above definition assuages this concern because whether the
individual opts-in or opts-out of the survey, the probability of a particular output is almost the
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same (differing by a factor of at most exp(ε)). Clearly, any observed output cannot reveal much
about their particular record if that output could occur (with a similar probability) even when
their record is excluded from the database.

This is a different notion of privacy than the ones considered in Section 3, which define
privacy in terms of protection against an adversary with specific knowledge. The differential
privacy guarantee is a condition on the algorithm, and thus it is independent of adversary
knowledge. In fact, it can be shown that even if an attacker knows every record in the database
except one, the adversary cannot use the output of a differentially private algorithm to infer
much about the remaining record (more formally, the difference between the adversary’s prior
and posterior beliefs is bounded [15, 55]). Thus, it affords extremely strong privacy protection.

Differential privacy has been defined inconsistently in the literature, where neighboring
databases are sometimes defined in terms of Hamming distance [14, 15] and sometimes de-
fined, as it is above, in terms of symmetric difference [13, 45]. The technical implications are
outside the scope of the present discussion, but suffice it to say that the definition based on
symmetric difference is more general.

4.2 Differential privacy for networks

The above definition is predicated on a data model where an individual’s private information
is encapsulated within a single record. Thus, neighboring databases differ by the addition
or removal of a person’s private information. With network data, which is primarily about
relationships among individuals, the correspondence between private data and database records
is less clear. To adapt the definition to graphs, one must appropriately define the concept of
neighboring graphs.

In the literature, neighboring graphs are assumed to differ by a single edge. Under this
approach, a differentially private algorithm essentially protects against edge disclosure. This is
a similar privacy objective as some of the data publishing techniques described in Section 3.
However, differential privacy places no limiting assumptions on the input or on adversary knowl-
edge. An adversary with knowledge of all of the edges in the graph except one, cannot use the
differentially private algorithm to infer the presence or absence of the unknown target edge [55].

While individual edges are protected, this adaptation of differential privacy for graphs does
not capture the same “opt-in/opt-out” notion of privacy that was described in the polling
example (Section 4.1). It may still be possible to learn specific facts about a node. For example,
this adaptation admits the disclosure of aggregate properties of sets of edges—e.g., a node’s
degree can be approximately revealed. Further, some networks, such as the example in Figure 1,
also have attributes on the nodes. There may be alternative ways to adapt the definition to
protect both edges and node attributes. Understanding the privacy-utility tradeoffs of these
alternatives is an important area for future work.

4.3 Algorithm for differentially private query answering

Dwork et al. [15] present a differentially private algorithm for answering any query or sequence
of queries. We illustrate the approach using the following example. Consider an analyst who
wants to learn about the degrees of nodes. Let D[u] denote the query that returns the degree of
node u if u ∈ V , and otherwise returns -1. Let U = u1, . . . , un be a sequence of node identifiers.
The query sequence D[U ] returns a vector corresponding to the degrees of the nodes in U—i.e.,
D[U ] = 〈D[u1], . . . ,D[un]〉.

Example 9 Given the network from Figure 1, the query D[Alice] returns 2. The query sequence
D[Alice, Ed, Frances] returns 〈2, 4,−1〉 since 2 and 4 correspond to the the degrees of Alice and
Ed respectively and -1 reveals that Frances is not in the network.

The algorithm of Dwork et al. [15] works by adding random noise to the answer, where
the amount of noise depends on the query’s sensitivity. Sensitivity is a worst-case notion that
measures the maximum change in the query answer between any two neighboring databases.
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Definition 4.2 (Sensitivity) Let Q be a sequence of queries where each query returns a num-
ber in R. The sensitivity of Q, denoted SQ, is defined as

SQ = max
I,I′∈nbrs(I)

‖Q(I)−Q(I ′)‖1 .

We illustrate this concept by computing the sensitivity of some degree queries.

Example 10 The sensitivity of query D[Alice] is 1: Neighboring graphs differ by exactly one
edge and there exist pairs of neighboring graphs where that edge is incident to Alice. So for those
pairs of neighboring graphs, the query answer differs by 1.

The sensitivity of the query sequence 〈D[Alice],D[Ed],D[Frances]〉 is 2 because neighboring
graphs can differ by an edge that connects two of these individuals, causing each of their degrees
to differ by one.

Dwork et al. [15] have shown that the following algorithm is ε-differentially private. Given a
query sequence Q, the algorithm first computes the answer to the query on input I and then adds
independent random noise to each answer in the sequence. The noise is sampled independently
from a Laplace distribution with mean zero and scale σ = SQ/ε. The magnitude of the scale
controls the amount of noise: as σ increases, the answers become noisier. Thus, the noise in the
answer increases with increasing query sensitivity, SQ, or with decreasing ε (corresponding to
greater privacy).

Example 11 Let the query Q be D[Alice]. To compute the answer to the query under differ-
ential privacy, the algorithm first computes the true answer, which is 2. Then it adds Laplace
random noise with scale σ = SQ/ε. Recall that for this query, SQ = 1.

When ε = 1.0, the scale is σ = SQ/ε = 1.0. With a 95% probability, the noisy answer will
lie in the interval 2 ± 2.995. However, when ε = 0.1, the scale becomes σ = 1/0.1 = 10.0 and
the 95% probability interval is 2± 29.957.

For a fixed query, or query sequence, the above algorithm is simple to implement and it
is guaranteed to satisfy a strong privacy guarantee. For the output to be useful, however,
the amount of random noise must be small relative to the query answer. Since the noise is
determined by the sensitivity of the query, a key question is whether common network analyses
have low sensitivity. The next section looks at some specific analyses and the extent to which
they can be accurately estimated under differential privacy.

4.4 Network analysis under differential privacy

Enabling accurate analysis of social networks is an often mentioned goal in the differential
privacy literature, but relatively few concrete results exist that demonstrate the feasibility of
differential privacy for network data. Below we highlight a few results and discuss some of the
challenges.

4.4.1 Low sensitivity analyses

The previous section showed that the accuracy of Dwork et al.’s [15] algorithm depends on the
query’s sensitivity, with lower sensitivity yielding greater accuracy. Some analyses of networks
can be computed with queries that are low sensitivity. For example, network resiliency can be
approximated with a low sensitivity query. The query asks how many edges must be removed
until the network becomes, say, disconnected, and it has a sensitivity of one [15]. In addition,
for weighted graphs with edge weights in [0, 1], the weight of a minimum edge-cut or a minimum
spanning tree are both low-sensitivity queries [15].

However, the fact that an analysis can be computed using a query, or sequence of queries, with
low sensitivity does not necessarily imply that the analysis will be accurate under differential
privacy. We present a more detailed look at one particular analysis: measuring the degree
distribution of a network.
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As discussed above, the query that asks for an individual degree, or a sequence of degrees, is
a low sensitivity query. However, typically, an analyst is not concerned with individual degrees
but with the distribution of degrees. While there are some natural strategies for obtaining the
entire degree distribution—such as asking for each node’s degree or asking for the number of
nodes with a given degree—these approaches require asking many queries, and the total amount
of noise grows linearly with the size of the graph. The consequence of asking so many queries is
that the error introduced can substantially distort the degree distribution.

Hay et al. [25] give an accurate and efficient algorithm for estimating the degree distribution
of a graph. It capitalizes on a recent innovation in differentially private algorithms that has
been shown to boost accuracy without sacrificing privacy [28]. The technique performs a post-
processing step on the differentially private output, using a set of known constraints to infer
a more accurate result. Hay et al. [25] demonstrate that the post-processing step can reduce
the error by orders of magnitude and the resulting degree distributions are extremely accurate.
Also they show the post-processing requires only linear time and thus it scales to the large social
networks commonly analyzed today.

4.4.2 High sensitivity analyses

While these are promising results, open questions remain about the accuracy obtainable for
many common network analyses. For some important analyses, the prospects seem poor. Com-
putations such as transitivity, clustering coefficient, centrality, and path-lengths involve joins
on the edge table. It is not hard to construct examples showing that the sensitivity of such
statistics is extremely high. We cannot hope to guarantee accurate answers for high sensitivity
queries under differential privacy. (For a formal statement, see Rastogi et al. [55].)

To address these limitations, some alternative approaches have been proposed. We discuss
two approaches for a particular high sensitivity query: counting the number of triangles in a
graph.

The query that reports the number of triangles (i.e., cycles of length 3) is an important query
in social network analysis and is related to properties such as clustering coefficient. It has a
sensitivity of n− 2 because, in the worst case, a single edge participates in a triangle with each
of the remaining n− 2 nodes. Removing that edge changes the number of triangles by n− 2.

Nissim et al. [52] give an algorithm for approximating the number of triangles in a graph.
It is based on a general technique called smooth sensitivity. The motivation is that a query can
have high sensitivity because some worst-case inputs yield substantially different answers from
their neighboring databases, but typical inputs yield only small changes. A tempting solution
is to use the local sensitivity of I—i.e., the maximum change between Q(I) and Q(I ′) for any
I ′ ∈ nbrs(I). However, this can leak information because the local sensitivity itself can change
substantially between neighboring instances and thus an approach that uses it directly would
fail to satisfy differential privacy. Smooth sensitivity is a upper bound on local sensitivity that
varies smoothly over the space of possible databases. Nissim et al. [52] show that adding noise
according to the smooth sensitivity satisfies a slightly relaxed definition of differential privacy.

Nissim et al. [52] apply the smooth sensitivity idea to the problem of computing the number
of triangles. They show how to efficiently compute the smooth sensitivity for a given graph and
also show that random graphs are likely to have low smooth sensitivity.

Rastogi et al. [55] present an alternative approach for estimating the number of triangles.
While the algorithm is not differentially private, it does guarantee a natural definition of privacy
called adversarial privacy. Interestingly, they also characterize the relationship between differen-
tial privacy and adversarial privacy by defining the class of adversaries for which a differentially
private algorithm is adversarially private. This class includes adversaries that are extremely
powerful and arguably unrealistic. By restricting the protection to a weaker (and more realis-
tic) class of adversaries, they are able to accurately estimate the frequency of triangles, as well
as other subgraph patterns.

Finally, another potential solution for high sensitivity queries is to avoid them. High sensi-
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tivity means that for some networks, the change of a single edge can profoundly alter the query
answer. Given that network data is often incomplete and noisy, analysts need measures that
are robust to minor perturbations of network structure. In fact, robustness to small perturba-
tions has been proposed as a way of evaluating the significance of the communities found by a
community discovery algorithm [30]. The connection between robust statistics and differentially
private algorithms has been explored, but existing results are limited to high sensitive queries
of tabular data [14].

5 Conclusion and Future Issues

The investigation of the private and accurate analysis of network data is still in its early stages
and many challenges remain. New attacks are being discovered and new protection mecha-
nisms are actively being developed. Some of the outstanding challenges include: establishing
formal guarantees of utility, devising methods to handle richer data representations, and scaling
techniques to large networks.

In general, existing data publication techniques do not provide guarantees of accuracy for
specific analyses, only empirical evidence that certain properties are maintained in the output.
An analyst forced to study a surrogate data set may be reluctant to trust conclusions drawn
without guarantees of utility. In addition, a precise notion of network utility has yet to be
defined, and the evaluation of utility has been somewhat ad hoc in existing work.

Further, few of the current privacy mechanisms support the release of attributes on nodes.
Privacy protection for attributed networks deserves more study since attributes are crucial to
many analyses. In addition, many networks encountered in the real world are derived from
time-stamped streams of connections or contacts (e.g., email graphs, network traces, online
social networks). Techniques proposed thus far do not support dynamic networks.

As mentioned in the introduction, network data is now collected on very large scales. Net-
works with over 100 million nodes are being collected and studied. Analysis of such networks
can be challenging even in the absence of privacy concerns, as some analyses do not scale well.
However, scalability of privacy mechanisms is a significant challenge. Most of the data publi-
cation schemes described above were tested on networks with fewer than 100 thousand nodes,
and do not appear to scale to larger graphs. Unfortunately, the proposed attacks on networks
scale better than some of the publication mechanisms. The query answering techniques based
on differential privacy have an advantage here, as in most cases they do not add much overhead
above the cost of computing the released query.

This review highlights some of the main challenges of protecting privacy while enabling accu-
rate network analysis, but our coverage of this active area of research is admittedly incomplete.
Two recent surveys [42, 70] provide additional perspective on this topic. In addition, more work
on this topic is forthcoming, including new data publishing techniques by Cormode et al. [9]
and Zou [71].
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