
Pricing Aggregate Queries in a Data Marketplace

Chao Li
University of Massachusetts

Amherst, Massachusetts, USA
chaoli@cs.umass.edu

Gerome Miklau
University of Massachusetts

Amherst, Massachusetts, USA
miklau@cs.umass.edu

ABSTRACT
In a data marketplace, producers of data provide query an-
swers to consumers in exchange for payment. A market for
data allows capital to flow from data consumers to data pro-
ducers. This helps to finance the costs of data collection
and dissemination, thereby increasing the availability of data
throughout society. While nascent data markets exist on the
Web, they are currently limited in the pricing mechanisms
and interactions they support. In this paper we propose new
criteria for interactive pricing in a data market: price func-
tions should be non-disclosive, arbitrage-free, and regret-free.
We study the structure of price functions meeting these crite-
ria, and distinguish between NP-complete and PTIME cases
for computing a conforming price function.

1. INTRODUCTION
Information, in the form of structured data, is increasingly

considered a critical resource. It has value to a broad range
of data consumers who derive that value by analyzing it to
make business decisions, by using it as the basis of marketed
services, or by transforming and reselling it. The creation or
extraction of data is usually not free. Its cost is borne by
a data producer, and can include the cost of raw collection,
data cleaning, transformation, storage, and/or transmission.
Examples include: the cost of sequencing to produce genomic
data; the cost of a sensor infrastructure to produce meteo-
rological data; the cost of surveying to produce census data;
even the cost of crawling the Web to produce an index that
is the basis of search query results.

In a data marketplace, producers of data provide query an-
swers to consumers in exchange for payment. A Web-based
data market offers a new avenue for financing data produc-
tion by allowing capital to flow efficiently from interested
data consumers to willing data producers. This can increase
the availability of data because an active market can provide
incentives for new forms of data production where there were
none before. In addition, financial compensation for produc-
ers can help to overcome common obstacles to data sharing

such as competitiveness concerns or privacy risks.
Markets for data are emerging on the Web, typically allow-

ing consumers to pay for bulk downloads of data or for calls
to the producer’s API, which return query answers. Win-
dows Azure Marketplace [1] and Infochimps [4] are two data
marketplaces that sell data from many smaller data produc-
ers. In addition, a number of recent start-ups are focused on
the paid exchange of data. For example, Factual [3] focuses
on location-based data while Singly [2] and Personal [5] focus
on the paid exchange of personal data.

These nascent data markets remain limited in the pricing
methods and interactions they allow. In particular, current
marketplaces typically sell only wholesale subscriptions to a
data set or coarse-grained all-or-nothing access. In response
to this limitation (among others) Balazinska, Howe, and Su-
ciu [7] recently described a number of compelling research
challenges for realizing the promise of data markets. In this
paper we pursue one of these: fine-grained query pricing.

We consider a data producer who sells answers to ag-
gregate queries. Consumers request the price of individ-
ual queries, or sets of queries, from the producer prior to
purchase. We allow interaction between the producer and
consumer: after paying for a set of queries, and receiving
their answers, the consumer may choose to purchase addi-
tional queries. We focus on basic aggregate queries (includ-
ing count, sum, and average queries with arbitrary selection
conditions) evaluated on relational data.

Pricing data in a market setting is complex and some-
times counter-intuitive. We investigate the (data producer’s)
problem of efficiently and soundly setting prices through the
specification of a pricing function for queries. Our goal is to
devise price functions that satisfy three key properties. First,
the price function should be non-disclosive, so that it is not
possible to infer unpaid query answers by analyzing the pub-
licly available prices of queries. Second, the price function
should be arbitrage-free, so that a consumer cannot com-
bine queries to achieve a price lower than intended. Third,
the price function should (ideally) be regret-free, so that the
price of asking a sequence of queries in multiple interactions
is not higher than asking them all-at-once.

We provide algorithms and complexity results for the com-
putational problems that are at the core of pricing mecha-
nisms for aggregate queries. In some cases, we find that
computing sound prices for queries is intractable, but we also
show important cases where price functions can be computed
efficiently. In addition, we show a surprising result about the
structure of any price function that simultaneously satisfies
all three properties.

1

2. PRICING AGGREGATE QUERIES
In this section we state assumptions, describe our class of

aggregate queries, define a price function, and propose key
properties a pricing function should satisfy.

2.1 Assumptions
We assume throughout the paper that the database in-

stance is fixed. Therefore all queries are answered with re-
spect to a single instance and we do not consider releas-
ing revisions to released query answers. Further, we ignore
risks posed by colluding users. Clearly Alice could pay for a
query answer, share it with Bob, and they could divide the
cost. We assume users are trusted not to subvert the pricing
mechanism in this way, or prevented from doing so by other
means. Finally, because we consider a class of common ag-
gregate queries, we treat the computational cost of queries as
negligible compared to the inherent value of query answers.

2.2 Linear Aggregation Queries
We consider a general class of linear aggregation queries

over a single relation. Included in this class are queries that
count the number of tuples satisfying an arbitrary predi-
cate, as well as sums and averages over discrete numerical
attributes. This class can therefore support basic SQL ag-
gregates SUM-AVG-COUNT, group-by queries, data cube
queries, and it can be used to compute histograms, marginals,
or the sufficient statistics for more complex tasks like decision
trees or log-linear models.

Our queries are linear because they can be represented as
a linear combination of cell counts which are derived from
the database instance. Each linear query returns a single
numeric value and is described by a vector of coefficients.
Accordingly a set of queries can be represented as a matrix.
This query representation is critical to achieving our results.
The coefficients show precisely the parts of the database on
which the query results depend. Further, the techniques of
linear algebra allow us to precisely define the queries that
are computable from a purchased query set and, as we will
see, provide a foundation for the analysis of price functions.

Let the database I be an instance of a single-relation schema
R(A), with attributes A = {A1, A2, . . . , Ak}. The crossprod-
uct of the attribute domains, written dom(A), is the set of
all possible tuples that may occur in I.

In order to formulate linear queries, we first transform the
instance I into a data vector x of cell counts. To formally
define the data vector we associate, with each element xi
of x, a Boolean cell condition φi, which evaluates to True
or False for any tuple in dom(A). The cell conditions are
pairwise unsatisfiable: any tuple in dom(A) satisfies exactly
one cell condition. Then xi is defined to be the count of the
tuples from I which satisfy φi.

Definition 1 (Data vector). Given an ordered list of
cell conditions φ1, φ2 . . . φn the data vector x is a length-n
column vector defined by n positive integral counts xi = |{t ∈
I | φi(t) is True}|.

We could represent instance I by defining the vector x
with one cell for every element of dom(A). In this case,
x is a bit vector of size |dom(A)| with nonzero counts for
every tuple in I. It is often possible to represent a set of
queries with fewer cell counts. For example, a common way
to form a vector of base counts over larger cells is to parti-
tion each dom(Ai) into di regions (which could correspond

to ranges over an ordered domain or individual elements in
a categorical domain). Then we define individual cells by
taking the cross-product of the regions in each attribute. Ul-
timately, the choice of cell conditions is determined by the
set of queries requested by users. In the sequel, we assume a
fixed set of n cell conditions.

Example 1. Consider the relational schema R(name,
industry, cost, rank) describing financial assessments of firms
in various industries. If we wish to form queries only over
cost (high, > 1M or low, ≤ 1M), and ranges of the rank
attribute [1, 10], [11, 100], [101, 500], [501,+∞], then we can
define the 8 cell conditions enumerated in Figure 1(a).

A linear aggregation query computes a specified linear
combination of the elements of the data vector x.

Definition 2 (Linear query). A linear query is a
length-n row vector q = [q1 . . . qn] with each qi ∈ R. The
answer to a linear query q on x is the vector product qx =
q1x1 + · · · + qnxn. We use Q to denote the set of all linear
queries.

Using only coefficients of 0 or 1, a linear query can express
any predicate counting query, counting the number of tuples
satisfying any disjunction of the cell conditions defining x.

Note that data cubes, histograms, and group-by queries,
which consist of multiple numerical results, will be repre-
sented as a set of linear queries. A query set is represented
as a matrix where each row is a single linear query.

Definition 3 (Query matrix). A query matrix is a
collection of m linear queries, arranged by rows to form an
m× n matrix.

If Q is an m×n query matrix, the answer to Q is a length
m column vector of numerical query results, which can be
computed as the matrix product Qx. To simplify notation,
we use Q to denote both a set of queries and its representa-
tion as a matrix, and similarly for a query q. Accordingly,
we use Q1 ∪Q2 to denote the union of two query sets.

Example 2. Figure 1(b) shows a query matrix represent-
ing a query set of 8 linear queries. Figure 1(c) describes
the meaning of the queries w.r.t. the cell conditions in Fig-
ure 1(a).

Representing queries in this manner is common in the pri-
vacy literature [8, 14, 13] and has also appeared in the con-
text of provenance for aggregates [6].

2.3 Interactive Query Pricing
One objective of fine-grained query pricing is to allow users

to pay for just the information they wish to acquire from a
database. However users often have imperfect knowledge of
the queries of interest to them or the aggregate statistics
that are sufficient for carrying out their task. Therefore, in
practice, it is important to permit a user to interact with
the data owner: to purchase queries, to receive answers, and
perhaps to purchase further queries.

Our definition of a query pricing function incorporates an
extension allowing for conditional pricing in which the price
of query set Q can depend on the queries for which a con-
sumer has already paid. Below, P(Q) is the set of all linear
query sets.

2

φ1 : rank ∈ [1, 10] ∧ cost > 1M
φ2 : rank ∈ [11, 100] ∧ cost > 1M
φ3 : rank ∈ [101, 500] ∧ cost > 1M
φ4 : rank ∈ [501,+∞] ∧ cost > 1M
φ5 : rank ∈ [1, 10] ∧ cost ≤ 1M
φ6 : rank ∈ [11, 100] ∧ cost ≤ 1M
φ7 : rank ∈ [101, 500] ∧ cost ≤ 1M
φ8 : rank ∈ [501,+∞] ∧ cost ≤ 1M

(a) Cell conditions Φ

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8

1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
1 1 0 0 -1 -1 0 0


(b) A query set Q

q1: all firms;
q2: high cost firms;
q3: low cost firms;
q4: all firms with rank ≤ 100;
q5: all firms with rank > 100;
q6: low cost firms with rank > 100;
q7: high cost firms with rank ≤ 100;
q8: difference: high and low cost firms with rank ≤ 100.

(c) Counting queries defined by rows of Q

Figure 1: For schema R(name, industry, cost, rank), (a) shows 8 cell conditions on attributes cost and rank. The
database vector x (not shown) will accordingly consist of 8 counts; (b) shows a sample query set Q consisting
of 8 counting queries, each described informally in (c).

Definition 4 (Conditional price function). A price
function p is a function p : P(Q)×P(Q)→ R+∪{0}. A con-
sumer who has previously paid for query set Q1 can purchase
query set Q2 for price p(Q2|Q1).

A consumer who has not purchased any queries must pay
p(Q|∅) for query set Q, which we abbreviate simply as p(Q).
We assume that every query that provides some informa-
tion about the database has a positive cost. This means
p(Q2|Q1) = 0 if and only if the answer to all queries of Q2

can be derived using the answer to queries of Q1. In partic-
ular, p(Q) = 0 if and only if Q = 0 (i.e. Q contains only the
query with all zero coefficients).

2.4 Properties of the Price Function
Next we define non-disclosive, arbitrage-free, and regret-

free price functions. We always require price functions to
be non-disclosive and arbitrage-free, but we will sometimes
consider forgoing the regret-free property.

Non-disclosive pricing
In a marketplace, users are typically permitted to inquire
freely about the prices of goods before their purchase. We
therefore assume the pricing function (and its key proper-
ties) are public information. A non-disclosive pricing func-
tion does not allow the user to deduce query answers through
inspection of the values of the price function.

Notice that the price function in Definition 4 is indepen-
dent of the database instance. Because the price of queries
does not change for different instances, inspection of the price
function cannot reveal information about the database. Such
functions assign a price to a query based on the meaning of
the query and never based on the current answer. For ex-
ample, if the price of query q4: Count(all firms with rank ≤
100) is less than q5: Count(all firms with rank > 100) it
should reflect the relative value of statistics about low rank
firms and high rank firms, regardless of the magnitude of the
query answers for any particular instance. In particular, the
pricing relationship holds even if the answer to q5 is zero. It
follows that consumers must pay even for queries that reveal
that there are no tuples of a certain type in the database.

Arbitrage-free pricing
Arbitrage is possible when equivalent assets are available for
two different prices. The nature of information products
makes arbitrage particularly challenging to avoid. When an
information product is used as the input to a computation, it
is not consumed—it remains for use in other computations.
(This is in contrast to, for example, physical products which

can serve only once as inputs to a manufacturing process.)
In our setting this means that a collection of purchased

query answers can be combined or post-processed in order
to derive many other query answers not explicitly purchased.
We denote by span(Q) the set of all aggregate queries that
can be precisely derived from the answers to queries in Q.
Because we consider linear queries, the span of Q is sim-
ply the set of all queries that can be expressed as a linear
combination of the queries of Q.

Definition 5 (Span of a query set). Given a set of
linear queries Q = {q1 . . .qm}, span(Q) = {c1q1 + · · · +
cmqm | c1 . . . cm ∈ R}

Example 3. Consider the queries in Figure 1. Let query
set Q′ = {q2,q3,q4}. Notice that q1 can be expressed as
q2 + q3 and that q5 can be expressed as q2 + q3 − q4. Thus
q1,q5 ∈ span(Q′).

Noticing that there are distinct query sets with the same
span as Q, we are also interested in the smallest size among
those sets.

Definition 6 (Rank of a query set). Given a set of
linear queries Q, the rank of query set Q, denoted as rank(Q),
is the size of the smallest query set whose span is span(Q).

In order to avoid arbitrage, the price of a collection of
queries Q must reflect the value of all queries in the span of
Q. More precisely, if the span of Q1 is contained in the span
of Q2, then Q2 should never have a lower price than Q1.
Conditional query pricing adds another potential arbitrage
opportunity. The consumer should not be able to achieve a
pricing advantage by decomposing a set of queries and asking
each individually in separate interactions. We include both
of these requirements in our definition of an arbitrage-free
pricing function:

Property 1 (Arbitrage-free pricing). A pricing func-
tion p is arbitrage-free if, for any query sets Q, Q1, and Q2,
the following hold:

(i) If span(Q1∪Q) ⊆ span(Q2∪Q), p(Q1|Q) ≤ p(Q2|Q).

(ii) p(Q2) ≤ p(Q2|Q1) + p(Q1).

Example 4. Referring to Figure 1, let Q1 = {q1,q5} and
Q2 = {q2,q3}. If p(Q1|{q4}) > p(Q2|{q4}), a user inter-
ested in Q1 can ask Q2 with a lower cost and derive the
answers to all queries in Q1 using a linear combination of
q2,q3,q4.

3

Arbitrage-free pricing has been considered previously in
the context of data markets [7, 12]. The definition above ex-
tends prior notions to include conditional pricing and differs
from [12] because it is based on data independent pricing.
In particular, p(Q1) < p(Q2) only violates the arbitrage-free
condition if the answer to Q1 implies the answer to Q2 for
all databases.

Regret-free pricing
Interactive query markets allow consumers to cope with im-
perfect knowledge of their task by adapting or evolving their
queries as they go. Proposition 1(ii) suggests that query-
ing interactively costs at least as much as asking all queries
together. An important aspect of pricing functions in this
context is whether the consumer will be penalized for re-
questing queries interactively instead of all-at-once. We call
a pricing function regret-free if there is no such penalty.

Property 2 (Regret-free Pricing). A pricing func-
tion is regret-free if for any query sets Q1 and Q2 such that
span(Q1) ⊆ span(Q2), p(Q2) = p(Q2|Q1) + p(Q1).

Example 5. In Figure 1, let Q1 = {q1,q5}, a consumer
interested in Q1 can either ask Q1 directly or ask q5 be-
fore Q1. A regret-free pricing function p must guarantee
that p(Q1|{q5}) + p(q5) = p(Q1) so that the consumer is
not penalized for the interaction.

3. ARBITRAGE-FREE PRICING
In this section, we consider the design of arbitrage-free

price functions. We consider both inductive and deductive
pricing. In each case, we prove that computing the pricing
function can be NP-hard, but we also identify PTIME cases.
Due to space constraints we omit proofs of theorems.

3.1 Arbitrage-free inductive pricing
In inductive pricing we assume the data producer sets

prices for all individual queries. We assume these prices are
specified using a base price function denoted by p̄, which de-
scribes the price that the data producer would like to charge
for each query. Since using p̄ directly may lead to arbitrage,
one needs to derive a pricing function from p̄ for sets of
queries, including conditional prices, that are arbitrage-free.

Intuitively, to avoid arbitrage, we must set the price of
query set Q2 to be the price of the least expensive set of
queries the consumer could use to compute Q2. If the con-
sumer previously purchased query set Q1, then we choose the
least expensive set of queries to add to Q1 to enable compu-
tation of Q2. This is formalized in the following definition.

Theorem 1 (Price induction). Given a base price func-
tion p̄ from Q to R+ ∪ {0} the induced price function p, de-
fined as follows, is arbitrage-free.

p(Q2|Q1) = min
Q∈P(Q)

{
∑
q∈Q

p̄(q)|span(Q2) ⊆ span(Q ∪Q1)}.

Moreover, p is the largest pricing function among all arbitrage-
free price functions p′ with p′(q) ≤ p̄(q) for all q. Once p
has been computed, the data producer can later scale p with
a constant to make the price for each query q at least p̄(q).

Unfortunately, given a function p̄, there is no polynomial
time method to derive the price p(Q2|Q1), even if Q1 =
∅ and Q2 consists of one query. In this case, there is a
reduction from the problem of exact cover by 3-sets [10] to
the problem of computing the induced price.

Theorem 2. Given a base price function p̄, let p be the
pricing function deriving from p̄ as described in Theorem 1.
Computing p(q) for arbitrary query q is NP-complete.

Cell-based inductive pricing
A perhaps more natural approach to specifying a pricing
function inductively is to price simple components of queries
and then derive prices for complete queries from those. We
next assume the data producer sets a price measure for each
cell of the data vector and also specifies a pricing relationship
between pairs of cells. This input can be represented an n×n
symmetric pricing matrix, P, in which the i-th diagonal en-
try Pii of P is the price measure for cell i, and an off-diagonal
entry Pij = Pji controls (along with Pii and Pjj) the price
of queries that contain both cell i and j. Given this natural
restriction on the specification, we show next that we can
induce an arbitrage-free price function in polynomial time.

The pricing matrix represents a base pricing function p̄
defined as follows, for any query q:

p̄(q) = c0 exp(
1

||q||22
qPqT).

Here c0 is a constant which can be used to linearly scale
the base price function. Moreover, increasing Pii boosts the
price of all queries that contain cell xi and increasing Pij

augments the price when cells xi and xj appear together.

Example 6. Recall the cells in Figure 1, and let P11 =
P22 = P33 = ln 10, P12 = P21 = 0, P23 = P32 = − ln 2,
P13 = P31 = ln 2. The parameters above indicate that the
prices on x1, x2, x3 are the same; the price of x1 is inde-
pendent of the price of x2 and positively correlated with x3;
the price of x2 is negatively correlated with the price of x3.
In order to compute the prices of queries x1 + x2, x1 + x3
and x2 + x3, we find that p(x1) = p(x2) = p(x3) = 10,
p(x1 + x2) = 10, p(x1 + x3) = 20 and p(x2 + x3) = 5.

Given a pricing matrix P, the base price function p̄ defined
above is not necessarily arbitrage-free so we still use Theo-
rem 1 to define the arbitrage-free price function, as shown in
the following theorem.

Theorem 3. Given a function p̄ defined with the
pricing matrix P as above, let ψ = minq∈Q p̄(q), ψ′ =
minq∈span(Q2)−span(Q1) p̄(q) and r be the rank of
span(Q2)− span(Q1). Then p(Q2|Q1) = min((r+1)ψ, rψ′).

Above, ψ and ψ′ are equivalent to the smallest eigenvalues
of P and the projection of P on span(Q2) − span(Q1), re-
spectively. Thus p(Q2|Q1) can be computed in O(n3) time.

The main idea behind Theorem 3 is that, given query q0,
we can represent any query q1 using q0 and q0 + εq1 with
arbitrarily small ε. It is possible to show that Theorem 3
is correct for any continuous function p. But the theorem
is not true if we limit our focus to predicate queries, (linear
queries with only 0-1 coefficients) since the queries can not
be combined freely and the query q0 + εq1 may not be a
predicate query. In this case, computing p(q) becomes an
integer programming problem and is therefore NP-complete.

3.2 Arbitrage-free deductive pricing
Instead of specifying base prices for individual queries, the

data producer may instead have prices in mind for certain
query sets that are of primary interest. The challenge is
then to determine whether there is an arbitrage-free pricing

4

Algorithm 1 Arbitrage-free deductive pricing for continu-
ous price functions.

Input: Query sets Q, Q′, Q1, . . . ,Qk, prices ψ1, . . . , ψk
Output: Range of p(Q|Q′)
1: Let ri = rank(Qi), ψ

′
i = ψi

ri
and ψ′′i = ψi

ri+1
, i = 1, . . . , k.

2: For each pair of 1 ≤ i 6= j ≤ k,
3: Return Inconsistenct if one of followings is true:
4: span(Qi) ⊆ span(Qj) and ((ψ′i < ψ′j) or (ψi > ψj))

5: ψ′′i > ψ′j
6: Let r = rank(Q ∪Q′)− rank(Q′).
7: If r = 0, return 0.
8: Let ψ′ = max(maxi:Q⊆span(Qi)

(ψ′i),maxi(ψ
′′
i)) and ψ =

mini(ψ
′
i) .

9: If (r+1)ψ ≤ rψ′, return (r+1)ψ. Otherwise, return [rψ′, (r+
1)ψ].

function consistent with the provided prices, and if so, to
deductively compute it. The pricing function is determined
implicitly by those queries or query sets, using an approach
similar to Theorem 1, where we choose the cheapest set of
priced queries that supports the input set.

Theorem 4 (Price deduction). Given a set of query

sets Q1, . . . ,Qk and their prices ψ1, . . . , ψk, let P̃(Q) be the
set of all subsets of {Q1, . . . ,Qk}. The following deduced
price function is arbitrage-free:

p(Q|Q′) = min
Q̃∈P̃(Q)

{
∑

Qi∈Q̃

ψi|span(Q) ⊆ span(Q′∪
⋃

Qi∈Q̃

Qi)}.

A set of query sets Q1, . . . ,Qk and prices ψ1, . . . , ψk is called
consistent if the pricing function p defined above satisfies
p(Qi) = ψi, i = 1, . . . , k. Thus checking consistency is a spe-
cial case of computing p(Q|Q′). A reduction similar to that
of Theorem 2 indicates that both checking consistency and
general deductive price computation are both NP-complete.

Theorem 5. Given query sets Q1, . . . ,Qk and prices
ψ1, . . . , ψk, and pricing function p defined as in Theorem 4.
Both verifying whether p(Qi) = ψi for i = 1, . . . , k and com-
puting p(Q′|Q) are NP-complete.

However, under the assumption that p is a continuous func-
tion, one can estimate the price of a query set deductively in
polynomial time, as described in Algorithm 1. The key idea
follows the property of p as described in Theorem 3: given
query sets Q1, . . . ,Qk and prices ψ1, . . . , ψk, the algorithm
estimates the cheapest query in Q and the cheapest query
in Qi for each i = 1, . . . , k. The algorithm then checks con-
sistency using those prices and derives a range of possible
values for the conditional query set price p(Q|Q′).

The complexity of Algorithm 1 is dominated by checking,
for each pair of sets, if one query set is a subset of the other.

Theorem 6. Let m be the number of queries in the query
set with largest number of queries among Q, Q′, Q1, . . . ,Qk.
The time complexity of Algorithm 1 is O(m2n+mk2).

4. ARBITRAGE-FREE AND REGRET-FREE
PRICING

Ideally we would like to design price functions that are
also regret-free in order to avoid complex reasoning by the
consumer about their interactions in a data market. We show

next that, when a price function is both arbitrage-free and
regret-free the feasible pricing functions have a surprising,
highly specialized structure that is determined by no more
than two distinct prices.

Theorem 7. A price function p is arbitrage-free and regret-
free if and only if there exists a set of queries q1, . . . ,qk, with
span(q1, . . . ,qk) = U, and two prices, ψlow and ψhigh where
ψlow ≤ ψhigh, such that:

p(q) =

{
ψlow q ∈ U
ψhigh q 6∈ U

The theorem shows that every query is either“cheap”, cost-
ing price ψlow, or “expensive”, costing price ψhigh. Further,
the spanning space U in the theorem is the set of all cheap
queries. The answers to all cheap queries can be derived from
the answers to any set of basis queries whose span is U. Such
a set of basis queries never needs to be larger than rank(U).
This implies that the purchase of all cheap queries will cost
ψlow ∗rank(U). Similarly, the set of all expensive queries will
cost ψhigh(n−rank(U)). More generally, the price of any set
of queries Q is determined by the rank of the cheap spanning
space (say rlow) and the rank of expensive spanning space
(say rhigh) which together make up the span of Q. Then
p(Q) = rlowψlow + rhighψhigh.

Example 7. Referring to the example in Fig. 1, a price
function in which all queries related to top-100 firms are
priced at 25 and other queries are 1 (i.e. ψlow = 1, ψhigh =
25 and U = span({x3, x4, x7, x8})) is regret-free. Since Q is
the set of all queries in Figure 1(c), rank(Q) = 4, rank(U) =
4, rank(Q ∪U) = 6 and p(Q) = 2ψhigh + 2ψlow = 52.

The proof of Theorem 7 is based on two facts. First,
if there are queries q1, q2 such that p(q1) < p(q2), then
the properties of arbitrage-free and regret-free imply that
p(c1q1 + c2q2) = p(q2) for any nonzero scalars c1, c2. In ad-
dition, whenever there are three queries with distinct prices,
one can construct two query sets Q1, Q2 such that Q1 ⊆ Q2

and p(Q2|Q1)+p(Q1) > p(Q2), which contradicts the regret-
free property.

Inductive pricing
Theorem 7 has important implications for the specification
of pricing functions. To define a regret-free pricing function
inductively, one need only provide a set of queries as a basis
for U and two prices ψlow and ψhigh. The arbitrage-free,
regret-free price for any query set Q can be computed using
the rank of matrices, as shown in Algorithm 2. The running

Algorithm 2 Regret-free, arbitrage-free inductive pricing

Input: Query set Q2 and previous purchase Q1; A set of ba-
sis queries v1, . . . ,vk such that span(v1, . . . ,vk) = U; ψlow,
ψhigh where ψlow ≤ ψhigh.

Output: p(Q2|Q1)
1: Let r1 = rank(Q1), r2 = rank(Q2) and r12 = rank(Q1 ∪Q2).
2: Let r1v = rank(Q1∪{v1, . . . ,vk}) and r12v = rank(Q1∪Q2∪
{v1, . . . ,vk}).

3: return (r12v − r1v)ψhigh + (r1 + r2 − r12 + r1v − r12v)ψlow.

time of Algorithm 2 is determined by the cost of computing
the rank of the query sets.

Theorem 8. Let the number of queries in Q1 and Q2 be
m1 and m2 respectively. The time complexity of Algorithm 2
is O(n(m1 +m2) min(m1 +m2, n)).

5

Deductive pricing
Despite the special pricing structure that follows from the
property of regret-free pricing, verifying whether there exists
a pricing function consistent with a given set of priced query
sets remains NP-hard.

Theorem 9. Given query sets Q1, . . . ,Qk and prices
ψ1, . . . , ψk, the problem of deciding whether there exists a
regret-free, arbitrage-free pricing function p such that p(Qi) =
ψi, i = 1, . . . , k is NP-complete.

For any regret-free pricing function p, consistency of query
set prices can be verified in polynomial time using Algo-
rithm 2. On the other hand, the hardness of deductive pric-
ing holds even if we only consider query sets consisting of
queries with at most three cells, in which case it can be used
to solve the 3-SAT problem. Thus the complexity of con-
structing a regret-free pricing function, if one exists, is at
least NP-hard. A non-trivial upper bound on its complexity
is still open.

5. RELATED WORK AND DISCUSSION
Our work is inspired by the vision paper of Balazinska,

Howe and Suciu [7], which describes challenges associated
with data markets including fine-grained pricing, fairness,
and the dangers of arbitrage. The authors propose query
provenance as one possible foundation for deriving pricing
functions for queries. Provenance methods alone do not ap-
pear to provide easy answers to pricing problems. But the
representation of our linear aggregation queries exposes each
of the cells on which the query answer could depend. In this
sense, we have relied on a simple form of provenance for ag-
gregation queries. More sophisticated models of provenance
for aggregation queries have been studied by Amsterdamer
et al. [6] and future applications to pricing are possible.

The closest work to our own is the recent paper by Koutris
et al. proposing a query-based pricing mechanism for data
markets [12]. The authors consider full relational queries
(not aggregates) over a dynamic (not static) database. They
study a different set of basic properties: arbitrage-free pric-
ing is considered, but the model does not include interactive
pricing, and the price of a query depends on its answer with
respect to the current state of the database. Such price func-
tions are therefore disclosive. The authors consider a version
of deductive pricing in which prices for a set of relational
views are given and a price for any input query is derived
in a manner consistent with the priced input views. For a
class of priced selection views, they show it is NP-hard (in
the size of the input database) to deduce the price of some
conjunctive queries. The authors describe a sub-class of con-
junctive queries that can be priced with polynomial data
complexity, among other complexity results. Our Thm. 1
is a data-independent version of their “fundamental pricing
formula”, adapted to linear queries and interactive pricing.

There is an interesting relationship between data privacy
and pricing in data markets. In particular, the model of
differential privacy [9] allows for the accurate release of ag-
gregate statistics while prohibiting the release of information
about individuals. Differentially private mechanisms achieve
this balance through the addition of random noise to query
answers. Selling noisy query answers, for which the consumer
pays more for greater accuracy, may make sense in some
data markets and could expand the range of price functions

that can be considered. In fact, Ghosh and Roth attempt to
use differential privacy as a foundation for pricing personal
data [11] in the context of auctions. Under the assumption
of rational and truthful auction participants, the authors de-
signed two different algorithms: one to maximize accuracy
with bounded privacy budget and the other to minimize the
privacy budget with desired accuracy.

We note that aggregate queries are irreversible functions
of their inputs because it is not possible to exactly deduce
the inputs from the output. The price of an irreversible func-
tion f(x1, . . . , xk) can be lower than the prices of its inputs
x1, . . . , xk, which is unusual in the pricing of physical goods.
If it is possible to precisely recover the inputs from the out-
put (as is the case for operations like sorting, restructuring,
data cleaning and any deterministic computation on a single
variable) then f is a reversible function. Pricing for reversible
operations in a data market would be substantially different.
In this case, the price of the output is usually larger than
the price of the inputs by a factor that involves the cost of
computing the function.

In the future we hope to expand our results to a broader
class of queries, explore pricing for approximate query an-
swers, and identify additional polynomial-time cases for com-
puting sound price functions.

Acknowledgements. We thank Paris Koutris and Dan Suciu

for helpful discussions. This work was supported by the NSF

through grants CNS-1012748 and IIS-0643681.

6. REFERENCES
[1] http://datamarket.azure.com/.

[2] http://singly.com.

[3] http://www.factual.com/.

[4] http://www.infochimps.com/.

[5] http://www.personal.com.

[6] Y. Amsterdamer, D. Deutch, and V. Tannen.
Provenance for aggregate queries. In PODS, 2011.

[7] M. Balazinska, B. Howe, and D. Suciu. Data markets
in the cloud: An opportunity for the database
community. In PVLDB, 2011.

[8] B. Barak, K. Chaudhuri, C. Dwork, S. Kale,
F. McSherry, and K. Talwar. Privacy, accuracy, and
consistency too: a holistic solution to contingency
table release. In PODS, pages 273–282, 2007.

[9] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data analysis.
In Third Theory of Cryptography Conference, 2006.

[10] M. R. Garey and D. S. Johnson. Computers and
Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

[11] A. Ghosh and A. Roth. Selling privacy at auction. In
Electronic Commerce, 2011.

[12] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe,
and D. Suciu. Query-based data pricing. In PODS,
2012.

[13] C. Li, M. Hay, V. Rastogi, G. Miklau, and
A. McGregor. Optimizing linear counting queries
under differential privacy. In PODS, 2010.

[14] X. Xiao, G. Wang, and J. Gehrke. Differential privacy
via wavelet transforms. In ICDE, 2010.

6

