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ABSTRACT
Data collected about individuals is regularly used to make deci-

sions that impact those same individuals. We consider settings

where sensitive personal data is used to decide who will receive

resources or benefits. While it is well known that there is a trade-

off between protecting privacy and the accuracy of decisions, we

initiate a first-of-its-kind study into the impact of formally private

mechanisms (based on differential privacy) on fair and equitable

decision-making. We empirically investigate novel tradeoffs on two

real-world decisions made using U.S. Census data (allocation of

federal funds and assignment of voting rights benefits) as well as a

classic apportionment problem.

Our results show that if decisions aremade using an ϵ-differentially
private version of the data, under strict privacy constraints (smaller

ϵ), the noise added to achieve privacy may disproportionately im-

pact some groups over others. We propose novel measures of fair-

ness in the context of randomized differentially private algorithms

and identify a range of causes of outcome disparities. We also ex-

plore improved algorithms to remedy the unfairness observed.
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1 INTRODUCTION
Data collected about individuals is regularly used to make decisions

that impact those same individuals. One of our main motivations

is the practice of statistical agencies (e.g. the U.S. Census Bureau)

which publicly release statistics about groups of individuals that

are then used as input to a number of critical civic decision-making

procedures. The resulting decisions can have significant impacts

on individual welfare or political representation. For example:

• election materials must be printed in minority languages in

specified electoral jurisdictions (only) if certain conditions are
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met, which are determined by published counts of minority

language speakers and their illiteracy rates.

• annual funds to assist disadvantaged children are allocated to

school districts, determined by published counts of the number

of eligible school-age children meeting financial need criteria;

• seats in legislative bodies (national and state legislatures and

municipal boards) are apportioned to regions based on their

count of residents. For example, seats in the Indian parliament

are allocated to states in proportion to their population.

In many cases, the statistics used to make these decisions are

sensitive and their confidentiality is strictly regulated by law. For

instance, in the U.S., census data is regulated under Title 13 [3],

which requires that no individual be identified from any data re-

leased by the Census Bureau, and data released about students

is regulated under FERPA
1
. In the EU, data releases are strictly

regulated under GDPR
2
. Statistical agencies worldwide uphold pri-

vacy and confidentiality requirements by releasing statistics that

have passed through a privacy mechanism. In the U.S., a handful of

critical decisions (e.g. congressional apportionment) are made on

unprotected true values, but the vast majority of decisions are made

using privatized releases. Our focus is the impact of mechanisms

satisfying formal privacy guarantees (based on differential privacy

[14]) on resource allocation decisions.

The accuracy of the above decisions is clearly important, but it

conflicts with the need to protect individuals from the potential

harms of privacy breaches. To achieve formal privacy protection,

some error must be introduced into the properties of groups (i.e.

states, voting districts, school districts), potentially distorting the

decisions that are made. In the examples above, the consequences

of error can be serious: seats in parliament could be gained or lost,

impacting the degree of representation of a state’s citizens; funding

may not reach eligible children; or a district deserving minority

voting support may not get it, disenfranchising a group of voters.

The tradeoff between privacy protection and the accuracy of

decision making must therefore be carefully considered. The right

balance is an important social choice [6] and the model of differ-

ential privacy allows for a more precise analysis of this choice.

Maximizing the accuracy achievable under differentially privacy

has been a major focus of recent privacy research, resulting in

many sophisticated algorithmic techniques [16, 22]. Yet that ef-

fort has considered accuracy almost exclusively through aggregate

1
The Family Educational Rights and Privacy Act (FERPA) 20 U.S.C. § 1232g (2012)

2
General Data Protection Regulation, Council Regulation (EU) 2016/679, art. 4, of the

European Parliament
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measures of expected error, which can hide disparate effects on

individuals or groups.

In this paper we look beyond the classic tradeoff between privacy

and error to consider fair treatment in decision problems based on

private data. If we accept that privacy protection will require some

degree of error in decision making, does that error impact groups

or individuals equally? Or are some populations systematically

disadvantaged as a result of privacy technology? These questions

are especially important now: the adoption of differential privacy is

growing [18, 19, 21, 26], and, in particular, the U.S. Census Bureau

is currently designing differentially private methods planned for

use in protecting 2020 census data [1, 11, 32].

The contributions of our work include the following. We present

a novel study of the impact of common privacy algorithms on the

equitable treatment of individuals. In settings where the noise from

the privacy algorithm is modest relative to the statistics underlying

a decision, impacts may be negligible. But when stricter privacy (i.e.,

small values of ϵ) is adopted, or decisions involve small populations,

significant inequities can arise. We demonstrate the importance of

these impacts by simulating three real-world decisions made using

sensitive public data: the assignment of voting rights benefits, the

allocation of federal funds, and parliamentary apportionment.

• We show that even if privacy mechanisms add equivalent noise

to independent populations, significant disparities in outcomes

can nevertheless result. For instance, in the federal funds allo-

cation use case, under strict privacy settings of ϵ = 10
−3
, some

districts receive over 500× their proportional share of funds

while others receive less than half their proportional share.

Under weaker privacy settings (ϵ = 10), this disparity is still

observed but on a much smaller scale.

• For assigning voting rights benefits to minority language com-

munities, we find that noise for privacy can lead to significant

disparities in the rates of correct identification of those deserv-

ing the benefits, especially under stricter privacy settings.

• For the parliamentary apportionment problem, surprisingly,

there are settings of ϵ where the apportionment of seats to

Indian states based on the noisy data is more equitable, ex ante,
than the standard deterministic apportionment.

• For funds allocation and voting benefits (the allocation problems

with the greatest disparities) we propose methods to remedy

inequity, which can be implemented without modifying the

private release mechanism.

Our study reveals that the use of privacy algorithms involves com-

plex tradeoffs which can impact social welfare. Further, these im-

pacts are not easy to predict or control because they may be caused

by features of the privacy algorithm, the structure of the decision

problem, and/or properties of the input data. We believe these find-

ings call for new standards in the design and evaluation of the

privacy algorithms that are starting to be deployed by companies

and statistical agencies.

The organization of the paper is as follows. In the next section

we describe our problem setting, followed by related work in Sec-

tion 3. In Sections 4 to 6 we investigate fairness in the example

problem domains of voting rights, funds allocation, and apportion-

ment, respectively. We conclude with open challenges in Section 7.

The appendix includes algorithm details to aid reproducibility, and

proofs, but is not essential to the claims of the paper.

Remark: This work uses only public data, released by the U.S. Census
Bureau and other institutions. Our empirical results do not measure
the actual impacts of any agency practice currently in use. Instead,
we simulate the use of state-of-the-art privacy algorithms on real use-
cases in order to understand and quantify potential unfair impacts,
should these privacy algorithms be adopted.

2 PROBLEM SETTING
Below we provide a general definition of the assignment problems

we consider, define differential privacy and assignment based on

private inputs, as well as our methodology for assessing fairness.

2.1 Assignment Problems
We assume a universe of individuals each described by a record in

a table I . Individuals are divided into disjoint assignee populations,
each population denoted by a label a ∈ A. In our example problems,

assignee populations are characterized by, and labeled with, the

geographic region in which they reside (e.g. state, county, school

district). For example, we may have a = Wyoming and use Ia to

denote the set of records for all Wyoming residents.

An assignment methodM : A → O associates a resource or

benefit with each assignee population, formalized as an outcome
from an outcome set O . We are primarily concerned with equitable

treatment of assignee populations in terms of the outcomes they

receive from an assignment.

The assignment methods we consider are deterministic (in the

absence of privacy protection) and depend on properties of the

assignee populations, which are described by statistics. These are

formalized by one or more statistical queries Q , evaluated on the

records corresponding to the assignee population. For example, we

may write Q = {tot } where tot (Ia ) is the query that computes the

total population of an assignee a. These statistics are stored in a

matrix X ∈ RA×Q , indexed by elements a ∈ A and q ∈ Q such that

Xq
a = q(Ia ). An assignment methodM will typically be defined

with respect to this matrix of statistics X, and we use the notation

M (a;X) to make this dependence clear. The vector of outcomes

o ∈ OA
, formed from elements oa =M (a;X), is the ground truth

assignment because it is computed on the true, unmodified statistics

about the assignee populations.

Tables 1 to 3 (in the later sections) contain the formal descrip-

tions of the assignment methods for our three example problems,

including a specification of the assignee population, the outcome

space, the query set, and the rule underlying the assignment.

2.2 Differential Privacy
Differential privacy [14, 16] is a formal model of privacy that offers

each individual a persuasive guarantee: any released data computed

from the sensitive input would have been almost as likely had

the individual opted-out. More formally, differential privacy is a

property of a randomized algorithm that bounds the ratio of output

probabilities induced by changes to an individual’s data. Let nbrs (I )
be the set of databases differing from I in at most one record.
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Definition 2.1 (Differential Privacy [14]). A randomized algorithm

A is ϵ-differentially private if for any instance I , any I ′ ∈ nbrs (I ),
and any outputs O ⊆ Ranдe (A):

Pr [A (I ) ∈ O] ≤ exp(ϵ ) × Pr [A (I ′) ∈ O]

Differentially private algorithms protect individuals and all of

their associated properties, and in addition, every individual enjoys

the same bound on privacy loss, which is quantified by (a function

of) the privacy parameter ϵ . Smaller ϵ implies greater privacy but

greater noise, and the parameter ϵ is sometimes referred to as the

privacy loss “budget”. A useful property of statistics computed in a

differentially private manner is that any subsequent computations

that use those statistics are also differentially private for the same

ϵ (assuming they do not also use the sensitive data).

We use two privacy mechanisms in this paper. The first is the

standard Laplace mechanism [14]. While the Laplace Mechanism

is a fundamental building block of many differentially private al-

gorithms, it can offer sub-optimal error if applied directly to some

tasks. Therefore, we also consider the Data- and Workload-Aware

(DAWA) algorithm [25]. It is one of a number of recently-proposed

algorithms (cf. [22]) which introduce complex noise that is adapted

to the input data. These techniques can offer substantially reduced

error rates in some settings, but may introduce statistical bias in the

estimates produced. This is in contrast to the Laplace mechanism,

which produces unbiased estimates, and with error that is inde-

pendent of the input. We chose DAWA because it was reported to

perform well in benchmarks [22]. In each of the sections that follow

we describe how these algorithms are adapted to the allocation

problems studied. We provide further background in the appendix.

2.3 Assignment Using Private Inputs
Given an assignment problem, we protect the privacy of the mem-

bers of each assignee population by answering the queries in Q
using differentially private mechanism AQ . The resulting noisy

query answers satisfy differential privacy for a given privacy pa-

rameter ϵ : AQ (I , ϵ ) = X̃. We then assume the private assignments

are computed withM, using X̃ in place of X: õa = M (a; X̃). As
noted above, õ inherits the privacy guarantee of X̃.

WhileM is deterministic, whenM is composed with the ran-

domized private computation of statistics, the result is a random-

ized assignment algorithm, inducing a probability distribution over

outcome vectors. Assessments of fairness must therefore be proba-

bilistic in nature. The expected error in the statistics, introduced by

the privacy mechanism is: E[| |X̃ − X| |] (for a suitable metric | | · | |)

which we distinguish from error in the outcome space: E[| |õ − o| |]
Note that we assume the private computation of the supporting

statistics Q is followed by an assignment methodM. In this ini-

tial work, we restrict our attention to this data publishing model

because it follows the practice of many statistical agencies: they

release fixed sets of statistics (after invoking disclosure limitation

methods) which are used for a variety of purposes. In experiments

we therefore begin by measuring the effects of current practice:

applying the standard assignment method to the privatized data.

But we also consider remedy approaches that alter the assignment

method to account for the presence of noise introduced by the pri-

vacy mechanism. Other alternatives (namely altering the privacy

mechanism itself) are noted as future work in Section 7.

2.4 Methodology
The example problems we consider in Sections 4 to 6 assign re-

sources or benefits to populations according to properties of those

populations that define their entitlement. For example, for Title 1

funding (Section 5), a school district’s entitlement is proportional to

the number of students who meet a specific qualification condition.

Our goal is not to question the fairness of the declared entitlement

or the resulting ground truth assignment, as these are typically

mandated by law. Instead, we consider the change in outcomes due

to the introduction of privacy protection.

Since different populations have different entitlements, we do

not seek to treat each population equally, but instead to treat equals

equally. However, with a randomized assignment method, even

identical populations will receive different outcomes over runs of

the algorithm, so we must evaluate equal treatment in expecta-

tion or with high probability. We provide problem-specific fairness

measures in the following sections.

3 RELATEDWORK
While fairness and privacy are topics that have been considered

by philosophers and theologians for thousands of years, it is only

recently that these values have begun to be engineered into algo-

rithms. Differential privacy [14, 16] provides a formal model for

reasoning about and controlling a quantitative measure of privacy

loss. Fairness has been formalized in economics, and, more recently,

in definitions emerging from machine learning [12, 13, 24, 27, 31].

Yet relatively little work has considered the direct interaction

of privacy and fairness. Dwork and Mulligan [15] warn against

the expectation that privacy controls and transparency alone can

offer resistance to discrimination in the context of large-scale data

collection and automated classification. And Dwork et al. [13] pro-

pose a framework for fair classification which they show can be

viewed as a generalization of differential privacy. Both of these

focus on settings distinct from ours. Conceptually closest to our

work is a recent position paper in which Ekstrand et al. [17] raise a

number of questions about the equitable provision of privacy protec-

tions (privacy-fairness) and equitable impacts of privacy-protection

mechanisms (accuracy-fairness). In addition, very recently, Bag-

dasaryan and Shmatikov [7] have shown the disparate impact of

differential privacy on learned models.

Economics and Social Choice Theory:Abowd and Schmutte [6]

characterize accuracy and privacy protection as competing social

goods and invoke an economic framework in which the demand

for accuracy is balanced with the demand for privacy. They use

the model of differential privacy to quantify privacy loss and study

Title I funds allocation in detail.

They measure inaccuracy using total squared error, a standard

metric in the privacy community, and explain that this corresponds

to utilitarian social welfare. This work inspired ours, motivating us

to ask whether there are other social welfare functions to consider

in the design of privacy algorithms.

In the literature on social choice, fair allocation methods have

been widely studied. Two of the example problems we consider

are instances of fair division problems. Funds allocation is a fair

division problem for a divisible and homogeneous resource (since

money can be divided and only the amount matters) where agents

3
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(in our example, school districts) value the resource equally but

have differing rights to the resource (e.g. based on eligible pop-

ulation). This is a trivial fair division problem whose solution is

a proportional division. In our setting, the division deviates from

proportional because the information about agents’ rights to the

resource is noisy. We are not aware of fairness definitions which

consider this variant directly, although Xue [34] considers a related

scenario where agents rights are uncertain and proposes a division

that discounts an agent’s allocation accordingly.

Apportionment is a fair division problem for an indivisible and

homogeneous good (since seats cannot be divided and only the

number of seats matters) where agents (in our example, states)

value the resource equally but have differing rights to the resource

(determined by population). Again, in our setting we must consider

the impact of noisy information about agents’ rights. While the

study of apportionment methods and their properties has a long

history, we are aware of no existing approaches to cope with noisy

inputs. The closest related work may be that of Grimmett [20]

which proposes a randomized apportionment method along with a

fairness criterion we consider in Section 6.

Fairness in Machine Learning: A number of fairness definitions

have been proposed recently for assessing the impacts of predic-

tive algorithms [12, 13, 24, 27, 31], primarily focused on algorithms

that assign scores or classifications to individuals. Fairness criteria

measure the degree of disparate treatment for groups of individ-

uals who should be treated equally (e.g. males and females in the

context of hiring). Our example problem concerning minority lan-

guage benefits is related since the goal is to classify jurisdictions.

However, rather than studying the impact of a classifier that may

display biased performance on unseen examples, we have a fixed

decision rule (mandated by law) but error is introduced into out-

comes because of noise in the input statistics. Although we could

certainly compare impacts across groups (e.g. whether Hispanic

and Chinese minority language speakers are treated equally) we

are also concerned with equitable treatment of arbitrary pairs of

jurisdictions. The metric we use for this problem is related to error

rate balance [12] but other metrics could also be considered.

StatisticalAgencyPractices: Statistical agencies like the U.S. Cen-
sus Bureau have considered the potential impacts of inaccuracy

and bias in their data products for decades. Broadly, errors may

arise from sampling, data cleaning, or privacy protection. Census

data products derived from surveys (rather than censuses) include

margins-of-error representing estimates of uncertainty due to sam-

pling. Margins-of-error are intended to quantify sampling error but

have not historically considered the distortion introduced by the

data transformations applied for privacy protection.

In most cases, released data are treated as true by end users:

assignment and allocation methods are applied directly to released

summary statistics without any modification to take into account

potential inaccuracies. We are not aware of systematic studies of po-

tential bias in the statistics currently released by statistical agencies,

however Spielman observed that margins-of-error can be corre-

lated with income levels in some Census products, leading to greater

inaccuracies for low-income persons [29, 30].

The Census Bureau will be adopting differential privacy for

parts of the 2020 Census of Population and Housing [11]. This

motivates a careful consideration of the implications of differentially

private mechanisms on both accuracy and fairness. A preliminary

version of the planned algorithmwas released by the Census Bureau

subsequent to this work [1].

While the U.S. Census Bureau is required by law to protect

individuals’ privacy, it is also obligated to support accurate decision

making. It therefore makes strategic choices about the accuracy

of its released products. For some critical assignment problems

(e.g. apportionment and redistricting), the Census forgoes privacy

protection in order to favor accurate allocation and this choice is

supported by law. In other cases, such as minority language benefits,

special variance reduction methods have been adopted to boost

accuracy [4]. Ultimately, for legacy privacy methods employed by

the Census, it is not possible for users to evaluate potential biases.

4 PROBLEM 1: MINORITY LANGUAGE
VOTING RIGHTS

The Voting Rights Act is federal legislation, passed in 1965, which

provides a range of protections for racial and language minorities.

Among its many provisions is Section 203, describing conditions

under which local jurisdictions must provide language assistance

during elections. Each jurisdiction (e.g. a county) is evaluated for

each of 68 identifiedminority languages. If theymeet the conditions,

they are found to be “covered” by the provision, and must provide

all election information (including voter registration, ballots, and

instructions) in the minority language.

The coverage determination is made by the Census Bureau every

five years, using published population statistics. Most recently, in

2016, 263 jurisdictions (out of a total of approximately 8000) were

found to be covered under Section 203, across all language minority

groups [5]. While a small fraction of all jurisdictions are covered, an

estimated 21.7million voting-age citizens lived in these jurisdictions

and were potentially impacted by this benefit.

4.1 Problem Definition
Informally, a jurisdiction is covered for a language if it (i) has a large

enough population of voting age citizens who speak the language

and have limited proficiency in English, and (ii) if the illiteracy rate

of those speaking the language is higher than the national average.

Condition (i) can be satisfied in either of two ways: in percentage

terms (> 5%) or absolute terms (> 10, 000). Table 1 formalizes these

criteria, defining a binary outcome (“covered” or “not-covered”) for

each jurisdiction and for each minority language category.

Assessing FairnessTo evaluate fairness wemeasure, for each juris-

diction, the rate of correct classification. For a covered jurisdiction

j, i.e.M ((j, l );X) = ‘Covered’ where l = ‘Hispanic’, we measure

Pr [M (a; X̃) = Covered] where the probability is over randomness

in the privacy algorithm. Similarly, for a not-covered jurisdiction

j we measure Pr [M (a; X̃) = ‘Not-covered’]. We evaluate the rates

of correct classification across the set of covered and not-covered

jurisdictions, measuring the disparity in classification accuracy.

4.2 Empirical Findings

Experimental SetupWe use the 2016 public-use data accompany-

ing the Census voting rights determinations, treating it as ground

4
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Figure 1: Minority Language Determinations using D-Laplace and DAWA.

Table 1: Voting Rights, Minority Language Determinations

Assignees are all combinations of U.S. voting jurisdictions with each of 68

minority language categories.

• Assignees: a = (j, l ) ∈ Jurisdictions × Languages
• Outcomes: {Covered, Not-covered}

• Q = {vac, lep, l it } where
vac (Ia ): voting age citizens in j speaking language l .
lep (Ia ): voting age citizens in j speaking language l , and limited-

English proficient.

l it (Ia ): voting age citizens in j speaking language l , limited-

English proficient, and less than 5th grade education.

• M (a;X) =
(
Xlepa
Xvaca

> 0.05 ∨ Xlepa > 10000

)
∧

Xl ita
Xlepa

> 0.0131

truth. We focus on the “Hispanic” minority language group and

jurisdictions that are counties or minor civil divisions. This data

provided the values for the variables described in Table 1, namely

lep,vac, lit for 5180 jurisdictions, of which 175 were Covered.

We consider two algorithms for computing the noisy statis-

tics X̃. The first, which we call D-Laplace, is an adaptation of the

Laplace mechanism in which we decompose the original required

queries Q = {vac, lep, lit }, which together have sensitivity 3, into

Q ′ = {lit , lep − lit ,vac − lep}, which compose in parallel and have

sensitivity 1. We use the Laplace mechanism to estimate answers to

Q ′ and then derive estimates to Q from them. In our experiments

this performed consistently better than a standard application of

the Laplace mechanism. The second algorithm is DAWA, as de-

scribed in Section 2, and with additional background provided in

the appendix. We run 1000 trials of each algorithm for each ϵ value.

Finding M1: There are significant disparities in the rate of correct
classification across jurisdictions. Because the failure to correctly

classify a true positive is a more costly mistake (potentially disen-

franchising a group of citizens) our results focus on the classification

rate for the truly covered jurisdictions. For the 175 jurisdictions pos-

itively classified for the “Hispanic” language, Figure 1(a) shows the

correct classification rate for each jurisdiction under the D-Laplace

algorithm, for four settings of the privacy parameter ϵ . Jurisdictions
are ranked from lowest classification rate to highest. For ϵ = 10.0,

all of the jurisdictions have a correct classification rate greater than

95%. For ϵ = 1.0, 92% of jurisdictions have a correct classification

rate greater than 95%, while 74% do for ϵ = .1 and 33% do for ϵ = .01.
However, the plot shows that the lowest correct classification rate

is about 37% for ϵ = .01 and ϵ = .1 and 55% for ϵ = 1.0.

The conditions of Section 203 impose thresholds on language

minority populations (as shown in Table 1). A given covered ju-

risdiction may be closer to the thresholds, making it more likely

that perturbation from the privacy mechanism will cause a failure

to classify accurately. As a particular example, consider Maricopa

county (Arizona) and Knox county (Texas), which are both covered

jurisdictions. Maricopa county is correctly classified 100% of the

time by D-Laplace at ϵ = .1, while Knox county is correctly classi-

fied only 63% of the time. Because the D-Laplace algorithm produces

unbiased noise of equivalent magnitude to each jurisdiction, this

difference is fully explained by the distance to the classification

threshold: Maricopa county is further from the threshold than Knox

county so it is more robust to the addition of noise. Additionally, the

distance to the classification threshold is strongly correlated with

the population size, which is over 4,000,000 for Maricopa county,

but less than 4,000 for Knox county.

Thus, in this case, the significant differences in the rate of suc-

cessful classification across jurisdictions is a consequence of the

decision rule and its interaction with the noise added for privacy.

Although not shown in Figure 1, there are also significant dis-

parities in classification rates for the negative class (uncovered

jurisdictions). For example, the correct negative classification rate

for D-Laplace at ϵ = .1 ranges from 54% to 100%. Mistakes on the

negative class mean, in practice, that minority language materials

would be required of a jurisdiction which does not truly qualify,

resulting in an unnecessary administrative and financial burden.

Finding M2: While the DAWA algorithm offers equal or lower error
on the underlying statistics for small ϵ , it exacerbates disparities
in classification rates. Figure 1(b) shows a similar plot but for the

DAWA algorithm, however in this case the disparities are even

greater. The lowest classification rates are zero, for both ϵ = .01
and ϵ = .1, implying that a few covered jurisdictions will definitely

be not-covered for every run of the algorithm. Even with higher ϵ
values of 1.0 and 10.0, the lowest classification rates are below 25%.

At the high end, for ϵ = 10.0, 99% of the jurisdictions have a correct

classification rate greater than 95%, while 87% do for ϵ = 1.0, 61%

do for ϵ = 0.1 and 22% do for ϵ = .01.
It is important to note that the DAWA algorithm offers approxi-

mately equivalent error on the statistics X compared to D-Laplace

(at ϵ = .1) and in fact offers 30% lower error at ϵ = .01. This is
a critical finding for designers of privacy algorithms: optimizing

for aggregate error on published statistics does not reliably lead to

more accurate or fair outcomes for a downstream decision problem.
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Finding M3: A jurisdiction’s distance from the nearest threshold
explains classification rates for D-Laplace but not DAWA. We plot

in Figure 1(c) a jurisdiction’s euclidean distance from the nearest

classification threshold against the rate of correct classification (for

ϵ = 0.1). We see that the results for D-Laplace are well-explained:

correct classification rate increases with distance from the threshold

and occurs in a fairly tight band for any given distance measure.

For the DAWA algorithm, however, we observe a different result.

Jurisdictions very far from the threshold have high classification

rates, as expected, presumably because there is simply not enough

noise to cause a failure for these cases. But for jurisdictions a smaller

distance from the threshold, there is a wide spread of classification

rate and some jurisdictions reasonably far from the threshold have

very low classification rates. This shows the impact of the bias

introduced in by DAWA: it sometimes groups together qualified ju-

risdictions with unqualified ones, causing them to be mis-classified.

4.3 Mitigating unfairness
We now consider the problem of modifying the allocation mech-

anism to alleviate some of the fairness concerns identified above.

To achieve this goal, we focus on the Laplace mechanism as the

underlying mechanism, leaving its privatized counts unchanged.

Rather than apply the standard allocation rule to the noisy counts,

we propose an altered allocation method which can account for the

noise, prioritizing correct positive classification. In this context, this

mechanism allows minimizing disenfranchised voters at the cost

of unnecessarily providing voting benefits to some jurisdictions.

Given noisy counts x̃a for jurisdiction a, the approach investi-

gated above simply applies the assignment rule, returningM (a; x̃a).
Instead, the principle behind our repair algorithm is to estimate

the posterior probability that the jurisdiction is Covered given the

observed noisy counts, i.e. we would like to estimate Pr [M (a; xa) =
Covered | x̃a]. We will then consider the jurisdiction covered if the

estimated probability is higher than a supplied parameter p, which
allows a tradeoff between false negatives and false positives. With

low values of p, most of the jurisdictions that should be covered

will be, but a larger number of jurisdictions that do not deserve

coverage will also be Covered. In our implementation, we place

a uniform prior distribution over the unknown quantities, which

in this case are the true population counts of a jurisdiction, and

estimate the probability using Monte Carlo simulation (we draw

100 samples in experiments).

In Fig. 1(d), we show the results of running the repair algorithm

on the 2016 public-use data. For four settings of ϵ , the x-axis shows
the minimum correct classification rate resulting from a range of

settings of p. This is a measure of disparity, since the maximum

correct classification rate is always 1.0 in the cases considered.

We are thus able to reduce disparity, but must bear the cost of

misclassifying jurisdictions, which is shown on the y-axis.

For modest ϵ = 1 this tradeoff seems appealing: while the stan-

dard algorithm (shown in the plot as a star) has a minimum correct

classification rate of 0.54% with an expected 334 false positives, we

can raise the classification rate to .80 if we are willing to tolerate

870 false positives. For smaller ϵ values, the cost is greater, but the

repair algorithm can allow for raising the extremely low minimum

classification rates borne by some jurisdictions. Thus, the algorithm

could allow policy makers to weigh the risk of disenfranchised

voters against the cost of over-supply of voting materials.

Note that cost here is expressed in terms of the expected number

of jurisdictions misclassified. Presumably the financial cost results

from creating and distributing minority language voting materials

in jurisdictions for which it is not legally required. A more nuanced

evaluation of cost could measure the number of individuals in those

jurisdictions, since the true cost is likely to have a term that is

proportional to the voting age population of the jurisdiction.

Our approach to repair has the advantage that its mitigating

effects are achieved without requiring the data publisher to change

their method for producing private counts. However it does rely

on the fact that the underlying noise added to counts has a known

distribution. This holds for the Laplace mechanism and some other

privacy mechanisms, but does not hold for the DAWA algorithm.

Post-processing noisy outputs is a common technique used to im-

prove the utility of privacy mechanisms. Estimating posterior dis-

tributions from differentially-private statistics has been studied

previously [9, 10, 33].

5 PROBLEM 2: TITLE I FUNDS ALLOCATION
We now turn our attention to the important class of funds allocation

problems. A recent study estimated that the annual distribution of

at least $675 billion dollars relies on data released by the Census

Bureau [23]. This includes funding for educational grants, school

lunch programs, highway construction, wildlife restoration, among

many others. As an example of federal funds allocation, we consider

Title I of the Elementary and Secondary Education Act of 1965

[28]. This is one of the largest U.S. programs offering educational

assistance to disadvantaged children. In fiscal year 2015, Title I

funding amounted to a total of $14.4 billion, of which roughly $6.5

billion was given out through “basic grants” which are our focus.

5.1 Problem Definition
The federal allocation is divided among qualifying school districts

in proportion to a count of children in the district aged 5 to 17 who

live in families who fall below the poverty level or receive a form

of federal financial aid [28]. This proportion is then weighted by a

factor that reflects the average per student educational expenditures

in the district’s state. The allocation formula is described formally

in Table 2, where the outcome represents the fraction of the total

allocation (which changes annually) the district will receive.

Table 2: Title I Funding Allocation

Assignees are all U.S. school districts; outcomes are the fraction of allocated

funds for each school district.

• Assignees: School Districts

• Outcome: [0, 1]

• Q = {exp, eli } where
exp (Ia ): average per student expenditures (for state containing
district a)
eli (Ia ): number of eligible students in district a.

• M (a;X) =
Xexpa · Xel ia∑

b∈A Xexpb · Xel ib
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Figure 2: Fairness in allocation for Michigan using the Laplace Mechanism (top) and DAWA (bottom).

Assessing Fairness To assess fairness, we consider the difference

between the allocation vector based on the noisy statistics õ and

the allocation vector based on true counts o, assessing disparities
across assignees (in this case, districts). An allocation mechanism is

fair if the distance measures do not vary much across districts. We

can measure fairness ex ante, i.e., before running the (randomized)

allocation mechanism, as well as, ex post, i.e., on the outcome of the

allocation. We focus on ex ante measures as they capture disparities

due to the randomized allocation mechanism.

Multiplicative Allocation Error: For each district a, we com-

pute E[õa]/oa . Differences in this measure across districts can be

interpreted as a measure of envy or unequal treatment. For in-

stance, an example of an unfair allocation would be one where

some districts have a ratio much larger than 1, while others have a

ratio smaller than 1. In plots we show the entire distribution of the

multiplicative allocation error across districts.

Misallocation permillion dollars: For each district a, we also
measure the dollar amount that is under or over-allocated to each

district, per million dollars allocated in total: γ (a) = (E[õa] − oa ) ·
10

6
. A significant difference in this measure between two districts

(γ (a) − γ (a′)) would suggest that districts are not treated equally

and could be interpreted as a measure of envy. Again, in plots we

show the distribution of γ (·) across all districts.

5.2 Empirical Findings

Experimental Setup The exact counts of Title I eligible students

per district are unavailable so, as a proxy, we used per-district counts

of free-lunch eligible students as reported by The National Center

for Education Statistics for years 2013-2014. For simplicity, we treat

the average per student expenditures exp (Ia ) as public, following
[6]. We obtained data for 15650 of 18609 school districts. We use

two differentially private algorithms to estimate eli (Ia ) for each a:

the Laplace mechanism and DAWA. The former adds independent

0-mean noise to the count in each district. The latter adds noise to

the total count of groups of districts rather than individual districts.

The total noisy count of a group of districts is then evenly divided

among districts in the group. In both algorithms, negative counts

are rounded to zero. The resulting vector of student counts may be

fractional, but it is non-negative.

For clarity of presentation, we show results on two states: Michi-

gan and Florida (see Figures 2 and 3). We chose these states because

the histograms of the number of eligible students per district show

contrasting properties. We obtained data for 888 districts in Michi-

gan, which included a number of small districts with the smallest

containing just 8 eligible students. On the other hand, Florida has a

smaller number of comparatively larger districts (we obtained data

for 74, the smallest having 49 eligible students).

Finding T1: In cases of low ϵ there are significant disparities in
outcomes (over- and under-allocation) using private statistics. Using
the Laplace mechanism, the mean allocation for small districts is

typically much higher than the true allocation while the mean

allocation of larger districts is typically lower. This is shown in

Figure 2(a), which plots the multiplicative allocation error of a

district versus its true allocation. The districts are shown sorted

by true allocation. The smallest districts see a 1.01× increase for

ϵ = 10, a 10× increase for ϵ = 0.1 and a 500× increase for ϵ = 0.001.

The largest districts see their allocations decrease by 0.001% for

ϵ = 10, 0.05% for ϵ = 0.1 and 50% for ϵ = 0.001.

The Laplace mechanism adds 0-mean noise to the data, and, in

expectation, the noisy counts should be the same as the true counts.

However, these counts could be negative and since negative counts

are rounded to 0, this adds an upward bias to the noisy counts.

Moreover, this bias increases the total number of students, thus

bringing down the weight of larger districts.
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Figure 3: Fairness in allocation for Florida with the Laplace mechanism, and misallocation statistics for Michigan.

Figure 2(b) shows the absolute dollars misallocated per million

dollars allocated. In terms of raw dollar amounts, the largest districts

see the greatest misallocation and see a drop in funding of about

31,000 (see Figure 3(c)). On interpretation of this behavior is that

larger districts are being taxed to ensure that students in all districts

enjoy the same level of privacy protection.

The results for DAWA (Figures 2(d) and 2(f)) have more disparity

than those of the Laplace mechanism. At ϵ = 0.001 some districts

get about 555× their true allocation, while others get only a tenth

of their true allocation, in expectation whereas, under the Laplace

mechanism, every district gets at least 0.48x of their true allocation.

For districts in Florida (see Figure 3(a) and Figure 3(b)), we see

almost no difference at ϵ = 10. At ϵ = 0.1 there is very little

difference between the true and noisy allocations between districts

both additively and multiplicatively. At ϵ = 0.001, we see the same

effect of larger districts being taxed. However, the effects are less

prominent than in Michigan. This is because there are fewer small

counts in Florida as well as fewer districts overall, resulting in a

lower variance estimate of the total count used in the denominator

of the allocation formula.

Finding T2: Populations with small entitlements, relative to the pri-
vacy parameter ϵ , will experience significant misallocation.Detecting
small counts or the presence of small effects in data is incompatible

with differential privacy. This is a fundamental property of any

differentially private mechanism and the meaning of “small” de-

pends on ϵ : Any ϵ-differentially private algorithm can not distinguish
between counts that differ in τ (ϵ,δ ) = 1

ϵ log

(
1

δ

)
, with probability

1−δ . Thus, no matter what differentially private algorithm one uses,

districts with sufficiently small counts will undergo mis-allocation.

Due to rounding, they tend to get higher allocations than they

deserve, in expectation, at the cost of larger districts.

This phenomenon is evident in Figure 2(c) and Figure 2(f) which

show the true and noisy allocations for all districts, when Laplace

andDAWAare used respectively. At ϵ = 0.001, for bothmechanisms,

all districts with a true allocation less than 0.001 end up with an

allocation of roughly 0.001 in expectation. This is because, in these

cases, these mechanism can not distinguish between the number of

students in those districts and 0, and rounding induces a positive

bias. On the other hand, the noisy allocations at ϵ = 0.1 track the

truth more closely (although even at ϵ = 0.1, there is a threshold

under which noisy counts cannot reflect their true magnitude), and

at ϵ = 10 the true and noisy allocations barely differ.

Finding T3: Under some privacy mechanisms, districts with a greater
entitlement can receive a smaller expected allocation. Consider two
districts, a and b where a has a smaller number of eligible students

than b. Naturally, the true allocation of a will be smaller than the

true allocation of b, and the inversion of this relationship would

violate a commonly held notion of fairness.

Under the Laplace mechanism, in expectation, we can show

that the allocation for a will be no larger than the allocation for

b. However, this is not true for the DAWA algorithm, because of

bias in estimated counts. In particular, for DAWA, a smaller district

may be grouped with other larger districts, while a larger district

may be grouped with other smaller districts. This results in the

smaller district getting a larger expected allocation than the larger

district. Empirically we find that, using DAWA with ϵ = 0.001, 381

out of the 888 districts exhibit at least one inversion, where a larger

district gets a smaller allocation.

5.3 Mitigating unfairness
Here we introduce a post-processing step designed to mitigate

the inequities present due to the noise introduced for privacy. We

design the approach with the Laplace mechanism in mind, but leave

extensions to other mechanisms as future work.

The goal of this method is to ensure that, with high probability,

each district receives an allocation at least as large as its true allo-

cation. More specifically we aim to satisfy the following condition:

Definition 5.1 (No-penalty allocation). GivenM (B, x), a no-penalty
allocation is any (randomized) allocationM ′ allocating a new bud-

get B′ such that for all a;M ′(a; X̃) ≥ M (a;X) with failure proba-

bility no greater than δ .

We propose a repair mechanism that achieves the above defini-

tion, but requires inflating the overall allocation in order to guaran-

tee (with high probability) that no district is disadvantaged. In par-

ticular, our inflationary repair algorithm inflates the counts of each

district by a slack variable ∆ = ln(2k/δ )/ϵ while deflating the total

count of all districts by another slack variable ∆′ = k ln(2k2/δ )/ϵ
(where k is the total number of districts). The final allocation is:

M ′(a; X̃) =
Xexp
a · X̃eli

a + ∆∑
b ∈A Xexp

b · X̃eli
b − ∆

′

Note that both ∆ and ∆′ depend on ϵ as they are calibrated to the

added noise. We prove in Appendix A.2 that, for any given δ , this
algorithm provides a no-penalty allocation.
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Theorem 5.2. The repair algorithm satisfies Definition 5.1.

We used this inflationary allocation method in the Title I funds

allocation experiment described above, setting the acceptable failure

probability, δ = .05. Compared with the standard allocation applied

to the private counts resulting from the Laplace mechanism, it

removes penalties experienced by some districts, at the cost of

inflating the overall allocation. For ϵ = 0.1, in expectation, the

repair mechanism requires increasing the budget by a relatively

modest factor of 1.082× the original budget (i.e. $82, 000 per million).

At lower levels of epsilon, achieving a no-penalty allocation has

a significant cost. At ϵ = 0.001, in expectation, the mechanism

allocates 5.715× the original budget. These results are included

in Fig. 3(c) and can be compared with the expected misallocation

under the Laplace or DAWA privacy mechanisms when combined

with the standard allocation rule.

This repair algorithm mitigates one aspect of unfairness, since

districts cannot complain that they were disadvantaged as a result

of the noise added to population counts to preserve privacy. Of

course, there may still be inequity in the allocation, since some

districts’ allocations can be inflated more than others.

This approach tomitigation does not alter the underlying privacy

mechanism, which may be seen as an advantage to a statistical

agency publishing privatized counts to be used for many purposes

beyond funds allocation. However, the proposed algorithm relies

on an analysis of the noise distribution. While feasible for the

noise introduced by the Laplace mechanism, it would need to be

adapted to a mechanism like DAWA whose error distribution is

data-dependent, possibly requiring additional consumption of the

privacy budget to calibrate the slack variables.

6 PROBLEM 3: APPORTIONMENT OF
LEGISLATIVE REPRESENTATIVES

Apportionment is the allocation of representatives to a state or

other geographic entity. We use parliamentary apportionment as

our example domain, and consider the particular case of allocating

representatives to the Indian Parliament’s Lower House, in which

a fixed number of representatives (543) are apportioned among 35

states,
3
with each state having at least one representative.

Parliamentary apportionment is carried out using population

counts obtained from a census. While state population counts are

aggregates over large groups, they nevertheless cannot be released

in unmodified form in the standard model of differential privacy

(i.e., without an infinite privacy loss parameter), as they could reveal

presence of individuals in combination with other statistics.

In experiments, we consider ϵ values and requisite noise suffi-

cient to impact apportionment methods. Whether or not this degree

of noise would be used in practice for congressional apportionment,

the findings apply to apportionment problems over smaller geogra-

phies (e.g., allocating seats on a school board to school districts). In

particular, Laplace noise required to provide privacy at ϵ = 10
−4

on

a population of 10
6
(a small state) has equivalent effects as using

ϵ = .1 on a smaller population of 10
3
(a small school district).

3
We use ’state’ to refer to both states and union territories

6.1 Problem Definition
The principle underlying fair apportionment is equal representa-

tion. Therefore the ideal allocation of seats to a state is given by the

state’s quota, which is its fraction of the population multiplied by

the total number of representatives. A state’s quota is typically non-

integral, but an integral number of seats must be apportioned. Thus

any selected apportionment outcome will deviate from the quota

values, leading to some degree of disparity in representation. There

are various apportionment methods studied in literature [8, 35]. In

this paper we do not make a comparison between these algorithms,

rather we are interested in how adding Laplace noise affects rep-

resentation of states with different population counts. Thus, we

apply the following simple algorithm (Table 3): We compute the

quotas for all states and round them to the nearest integer, with the

constraint that every state receives at least one seat. This algorithm

is not guaranteed to allocate exactly 543 seats.

Assessing fairness A desirable fairness property is quota satis-
faction; i.e., the number of seats apportioned to a state should be

(roughly) proportional to the population of the state. When we add

Laplace noise, this property may not hold when considering spe-

cific random outcomes (i.e. ex-post), but could hold in expectation,

hence we focus on the deviation from the ideal standard of equal

representation—i.e., the quota values. We consider the following

two measures, where qa denotes the quota for state a (computed

on the true population counts):

Max-multiplicative: this measure considers pairs of states and

quantifies the disparity between the ratio of their allocation and

their quota: E
[
maxa,b ∈A

{
õa
qa −

õb
qb

}]
. Given a particular outcome

o, this measure can be interpreted as capturing the maximum in-

centive for an individual to move from one state to another state in

order to increase their representation. We consider the expectation

of this measure over the randomness in the privacy mechanism.

Average-Expected-Deviation: We also consider the expected

absolute deviation from quota on a per-state basis, which we then

average over the states:
1

|A |
∑
a∈A
|E[õa]− qa |. When this measure is

small, it means that most states will receive, on average over the

long run, an apportionment close to their quota.

These measures are quite different, as our empirical results will

show. The first is based on an ex-post measure of fairness, which

can be evaluated on a single apportionment outcome; we consider

the expected value of this measure. The second isolates a particular

state, evaluating the difference from quota of the expected appor-

tionment for that state, and then aggregates over the states. It can be

Table 3: Apportionment of seats in parliament seats

Assignees are all Indian states; outcomes are seats in the Lower House of

Parliament.

• Assignees: States

• Outcomes: {1, 2, 3, . . . }

• Q = {tot }
tot (Ia ): total population in state a.

• M (Xa) =

– Calculate quota: qa =
Xtota∑

b∈A Xtotb
· 543

– Round to nearest positive integer: max{Round (qa ), 1}
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Figure 4: Allocation of seats to the Lower House of the Indian Parliament using population counts with Laplace noise.

seen as an ex antemeasure of fairness: if, for example, two states had

equal expected deviation from quota, then, prior to any execution

of the randomized algorithm, they may not prefer the other state’s

future outcome. We note that an expected deviation from quota of

zero was used as a fairness criterion by Grimmett in the context of

a randomized (but non-private) method for apportionment [20].

6.2 Empirical Findings
Experimental Setup We used the 1971 state population totals

published by the Indian Parliament in the budget of 2006/07 , which

provides data for 35 states and union territories. [2] We evaluate the

impact on apportionment outcomes when state population totals

are perturbed by the Laplace Mechanism, for varying ϵ . We do not

consider more sophisticated privacy mechanisms (as we did earlier)

because, for this small set of statistics, they do not improve upon

the Laplace mechanism.

Finding A1. For some ϵ , noise introduced into population totals can
lead to more fair apportionment, in expectation. Figure 4(a) shows
the average-expected-deviation measure as it varies with ϵ . We see

that the introduction of noise actually improves over the baseline

deviation from quota, between approximately ϵ = 1.4×10−6 and ϵ =
3.8 × 10−4. This is because randomization can reduce, on average,

the deviation from quota caused by the integrality constraint.

A more detailed look is provided by Figure 4(b), which shows per

state results for a single privacy level, ϵ = 1.4× 10−5. For each state,

the red dot shows the deviation from quota on the true population

totals (which may be positive or negative). The blue bars show

the expected deviation from quota for the respective state, often

substantially lower. While this decreased deviation is interesting,

the expected apportionment is an unattainable outcome in any

possible trial, so this may be an unsatisfying property in practice.

FindingA2.As ϵ decreases, apportionment outcomes display a greater
multiplicative disparity between most favored and least favored state.
Figure 4(c) shows the max-multiplicative measure as it varies with

ϵ and here we see the fairness measure worsen as noise increases.

When considering this ex-post measure, noise does not help: appor-

tionment outcomes tend to include states receiving substantially

more than their quota while others receive substantially less, and

the disparity increases with the magnitude of the noise.

7 CONCLUSION
We empirically measure the impact of differentially private algo-

rithms on allocation processes, demonstrating with important prac-

tical examples that disparities can arise, particularly for smaller,

more protective values of the privacy-loss budget. Some practical

deployments of differential privacy have been revealed to use high

privacy-loss budgets [19], which would diminish impacts, however,

we emphasize that the privacy loss budget must cover all public
releases, including the supporting statistics of any required alloca-

tion problems. Thus, in practice, the privacy loss budget devoted to

the statistics for any single allocation problem may be small.

The disparities in outcomes have multiple causes, including bias

added by some privacy algorithms, threshold conditions inherent

to some decisions, and divergent treatment of small and large pop-

ulations. Our results show that designers of privacy algorithms

must evaluate the fairness of outcomes, in addition to conventional

aggregate error metrics that have historically been their focus.

We proposed remedies to the disparities demonstrated for funds

allocation and voting benefits, but further investigation of mitigat-

ing technology is needed. One potential approach is to customize

privacy mechanisms, targeting performance on specific assignment

problems. While this approach should be pursued, it presents agen-

cies like the Census with the difficult prospect of designing an

algorithm for each of the thousands of assignment problems that

rely on the public data they release. Our remedies adapted alloca-

tion methods to account for the noise added by a version of the

Laplace mechanism. But some algorithms (including DAWA) do

not directly support the release of error bounds, confounding this

approach. Furthermore, modifying allocation procedures could be

inconsistent with the governing regulations. We hope to continue

to develop and evaluate these approaches in future work.
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A APPENDIX
The following appendices provide additional algorithm background

and a proof omitted from the body of the paper.

A.1 Algorithm background
The privacy algorithms used in experiments were implemented

using the Ektelo framework [36], which is available open-source.
4

The main algorithms used were described in Section 2 and in the

respective sections where they were adapted to specific problems.

We include additional background and details to aid intuition about

algorithm performance and to support reproducibility.

Laplace Mechanism. Recall that the Laplace mechanism [14] adds

noise sampled from a mean-zero Laplace distribution. The scale of

the noise is calibrated to ϵ and a property of the computed quantity

called the sensitivity. We use a variant of the Laplace mechanism

in which the desired statistics are expressed in vector form and the

sensitivity is calculated automatically (cf. VectorLaplace in [36]).

We review the uses of the Laplace mechanism for each problem

domain:

Title I The sensitivity of the collection of statistics used in

the Title I allocation is 1 and we use a direct application of

the Laplace mechanism, followed by simple post-processing

consisting of setting negative counts to zero.

Voting Rights For the voting rights benefits, we use a slight

adaptation of the Laplace Mechanism, which we call D-

Laplace. Applying the standard Laplace Mechanism to the

original queriesQ = {vac, lep, lit }would require noise scaled
to a sensitivity of 3. Instead, we used the D-Laplace algorithm,

which adds noise to decomposed queries Q ′ = {q1,q2,q3}
where:

q1 = lit

q2 = lep − lit

q3 = vac − lep

These queries together have sensitivity one (because the

addition or removal of any individual can change only one

query answer, by a value of one). The D-Laplace algorithm

uses the Laplace mechanism to estimate answers to Q ′ and
then derives estimates to Q from them. In particular,

X̃l it = q̃1

X̃lep = q̃1 + q̃2

X̃vac = q̃1 + q̃2 + q̃3

In experiments, D-Laplace performed consistently better

than a standard application of the Laplace mechanism.

Apportionment Weused a standard application of the Laplace

mechanism for this problem, applied to a set of population

totals, which together have sensitivity 1. As in the Title I

problem, negative population counts were rounded to zero.

DAWA. The Data- and Workload-Aware Algorithm (DAWA) [25]

applies a differentially private pre-processing step to group together

statistics and smooth their estimates. It can be applied to an or-

dered sequence of statistics, such as a histogram, and it selects a

4
https://ektelo.github.io
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partition of the statistics into contiguous intervals so that statistics

with similar value are grouped together. It uses the Laplace Mecha-

nism as a subroutine to measure each group, and derives smoothed

estimates for the statistics within each group. This grouping and

smoothing can significantly reduce total error in some settings and

was shown to outperform a number of competing mechanisms on

real datasets [25].

However, the benefits achieved in total error come with some

added complexities for practice use. First, noisy counts produced

by the algorithm have lower mean-squared-error, but that error is

not unbiased, as it would be if the Laplace mechanism was used.

In the problems we consider, the counts released correspond to

population counts for geographic regions. It is difficult to predict a

priori where bias may occur when using the DAWA algorithm, but

informally it tends to arise for regions that are outliers amongst

their neighbors. For example, when a district has a much higher

count than its neighboring districts, and those neighboring districts

share roughly uniform counts, the district will tend to have its

count biased downward by the grouping and smoothing process.

A related consequence is that the expected error of a given count

is not simply a function of the privacy parameters used in the

mechanism, but depends on the data, and thus the expected error is

itself a sensitive quantity that cannot be released unless the privacy

cost of this release is accounted for.

The complexities inherent to the DAWA algorithm are shared

by many state-of-the-art privacy algorithms, the result of increas-

ingly complex algorithmic techniques invented by the research

community to lower aggregate error. For this reason, it is important

to consider a representative algorithm of this kind and assess the

impact on fairness and fairness mitigations.

We review the uses of DAWA for each problem domain:

Title 1 : We run DAWA on the same data used by the Laplace

mechanism. Since the ordering of the cells can affect the

output of the DAWA algorithm, and since there is no well-

defined order on geographic regions, we simply ordered

the districts alphabetically by district name. We then set all

negative counts in the output to 0.

Voting Rights We run DAWA on the same underlying data

vector used by D-Laplace— i.e., the vector produced by ap-

plying the queriesQ ′ to the data. This results in a data vector
of size 3 · 5180 = 15540. We ordered the cells by state id, then

county id.

Apportionment DAWA was not used in the apportionment

experiments because, for small numbers of counts, such as

the 35 Indian states, DAWA does not outperform the Laplace

Mechanism.

A.2 Proofs

Proof of Theorem5.2 For anyδ > 0, the Inflation repair algorithm

described in Section 5.3 is a no-penalty allocation.

Proof. Let x1, ...,xk denote the true counts and x̃1, . . . , x̃k be

the noisy counts after applying the Laplace mechanism. Let n be

the sum of the true counts and ñ be the sum of the noisy counts.

Let ∆ =
2 ln(2k/δ )

ϵ . We know the following:

Pr [|x̃i − xi | > ∆] < δ/2k

Therefore for the sum of k districts ∆′ =
k ln(2k2/δ )

ϵ

Pr [|n − ñ | > ∆′] < δ/2k

Therefore, from the union bound,

Pr [xi (ñ − k∆n ) < (x̃i − ∆)n] < δ/k

Then again using the union bound

Pr

[
∀i
x̃i + ∆

ñ − ∆′
<

xi
n

]
> δ

Then take the negation

Pr

[
∀i

x̃i + ∆

ñ − k∆′
≥

xi
n

]
> 1 − δ

□
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