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ABSTRACT
The adoption of differential privacy is growing but the complexity of
designing private, efficient and accurate algorithms is still high. We
propose a novel programming framework and system, ϵKTELO, for
implementing both existing and new privacy algorithms. For the task
of answering linear counting queries, we show that nearly all existing
algorithms can be composed from operators, each conforming to
one of a small number of operator classes. While past programming
frameworks have helped to ensure the privacy of programs, the
novelty of our framework is its significant support for authoring
accurate and efficient (as well as private) programs.

After describing the design and architecture of the ϵKTELO sys-
tem, we show that ϵKTELO is expressive, that it allows for safer
implementations through code reuse, and that it allows both privacy
novices and experts to easily design algorithms. We demonstrate the
use of ϵKTELO by designing several new state-of-the-art algorithms.
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1 INTRODUCTION
As the collection of personal data has increased, many institutions
face an urgent need for reliable privacy protection mechanisms. They
must balance the need to protect individuals with demands to use
collected data for new applications, to model their users’ behavior,
or share data with external partners. Differential privacy [7, 8] is
a rigorous privacy definition that offers a persuasive assurance to
individuals, provable guarantees, and the ability to analyze the im-
pact of combined releases of data. Informally, an algorithm satisfies
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differential privacy if its output does not change too much when any
one record in the input database is added or removed.

The research community has actively investigated differential
privacy and algorithms are known for a variety of tasks ranging from
data exploration to query answering to machine learning. However,
the adoption of differentially private techniques in real-world appli-
cations remains rare. This is because implementing programs that
provably satisfy privacy and ensure sufficient utility for a given task
is still extremely challenging for non-experts in differential privacy.
In fact, the few real world deployments of differential privacy – like
OnTheMap [1, 13] (a U.S. Census Bureau data product), RAPPOR
[10] (a Google Chrome extension), and Apple’s private collection of
emoji’s and HealthKit data – have required teams of privacy experts
to ensure that implementations meet the privacy standard and that
they deliver acceptable utility. There are three important challenges
in implementing and deploying differentially private algorithms.

The first and foremost challenge is the difficulty of designing
utility-optimal algorithms: i.e., algorithms that can extract the max-
imal accuracy given a fixed “privacy budget.” While there are a
number of general-purpose differentially private algorithms, such
as the Laplace Mechanism [7], they typically offer suboptimal ac-
curacy if applied directly. A carefully designed algorithm can im-
prove on general-purpose methods by an order of magnitude or
more—without weakening privacy: accuracy is improved by careful
engineering and sophisticated algorithm design.

One might hope for a single dominant algorithm for each task, but
a recent empirical study [15] showed that the accuracy of existing
algorithms is complex: no single algorithm delivers the best accuracy
across the range of settings in which it may be deployed. The choice
of the best algorithm may depend on the particular task, the available
privacy budget, and properties of the input data including how much
data is available or distributional properties of the data. Therefore, to
achieve state-of-the-art accuracy, a practitioner currently has to make
a host of complex algorithm choices, which may include choosing a
low-level representation for the input data, translating their queries
into that representation, choosing among available algorithms, and
setting parameters. The best choices will vary for different input data
and different analysis tasks.

The second challenge is that the tasks in which practitioners are
interested are diverse and may differ from those considered in the
literature. Hence, existing algorithms need to be adapted to new ap-
plication settings, but this can be non-trivial. For instance, techniques
used by modern privacy algorithms include optimizing error over
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multiple queries by identifying common sub-expressions, obtaining
noisy counts from the data at different resolutions, and using com-
plex inference techniques to reconstruct answers to target queries
from noisy, inconsistent and incomplete measurement queries. But
different algorithms use different specialized operators for these sub-
tasks, and it can be challenging to adapt them to new situations. Thus,
designing utility-optimal algorithms requires significant expertise in
a complex and rapidly-evolving research literature.

A third equally important challenge is that correctly implementing
differentially private algorithms can be difficult. There are known
examples of algorithm pseudocode in research papers not satisfying
differential privacy as claimed. For instance, Zhang et al [36] showed
that many variants of a primitive called the sparse vector technique
proposed in the literature do not satisfy differential privacy. Differen-
tial privacy can also be broken through incorrect implementations of
correct algorithms. For example, Mironov [25] showed that standard
implementations of basic algorithms like the Laplace Mechanism
[7] can violate differential privacy because of their use of floating
point arithmetic. Privacy-oriented programming frameworks such
as PINQ [9, 24, 27], Fuzz [12], PrivInfer [4] and LightDP [34] help
implement programs whose privacy can be verified with relatively
little human intervention. While they help to ensure the privacy
criterion is met, they may impose their own restrictions and offer
little or no support for designing utility-optimal programs. In fact, in
PINQ [24], some state-of-the-art algorithms involving inference and
domain reduction cannot be implemented.

To address the aforementioned challenges, we propose ϵKTELO,
a programming framework and system that aids programmers in
developing differentially private programs with high utility. ϵKTELO

programs can be used to solve a core class of statistical tasks that in-
volve answering counting queries over a table of arbitrary dimension
(described in Sec. 3). Tasks supported by ϵKTELO include releasing
contingency tables, multi-dimensional histograms, answering OLAP
and range queries, and even implementing private machine learning
algorithms. This paper makes five main contributions.

First, we recognize that, for the tasks we consider, virtually all
algorithms in the research literature can be described as combina-
tions of a small number of operators that perform basic functions.
Our first contribution is to abstract and unify key subroutines into
a small set of operator classes in ϵKTELO– tranformations, query
selection, partition selection, measurement and inference. Differ-
ent algorithms differ in (a) the sequence in which these operations
are performed on the data, and (b) the specific implementation of
operations from these classes. In our system, differentially private
programs are described as plans over a high level library of operator
implementations supported by ϵKTELO. Plans described in ϵKTELO

are expressive enough to reimplement all state-of-the-art algorithms
from DPBench [15].

Second, if operator implementations are vetted to satisfy differ-
ential privacy, then every plan implemented in ϵKTELO comes with
a proof of privacy. This proof requires a non-trivial extension of a
formal analysis of a past framework [9]. This relieves the algorithm
designer of the burden of proving their programs are private. By
isolating privacy critical functions in operators, ϵKTELO reduces
the amount of code that needs to be verified for privacy. In fact,
in future work, we hope to implement operators in ϵKTELO using
programming frameworks like LightDP to eliminate this burden too.

Third, the operator-based approach to implementing differentially
private programs has the following benefits:

● Modularity: ϵKTELO enables code reuse as the same operator
can be used in multiple algorithms. This helps safety, as there is
less code to verify the correctness of an implementation, and am-
plifies innovation, as any improvement to an operator is inherited
by all plans containing it.

● Transparency: By expressing algorithms as plans with opera-
tors from operator classes, differences/similarities of competing
algorithms can be discerned. It also makes it easier to explore
algorithm modifications. Further, it is possible to identify general
rules for restructuring plans (like heuristics in query optimizers).

● Flexibility: The practitioner can now use existing operators from
different algorithms and recombine them in arbitrary ways –
allowing them to invent new algorithms that borrow the best
ideas from the state-of-art – without the need for privacy analysis.

Fourth, as testament to benefits of ϵKTELO, we introduce three
improvements to the state-of-art, which we believe would have
been difficult to identify without the ϵKTELO framework. These
improvements, which may be of independent interest, are:

● a general-purpose, efficient and scalable inference engine that
subsumes customized inference subroutines from the literature;

● a new dimensionality reduction operator that is applicable to any
plan that answers a workload of linear counting queries, and can
reduce error by as much as 3× and runtime by as much as 5×;

● a new algorithm that, when expressed as a plan in ϵKTELO,
looks similar to the MWEM algorithm [14] but with a few key
operators replaced, which empirically lowers error up to 8×.

Finally, we demonstrate the flexibility of ϵKTELO through two case
studies. For a use-case of releasing Census data tabulations, we de-
fine a new algorithm that can offer a 10× improvement over the best
competitor from the literature. For building a private classifier, we
used ϵKTELO to design algorithms that beat all available baselines.

We provide an overview of ϵKTELO and highlight its design in
the next section. After providing background in Sec. 3, we describe
the system fully in Sec. 4. We show the expressiveness of ϵKTELO

plans in Sec. 5 by re-implementing existing algorithms. Algorithmic
innovations are described in Sec. 6 and cases studies are examined
in Sec. 7. The experimental evaluation of ϵKTELO is provided in
Sec. 8 and we discuss related work and conclude in Secs. 9 and 10.
The appendix includes proofs of theorems, additional algorithm
background, and detailed plan descriptions.

2 OVERVIEW AND DESIGN PRINCIPLES
In this section we provide an overview of ϵKTELO by presenting an
example algorithm written in the framework. Then we discuss the
principles guiding the design of ϵKTELO.

2.1 An example plan: CDF estimation
In ϵKTELO, differentially private algorithms are described using
plans composed over a rich library of operators. Most of the plans
described in this paper are linear sequences of operators, but ϵKTELO

also supports plans with iteration, recursion, and branching. Opera-
tors supported by ϵKTELO perform a well defined task and typically
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Algorithm 1 ϵKTELO CDF Estimator
1: D ← PROTECTED(source_uri) ▷ Init
2: D ←WHERE(D , sex == ‘M’ AND age ∈ (︀30, 39⌋︀) ▷ Transform
3: D ← SELECT(salary) ▷ Transform
4: x← T-VECTORIZE(D) ▷ Transform
5: P← AHPPARTITION (x, ϵ⇑2) ▷ Partition Select
6: x̄← V-REDUCEBYPARTITION (x, P) ▷ Transform
7: M← IDENTITY(⋃︀x̄⋃︀) ▷ Query Select
8: y← VECLAPLACE(x̄, M, ϵ⇑2) ▷ Query
9: x̂← NNLS(P, y) ▷ Inference

10: Wpre ← PREFIX(⋃︀x⋃︀) ▷ Query Select
11: return Wpre ⋅ x̂ ▷ Output

capture a key algorithm design idea from the state-of-the-art. Each
operator belongs to one of five operator classes based on its input-
output specification. These are: (a) transformation, (b) query, (c)
inference, (d) query selection, and (e) partition selection. Operators
are fully described in Sec. 4 and listed in Fig. 1.

We begin by describing an example ϵKTELO plan and use it to
introduce the different operator classes. Algorithm 1 shows the pseu-
docode for a plan authored in ϵKTELO, which takes as input a table
D with schema [Age, Gender, Salary] and outputs the differentially
private estimate of the empirical cumulative distribution function
(CDF) of the Salary attribute, for males in their 30’s. The plan is
fairly sophisticated and it works in multiple steps. First the plan uses
transformation operators on the input table D to filter out records
that do not correspond to males in their 30’s (Line 2), selecting only
the salary attribute (Line 3). Then it uses another transformation
operator to construct a vector of counts x that contains one entry for
each value of salary. x(︀i⌋︀ represents the number of rows in the input
(in this case males in their 30’s) with salary equal to i.

Before adding noise to this histogram, the plan uses a partition
selection operator, AHPPARTITION (Line 5). Operators in this class
choose a partition of the data vector which is later used in a transfor-
mation. AHPPARTITION uses the sensitive data to identify a partition
P of the counts in x such that counts within a partition group are
close. Since AHPPARTITION uses the input data, it expends part
of the privacy budget (in this case ϵ⇑2). AHPPARTITION is a key
subroutine in AHP [37], which was shown to have state-of-the-art
performance for histogram estimation [15].

Next the plan uses V-REDUCEBYPARTITION (Line 6), another
transformation operator on x, to apply the partition P computed by
AHPPARTITION. This results in a new reduced vector x̄ that contains
one entry for each partition group in P and the entry is computed by
adding up counts within each group.

The plan now specifies a set of measurement queries M on x̄ using
the IDENTITY query selection operator (Line 7). The identity matrix
corresponds to querying all the entries in x̄ (since M ⋅ x̄ = x̄). Query
selection operators do not answer any query, but rather specify which
queries should be estimated. (This is analogous to how partition
selection operators only select a partition but do not apply it.) Next,
VECTOR LAPLACE returns differentially private answers to all the
queries in M. It does so by automatically calculating the sensitivity
of the vectorized queries – which depends on all upstream data
transformations – and then using the standard Laplace mechanism
(Line 8) to add noise. This operator consumes the remainder of the
privacy budget (again ϵ⇑2).

So far the plan has computed an estimated histogram of partition
group counts y, while our goal is to return the empirical CDF on
the original salary domain. Hence, the plan uses the noisy counts on
the reduced domain y to infer non-negative counts in the original
vector space of x by invoking an inference operator NNLS (short for
non-negative least squares) (Line 9). NNLS(P,y) finds a solution, x̂,
to the problem Px̂ = y, such that all the entries in x̂ are non-negative.
Finally, the plan constructs the set of queries, Wpre, needed to com-
pute the empirical CDF (a lower triangular k ×k matrix representing
the prefix sums) by invoking the query selection operator PREFIX(k)
(Line 10), and returns the output Wpre ⋅ x̂ (Line 11).

2.2 ϵKTELO design principles
The design of ϵKTELO is guided by the following principles. With
each principle, we include references to future sections of the paper
where the consequent benefits are demonstrated.
Expressiveness ϵKTELO is designed to be expressive, meaning that
a wide variety of state-of-the-art algorithms can be written succinctly
as ϵKTELO plans. To ensure expressiveness, we carefully designed a
foundational set of operator classes that cover features commonly
used by leading differentially private algorithms. We demonstrate
the expressiveness of our operators by showing in Sec. 5 that the
algorithms from the recent DPBench benchmark [15] can be readily
re-implemented in ϵKTELO.
Privacy “for free” ϵKTELO is designed so that any plan written
in ϵKTELO automatically satisfies differential privacy. The formal
statement of this privacy property is in Sec. 4.3. This means that
plan authors are not burdened with writing privacy proofs for each
algorithm they write. Furthermore, when invoking privacy-critical
operators that take noisy measurements of the data, the magnitude
of the noise is automatically calibrated. As described in Sec. 4, this
requires tracking all data transformations and measurements and
using this information to handle each new measurement request.
Reduced privacy verification effort Ensuring that an algorithm im-
plementation satisfies differential privacy requires verifying that it
matches the algorithm specification. The design of ϵKTELO reduces
the amount of code that must be vetted each time an algorithm is
crafted. First, since an algorithm is expressed as a plan, and all plans
automatically satisfy differential privacy, the code that must be vet-
ted is solely the individual operators. Second, each operator needs
to be vetted only once but may be reused across multiple algorithms.
Finally, it is not necessary to vet every operator: only the privacy-
critical operators (as shown in Sec. 4, ϵKTELO mandates a clear
distinction between privacy-critical and non-private operators). The
end result means that verifying the privacy of an algorithm requires
checking fewer lines of code. In Sec. 5, we compare the verification
effort to vet the DPBench codebase1 against the effort required to
vet these algorithms when expressed as plans in ϵKTELO.
Transparency In ϵKTELO, all algorithms are expressed in the same
form: each is a plan, consisting a sequence of operators where each
operator is selected from a class of operators based on common
functionality. This facilitates algorithm comparison and makes dif-
ferences between algorithms more apparent. In Sec. 5, we summa-
rize the plan signatures of a number of state-of-the-art algorithms
(pictured in Fig. 2). These plan signatures reveal similarities and

1Available at: https://github.com/dpcomp-org/dpcomp_core
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common idioms in existing algorithms. These are difficult to discover
from the research literature or through code inspection.

We believe that ϵKTELO, by supporting the design principles
described above, provides an improved platform for designing and
deploying differentially private algorithms.

3 BACKGROUND
The input to ϵKTELO is a database instance of a single-relation
schema T (A1,A2, . . . ,Aℓ). Each attribute Ai is assumed to be dis-
crete (or suitably discretized). A condition formula, ϕ, is a Boolean
condition that can be evaluated on any tuple of T . We use ϕ(T ) to
denote the number of tuples in T for which ϕ is true. A number of
operators in ϵKTELO answer linear queries over the table. A linear
query is the linear combination of any finite set of condition counts:

Definition 3.1 (Linear counting query (declarative)). A linear
query q on T is defined by conditions ϕ1 . . .ϕk and coefficients
c1 . . . ck ∈ R and returns q(T ) = c1ϕ1(T ) + ⋅ ⋅ ⋅ + ckϕk(T ).

It is common to consider a vector representation of the database,
denoted x = (︀x1 . . .xn⌋︀, where xi is equal to the number of tuples
of type i for each possible tuple type in the relational domain of T .
The size of this vector, n, is the product of the attribute domains.
Then it follows that any linear counting query has an equivalent
representation as a vector of n coefficients, and can be evaluated by
taking a dot product with x. Abusing notation slightly, let ϕ(i) = 1
if ϕ evaluates to true for the tuple type i and 0 otherwise.

Definition 3.2 (Linear counting query (vector)). For a linear query
q defined by ϕ1 . . .ϕk and c1 . . . ck , its equivalent vector form is
q⃗ = (︀q1 . . .qn⌋︀ where qi = c1ϕ1(i) + ⋅ ⋅ ⋅ + ckϕk(i). The evaluation
of the linear query is q⃗ ⋅ x, where x is vector representation of T .

In the sequel, we will use vectorized representations of the data
frequently. We refer to the domain as the size of x, the vectorized
table. This vector is sometimes large and a number of methods for
avoiding its materialization are discussed later.

Let T and T ′ denote two tables of the same schema, and let
T⊕T ′ = (T −T ′)∪(T ′−T ) denote the symmetric difference between
the two tables. We say that T and T ′ are neighbors if ⋃︀T ⊕T ′⋃︀ = 1.

Definition 3.3 (Differential Privacy [7]). A randomized algorithm
𝒜 is ϵ-differentially private if for any two instances T , T ′ such that
⋃︀T ⊕T ′⋃︀ = 1, and any subset of outputs S ⊆ Ranдe(𝒜),

Pr(︀𝒜(T ) ∈ S⌋︀ ≤ exp(ϵ) × Pr(︀𝒜(T ′) ∈ S⌋︀
Differentially private algorithms can be composed with each other

and other algorithms using composition rules, such as sequential
and parallel composition [24] and post-processing [8]. Let f be a
function on tables that outputs real numbers. The sensitivity of the
function is defined as:max⋃︀T⊕T ′⋃︀=1⋃︀f (T ) − f (T ′)⋃︀.

Definition 3.4 (Stability). Let д be a transformation function that
takes a data source (table or vector) as input and returns a new data
source (of the same type) as output. For any pair of sources S and S′

let ⋃︀S ⊕ S′⋃︀ denote the distance between sources. If the sources are
both tables, then this distance is the size of the symmetric difference;
if the sources are both vectors, then this distance is the L1 norm; if
the sources are of mixed type, it’s undefined. Then the stability of
д is: maxS,S ′∶⋃︀S⊕S ′⋃︀=1 ⋃︀д(S) ⊕ д(S′)⋃︀. When the stability of д is at
most c for some constant c, we say that д is c-stable.

4 OPERATOR FRAMEWORK
This section describes the components of ϵKTELO: the execution
environment (Sec. 4.1), which consists of an untrusted client space
and a protected kernel, where the private data is located; the operators
(Sec. 4.2), which are grouped into classes based on their functionality
and assigned one of three types based on their interactions with the
protected kernel; and finally, the formal privacy guarantee (Sec. 4.3).

4.1 Protected Kernel and Client Space
Recall that a private computation is defined to be a plan consisting
of a sequence of operators. Plans run in an unprotected client space.
All interactions with the private data are mediated by the protected
kernel. The protected kernel encapsulates protected data sources
and ensures that any sequence of operators satisfies formal privacy
properties. The distinction between the client space and the protected
kernel is a fundamental one in ϵKTELO. It allows authors to write
plans that consist of operator calls embedded in otherwise arbitrary
code (which may freely include conditionals, loops, recursion, etc.).

The protected kernel is initialized by specifying a single protected
data object—an input table T—and a global privacy budget, ϵ . Note
that requests for data transformations may cause the protected ker-
nel to derive additional data sources. Thus, the protected kernel
maintains a data source environment, which consists of a mapping
between data source variables, which are exposed to the client, and
the protected data objects, which are kept private. In addition, the
data source environment tracks the transformation lineage of each
data source. Associated with each data source is a stability constant,
which records the stability of the transformation that produced the
source (defined in Sec. 3). Note that in describing operators below,
we speak informally of operators having data sources as inputs and
outputs rather than data source variables. A layer of indirection is
always maintained in the implementation but sometimes elided in
our descriptions to simplify the presentation.

4.2 Operators
Operators are organized into classes based on their functionality. We
also assign operators to one of three types, based on their interac-
tion with the protected kernel. The first type is a Private operator,
which requests that the protected kernel perform some action on the
private data (e.g., a transformation) but receives only an acknowl-
edgement that the operation has been performed. The second type
is a Private→Public operator, which receives information about the
private data (e.g., a measurement) and thus consumes privacy budget.
The last type is a Public operator, which does not interact with the
protected kernel at all and can be executed entirely in client space.
An example of a public operator would be the inference operator
LEAST SQUARES (see Sec. 4.2.5), which performs a computation
on the noisy measurements received from the protected kernel.

A full list of operators, and some of the plans they support, is
shown in Fig. 1 and Fig. 2, respectively. In Fig. 1, operators are
arranged into classes and color-coded by type, which illustrates that
operator type and class are orthogonal dimensions. Next we describe
in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators
take as input a data source variable (either a table or a vector) and
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Transform Partition selection Query selection

TV T-Vectorize PA AHPpartition SI Identity

TP V-SplitByPartition PG Grid ST Total

TR V-ReduceByPartition PD Dawa SP Privelet

PW Workload-based SH2 H2

Inference PS Stripe(attr) SHB HB

LS Least squares PM Marginal(attr) SG Greedy-H

NLS Nneg Least squares SU UniformGrid

MW Mult Weights Query SA AdaptiveGrids

HR Thresholding LM Vector Laplace SQ Quadtree

SW Worst-approx

SPB PrivBayes select

Figure 1: The operators currently implemented in ϵKTELO.
Private operators are red, Private→Public operators are orange,
and Public operators are green.

output a transformed data source (again, either a table or vector).
Transformation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget, they
can affect the privacy analysis through their stability (Sec. 3). Every
transformation in ϵKTELO has a well-established stability.

Table Transformations ϵKTELO supports table transformations SE-
LECT, WHERE, SPLITBYPARTITION , and GROUPBY. Their stabili-
ties are 1, 1, 1 and 2, respectively. The definitions of the operators are
nearly identical to those described in PINQ [24] and are not repeated
here. Since ϵKTELO currently handles only programs that use linear
queries on single tables, the JOIN operator is not yet supported.

Vectorization All of the plans in ϵKTELO start with table transforma-
tions and typically transform the resulting table into a vector using
T-VECTORIZE (and all later operations happen on vectors).

The T-VECTORIZE operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many cells
as the number of elements in the table’s domain (recall the discussion
of domain Sec. 3). Each cell in x represents the number of records
in the table that correspond to the domain element encoded by the
cell. T-VECTORIZE is a 1-stable transformation.

The vectorize operation can significantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. This is the reason we allow for
table transformations to reduce the domain size before running T-
VECTORIZE. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, the data can be further transformed as described next.

Vector Transformations ϵKTELO supports transformations on vector
data sources. Each vector transformation takes as input a vector x and
a matrix M and produces a vector x′ =Mx. The linearity of vector
transformations is an important feature that is leveraged by down-
stream inference operators. The stability of vector transformations
is equal to the largest L1 column norm of M.

The V-REDUCEBYPARTITION operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data vector
x by eliminating cells from x or grouping together cells in x. Such
transformations are useful to (a) filter out parts of the domain that
are uninteresting for the analyst, (b) reduce the size of the x vector so
that algorithm performance can be improved, and (c) reduce the num-
ber of cells in x so that the amount of noise added by measurement
operators is reduced.

Transform Measure ID Cite Algorithm name Plan signature

TV T-Vectorize LM Vector Laplace 1 [8] Identity SI LM

TP V-SplitByPartition 2 [39] Privelet SP LM LS

TR V-ReduceByPartition Measurement selection 3 [17] Hierarchical (H2) SH2 LM LS

SI Identity 4 [34] Hierarchical Opt (HB) SHB LM LS

Inference ST Total 5 [22] Greedy-H SG LM LS

LS Least squares SP Privelet 6 - Uniform ST LM LS

NLS Nneg Least squares SH2 H2 7 [15] MWEM I:( SW LM MW )

MW Mult Weights SHB HB 8 [42] AHP PA TR SI LM LS

HR Thresholding SG Greedy-H 9 [22] DAWA PD TR SG LM LS

SU UniformGrid 10 [6] Quadtree SQ LM LS

Partition selection SA AdaptiveGrids 11 [33] UniformGrid SU LM LS

PA AHPcluster SQ Quadtree 12 [33] AdaptiveGrid SU LM LS TP[ SA LM] LS

PG Grid SW Worst-approx 13 NEW DAWA-Striped PS TP[ PD TR SG LM] LS

PD Dawa SPB PrivBayes select 14 NEW HB-Striped PS TP[ SHB LM] LS

PW Workload-based 15 NEW PrivBayesLS SPB LM LS

PS Stripe(attr) 16 NEW MWEM variant b I:( SW SH2 LM MW )

PM Marginal(attr) 17 NEW MWEM variant c I:( SW LM NLS )

18 NEW MWEM variant d I:( SW SH2 LM NLS )

Figure 2: The high-level signatures of plans implemented in
ϵKTELO (referenced in the paper by ID). All plans begin with a
vectorize transformation, omitted for readability. We also omit
parameters of operators, including ϵ budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that sub-
plan is executed on each partition produced by TP.

V-REDUCEBYPARTITION takes as input a partition defining a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p × n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P(︀i, j⌋︀ = 1 if cell j
in x is mapped to group i, and 0 otherwise.

The V-SPLITBYPARTITION operator is the vector analogue of
the tabular SPLITBYPARTITION operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), one for
each group in the partition, each representing a disjoint subset of
the original domain. This operator allows us to create different
subplans for disjoint parts of the domain. This is a 1-stable vector
transform. (Note: V-SPLITBYPARTITION can be expressed as k
linear transforms with matrices that select the appropriate elements
of the domain for each partition.)

4.2.2 Query Operators. Query operators are responsible for
computing noisy answers to queries on a particular data source. Since
answers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and ϵ as input.

For tables, the NOISYCOUNT operator takes as input a table D and
ϵ and returns ⋃︀D⋃︀+η, where η is drawn from the Laplace distribution
with scale 1⇑ϵ . For vectors, the VECTOR LAPLACE operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
VECTOR LAPLACE returns Mx + σ(M)

ϵ b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
σ(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy ϵ-differential
privacy with respect their data source input [23, 24]. Note, however,
in the case when the source is derived from other data sources
through transformation operators, the total privacy loss could be
higher. The cumulative privacy loss depends on the stability of the
transformations and is tracked by the protected kernel.
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4.2.3 Query Selection Operators. Since each query opera-
tion consumes privacy budget, the plan author must be judicious
about what queries are being asked. Recent privacy work has shown
that if the plan author’s goal is to answer a workload of queries, sim-
ply asking these queries directly can lead to sub-optimal accuracy
(e.g., when workload queries ask about overlapping regions of the
domain). Instead, higher accuracy can be achieved by designing a
query strategy, a collection of queries whose answers can be used to
reconstruct answers to the workload. This approach was formalized
by the matrix mechanism [23], and has been a key idea in many
state-of-the-art algorithms [6, 16, 20, 22, 29, 32].

A query selection operator is distinguished by its output type: all
such operators output a set of linear counting queries M represented
in matrix form (i.e., the matrix input to the VECTOR LAPLACE

operator described above). As Fig. 1 indicates, ϵKTELO supports
a large number of query selection operators, most of which are
extracted from algorithms proposed in the literature.

While these operators agree in terms of their output, they vary
considerably in terms of their inputs: some employ fixed strategies
that depend only on the size of x (e.g. IDENTITY and PREFIX in
Algorithm 1), some adapt to the workload (e.g., GREEDY-H), some
depend on previous measurements (e.g., ADAPTIVEGRIDS), etc.

Most query selection operators only rely on non-private infor-
mation (domain size, workload) and therefore are of Public type.
But there are a few that consult the private data, and thus have the
Private→Public type. For example, WORST-APPROX is an operator
that picks the query from a workload that is the worst approximated
by a current estimate of the data. Such an operator is used by itera-
tive algorithms like MWEM [14]. Another is PRIVBAYES SELECT,
an operator that privately constructs a Bayes net over the attributes
of the data source, and then returns a matrix corresponding to the
sufficient statistics for fitting the parameters of Bayes net. This was
used as a subroutine in PrivBayes [35].

4.2.4 Partition Selection Operators. Partition selection op-
erators compute a matrix P which can serve as the input to the
V-REDUCEBYPARTITION and V-SPLITBYPARTITION operators
described earlier. Of course the matrix P must be appropriately struc-
tured to be a valid partition of x.

This is an important kind of operator since much of recent inno-
vation into state-of-the-art algorithms for answering histograms and
range queries has used partitions to either (1) reduce the domain size
of the data vector by grouping together cells with similar counts, or
(2) split the data vector into smaller vectors and leverage the parallel
composition of differential privacy to process each subset of the
domain independently. ϵKTELO includes partition selection oper-
ators AHPPARTITION and DAWA which are subroutines from the
AHP [37] and DAWA [20] algorithms, respectively. Both of these op-
erators are data adaptive, and hence are Private→Public. This paper
also introduces a new partition selection operators, WORKLOAD-
BASED and STRIPE, described in Secs. 6.2 and 7.1 respectively.

4.2.5 Inference Operators. An inference operator derives new
estimates to queries based on the history of transformations and
query answers. Inference operators never use the input data directly
and hence are Public. Plans typically terminate with a call to an
inference operator to estimate a final set of query answers reflecting

all available information computed during execution of the plan.
Some plans may also perform inference as the plan executes.

Ideally, an inference method should: (i) properly account for mea-
surements with unequal noise; (ii) support inference over incomplete
measurements (in which derived answers are not completely de-
termined by available measurements); (iii) should incorporate all
available information (including a prior or constraint on the input
dataset); and lastly, (iv) inference should efficiently scale to large
domains. Many versions of inference have been considered in the
literature [2, 14, 16, 19, 21, 26, 29, 31, 37] but none meet all of
the objectives above. ϵKTELO currently supports multiple inference
methods, in part to support algorithms from past work and in part to
offer necessary tradeoffs among the properties above.

All the inference operators supported in ϵKTELO take as input a
set of queries, represented as a matrix M, and noisy answers to these
queries, denoted y. The output inference is a data vector x̂ that best
fits the noisy answers—i.e., an x̂ such that Mx̂ ≈ y. The estimated
x̂ can then be used to derive an estimate of any linear query q by
computing q ⋅ x̂. The inference operator may optionally take as input
a set of weights, one per query (row) in M to account for queries
with different noise scales.

ϵKTELO supports two variants of least squares inference, the most
widely used form of inference in the current literature [16, 21, 29].
ϵKTELO extends these methods and formulates them as general
operators, allowing us to replicate past algorithms, and consider new
forms of inference that support constraints. The first variant solves a
classical least squares problem:

Definition 4.1 (Ordinary least squares (LS)). Given scaled query
matrix M and answer y, the least squares estimate of x is:

x̂ = arg min
x∈Rn

∏︁Mx − y∏︁2 (1)

Our second variant imposes a non-negativity constraint on x̂:

Definition 4.2 (Non-negative least squares (NNLS)). Given scaled
query matrix M and answer vector y, the non-negative least squares
estimate of x is: x̂ = arg min

x⪰0
∏︁Mx − y∏︁2 (2)

These inference methods can also support some forms of prior
information, particularly if it can be represented as a linear query.
For example, if the total number of records in the input table is
publicly known, or other special queries have publicly available
answers, they can be added as “noisy” answers with negligible noise
scale and they will naturally incorporated into the inference process
and the derivation of new query estimates.

We also support an inference method based on a multiplicative
weights update rule, which is used in the MWEM [14] algorithm.
This inference algorithm is closely related to the principle of maxi-
mum entropy, and is especially effective when one has measured an
incomplete set of queries.

Defining inference under vector transformations Recall that in the
discussion above we describe inference as operating on a single
vector x with a corresponding query matrix M. However, plans can
include an arbitrary combination of vector transformations, followed
by query operators, resulting in a collection of query answers defined
over various vector representations of the data. ϵKTELO handles this
by taking advantage of the structure of vector transformations and
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query operators, both of which perform linear transformations, there-
fore making it possible to map measured queries back on to the
original domain (i.e., a vector produced by the VECTORIZE opera-
tion) and perform inference there. This allows for the most complete
form of inference but other alternatives are conceivable, for example
by performing inference locally on transformed vectors and com-
bining inferred queries. This might have efficiency advantages, but
would likely sacrifice accuracy, and is left for future investigation.

REMARK 1. The operators described above can capture a large
class of algorithms from the literature which were designed for an-
swering sets of linear queries over modest domain sizes. Yet many
features of ϵktelo are general and, in conjunction with new oper-
ators, ϵktelo could support a wider array of tasks, including non-
linear queries or larger domain sizes. In Sec. 10, we briefly suggest
future directions for expanding the tasks implemented in ϵktelo.

4.3 Privacy Guarantee
In this section, we state the privacy guarantee offered by ϵKTELO.
Informally, ϵKTELO will ensure that if the system’s protected kernel
is initialized with a source database T and a privacy budget ϵ , then
any plan (chosen by the client) will satisfy ϵ-differential privacy
with respect to T . Note that if the client exhausts the privacy budget,
subsequent calls to Private→Public operators will return an excep-
tion, indicating that such operations are not permitted. Importantly,
the system is designed so that an exception itself does not leak sensi-
tive information – i.e., the decision to return an exception does not
depend on the private state.

A transcript is a sequence of operator calls and their responses.
Formally, let rk = ∐︀op1,a1,op2,a2, . . . ,opk ,ak ̃︀ denote a length k se-
quence where opi is an operator call and ai the response. We assume
that the value of opi is a deterministic function of a1, . . . ,ai−1; how-
ever, the claim can be extended to support randomized client code.
We use Rk = rk to denote the event that the first k operations results
in transcript rk . Let ℛk denote the set of all possible transcripts
of length k. Note that because we assume that all Private→Public
operators output values from an arbitrary, but finite set, the set of
transcripts is finite. Let P(Rk = rk ⋃︀ Init(T ,ϵtot )) denote the con-
ditional probability of event Rk = rk given that the system was
initialized with input T and a privacy budget of ϵtot .

THEOREM 4.3 (PRIVACY OF ϵKTELO PLANS). Let T ,T ′ be any
two instances such that ⋃︀T ⊕T ′⋃︀ = 1. For all k ∈ N+ and rk ∈ℛk ,

P(Rk = rk ⋃︀ Init(T ,ϵtot )) ≤ exp(ϵtot )×P(Rk = rk ⋃︀ Init(T ′,ϵtot )).

The proof of Theorem 4.3 appears in Appendix A.4. It extends
the proof in [9] to support the V-SPLITBYPARTITION operator.

While the system ensures differential privacy, it is conceivable
that private information could be leaked through side-channel attacks
(e.g., timing attacks). Privacy engineers who design operators are
responsible for protecting against such an attack; a careful analysis
of this issue is beyond the scope of this paper.

5 EXPRESSING KNOWN ALGORITHMS
To highlight the expressiveness of ϵKTELO, we re-implemented
state-of-the-art algorithms as ϵKTELO plans. We examined 12 differ-
entially private algorithms for answering low dimensional counting

queries that were deemed competitive2 in a recent benchmark study
[15]. Plans numbered 1 through 12 in Fig. 2 summarize the plan
signatures of these algorithm.

The process of re-implementing in ϵKTELO this seemingly diverse
set of algorithms consisted of breaking the algorithms down into
key subroutines and translating them into operators. The translation
strategy typically falls into one of three categories.

The first translation strategy was to identify specific implementa-
tions of fairly common differentially private operations and replace
them with a single unified general-purpose operator in ϵKTELO. For
instance, the Laplace mechanism (LM), which adds noise drawn
from the Laplace distribution, appears in every one of the 12 algo-
rithms. Noise addition can be implemented in a number of ways
(e.g., calling a function in the numpy.random package, taking the
difference of exponential random variables, etc.). In ϵKTELO, all
these plans call the same VECTOR LAPLACE operator with a single
unified sensitivity calculation.

Another less obvious example of this translation is for subrou-
tines that infer an estimate of x using noisy query answers. With the
exception of IDENTITY (plan 1) and MWEM (plan 7), each of the al-
gorithms uses instances of least squares inference, often customized
to the structure of the noisy query answers. For instance, PRIVELET

(plan 2) uses Haar wavelet reconstruction, hierarchical strategies
like HB and DAWA (plans 4, 9) use a tree-based implementation
of inference, and others like UNIFORM and AHP (plans 6, 8) use
uniform expansion. We replaced each of these custom inference
methods with a single general-purpose least squares inference opera-
tor. It would still be possible to implement a specialized inference
operator in ϵKTELO that exploited particular properties of a query
set, but we did not find this to be beneficial.

Our second translation strategy was to identify higher-level pat-
terns that reflect design idioms that exist across multiple algorithms
in literature. In these cases, we replace one or more subroutines
in the original code with a sequence of operators that capture this
idiom. For example, plans 2, 3, 4, 5, 6, 10, and 11 all consist of
a sequence of three operators: Query selection, Query (LM), and
Inference (LS), differing only in the method for Query selection. For
other algorithms, this idiom reappears as a subroutine, as in plans 8
(AHP) and 9 (DAWA).

Finally, we were left with subroutines of algorithms that repre-
sented key intellectual advances in the differential privacy literature.
These were ideas that made an algorithm distinctive and typically
led to its state-of-the-art performance. For instance, in the DAWA
algorithm (plan 9), the key innovation was a new partition method
used for reduction that works by finding a grouping of the bins in a
vector and required a novel proof of privacy. We encapsulate these
subroutines as new operators in our framework (in the case above,
we added partition selection operator, which we call DAWA and
denote as PD in plan 9).

Once the necessary operators are implemented, the plan definition
for an existing algorithm is typically a few lines of code responsible
for combining operators and managing parameters. We performed
extensive testing to confirm that reimplementations in ϵKTELO of
existing algorithms provide statistically equivalent outputs.

2This is the subset of algorithms that offered the best accuracy for at least one of the
input settings of the benchmark.
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Code reuse Once reformulated in ϵKTELO, nearly all algorithms use
the VECTOR LAPLACE operator and least squares inference. This
means that any improvements to either of these operators will be
inherited by all the plans. We show such an example in Sec. 6.1.

Reduced privacy verification effort Code reuse also reduces the
number of critical operators that must be carefully vetted. The
operators that require careful vetting are ones that consume the
privacy budget, which are the Private→Public operators in Fig. 1.
These are: VECTOR LAPLACE, the partition selection operators
for both DAWA [20] and AHP [37], a query selection operator
used by PrivBayes [35], and a query selection operator used by the
MWEM [14] algorithm that privately derives the worst-currently-
approximated workload query. In contrast, for the DPBench code
base, the entire code has to be vetted to audit the use and man-
agement of the privacy budget. The end result is that verifying the
privacy of an algorithm requires checking fewer lines of code. For
example, to verify the QuadTree algorithm in the DPBench codebase
requires checking 163 lines of code. However, with ϵKTELO, this
only requires vetting the 30-line VECTOR LAPLACE operator. (Fur-
thermore, by vetting just this one operator, we have effectively vetted
10 of the 18 algorithms in Fig. 2, since the only privacy sensitive
operator these algorithms use is VECTOR LAPLACE.). When we
consider all of the DPBench algorithms in Fig. 2, algorithms 1-12,
verifying the DPBench implementation requires checking a total of
1837 lines of code while vetting all the privacy-critical operators in
ϵKTELO requires checking 517 lines of code.

Transparency As noted above, ϵKTELO plans make explicit the typ-
ical patterns that result in accurate differentially private algorithms.
Moreover, ϵKTELO plans help clarify the distinctive ingredients of
state-of-the-art algorithms. For instance, DAWA and AHP (plans 9
and 8 respectively in Fig. 2) have the same structure but differ only
in two operators: partition selection and query selection.

6 ALGORITHMIC INNOVATIONS
In this section, we describe three algorithmic innovations. Each in-
novation is an instance of a type of innovation that is facilitated by
the design of ϵKTELO. The first is an example of operator inception,
which occurs when a new operator is proposed for an operator class;
we introduce a general and highly scalable inference operator. The
second is both a new operator and an example of plan restructuring,
in which a plan is systematically restructured by applying a general
design principle or heuristic rule. The operator is a partition selection
operator, used for reduction, that minimizes the domain based on
the workload in a way that we prove can never hurt error (but may
improve it and reduce runtime). It can therefore be applied in any
plan, potentially offering automatic improvements. The third innova-
tion is an instance of recombination, in which the overall structure
of an algorithm’s plan stays the same, but some operator instances
are substituted for alternatives within their respective classes. We
use recombination to improve the MWEM algorithm [14].

6.1 Operator inception: new inference operators
The inference methods described in Sec. 4.2.5 require solving large
least squares problems, as stated in Eq. (1). Recall that the input to
inference is the set of queries in matrix form, denoted by M, and the
list of noisy answers y. M is am × n matrix where n is the domain

size of the input;m may also be large, possibly larger than n, since
it is not uncommon for M to contain a query for each cell of x, in
addition to other queries that aggregate elements of x.

The solution to Eq. (1) is given by the solution to the normal
equations MTMx̂ = MT y. Assuming MTM is invertible, then the
solution is unique and can be expressed as x̂ = (MTM)−1MT y.

In practice, explicit matrix inversion is usually avoided, in favor of
suitable factorizations of M (e.g., QR or SVD). The time complexity
of such direct methods is still generally cubic in the domain size
whenm = O(n). In practice we have found that the runtime of direct
methods is unacceptable when n is greater than about 5000.

An alternative approach to solving Eq. (1) is to use an itera-
tive gradient-based method, which solves the normal equations by
repeatedly computing matrix-vector products Mv and MT v until con-
vergence. The time complexity of these methods is O(kn2) where
k is the number of iterations. In experiments we use a well-known
iterative method, LSMR [11]. Empirically, we observe LMSR to
converge in far fewer than n iterations when M is well-conditioned,
which is the case as long as the queries are not taken with vastly
different noise scales, and thus we expect k << n.

The benefit of iterative methods is significant with standard
(dense) representations of M, but is even greater if the sparsity of M
(i.e. few non-zero elements) is exploited. Letting nnz(M) denote the
number of non-zero entries in M, the dot products Mv and MT v for
the gradient computation can be evaluated in time O(nnz(M)).

In ϵKTELO, query matrices tend to be sparse because the queries
are typically being estimated using a noise addition mechanism (e.g.
the Laplace mechanism). Noise is calibrated to the sensitivity of
M, which is measured as a column norm of the matrix. For exam-
ple, well-known query sets based on wavelets [32] or binary trees
[16] have nnz(M) = O(n log2 n). And an optimized hierarchical ap-
proach [29] found that higher branching factors lead to lower error,
in which case nnz(M) < O(n log16 n).

As a consequence, sparse matrix representations are unusually ef-
fective for accelerating inference, and assuming nnz(M) = O(n logn),
the overall time complexity is ∼ O(kn logn). In Sec. 8 we show that
using iterative least squares on sparse matrices we can scale infer-
ence to domains consisting of millions of cells while staying within
modest runtime bounds.

REMARK 2 (IMPACT ON ϵKTELO). Algorithms in prior work [16,
28, 29, 32] have used least squares inference on large domains by
restricting the selection of queries, namely to those representing a
set of hierarchical queries. This allows for inference in time linear
in the domain size, avoiding the matrix representation of the queries.
The approach above provides a much more general solution to the
inference problem. This is critical to the success of ϵktelo: it al-
lows query selection operators to be freely designed and combined
without restrictions on the structure of queries.

6.2 Plan restructuring: workload-based reduction
Next we describe a method for reducing the representation of the
x vector to precisely the elements required to correctly answer a
given set of workload queries. This is a new partition selection oper-
ator, called workload-based partition selection, which can be used
as input to a V-REDUCEBYPARTITION transformation of the input
data, making all subsequent operations more efficient. In many cases,
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the goal of a differentially private algorithm (and the corresponding
ϵKTELO plan) is to answer a workload of queries M. In such cases,
we prove (Theorem A.3) that, under reasonable assumptions, work-
load based domain reduction can never hurt accuracy. We empirically
show (Sec. 8.2) that it may offer significant improvement in both
runtime and error. Thus adding this operator to any plan that answers
a workload is a “pure win”. This is an example of how ϵKTELO can
magnify the impact of innovations to operators, especially when it is
possible to prove properties about how they will impact plans.

For a workload W of linear queries, described on input vector x,
it is often possible to define a reduction of x, to a smaller x′, and
appropriately transform the workload to W′, so that all workload
query answers are preserved, i.e. Wx = W′x′. Intuitively, such a
reduction is possible when a set of elements of x is not distinguished
by the workload: each linear query in the workload either ignores
it, or treats it in precisely the same way. In that case, that portion of
the domain need not be represented by multiple cells, but instead
by a single cell in a reduced data vector. It is in this sense that the
reduction is lossless with respect to the workload. Following this
intuition, the domain reduction can be computed from the matrix
representation W of the workload by finding groups of identical
columns: elements of these groups will be merged in W to get W′

while the corresponding cells in x are summed.

Example 6.1. Consider a table with schema Census(age, sex,
salary). If the workload consists of queries Q1(salary ≤ 100K , sex =
M) and Q2(salary > 100K , sex = F) the workload only requires
a data vector consisting of 2 cells. If the workload consists of all
1-way marginals then no workload-based data reduction is possible.

Note that calculating this partition only requires knowledge of the
workload and is therefore done in the unprotected client space (and
does not consume the privacy budget). The partition is then input to
a V-REDUCEBYPARTITION transformation operator carried out by
the protected kernel and its stability is 1. Due to space constraints
we refer the reader to the Appendix A.1 for a technical description
of this operator (Definition A.1), a proof that this operator does
not lose any information for answering queries (Proposition A.2),
a clever algorithm that uses randomized hashing for computing the
transformation efficiently (Algorithm 2), and a proof that workload
based domain reduction can be used in any workload-answering plan
without a loss in accuracy (Theorem A.3).

6.3 Recombination: improving MWEM
Using ϵKTELO, we design new variants of the well-known Multi-
plicative Weights Exponential Mechanism (MWEM) [14] algorithm.
MWEM repeatedly derives the worst-approximated workload query
with respect to its current estimate of the data, then measures the
selected query, and uses the multiplicative weights update rule to
refine its estimate, often along with any past measurements taken.
This repeats a number of times, determined by an input parameter.

When viewed as a plan in ϵKTELO, a deficiency of MWEM be-
comes apparent. Its query selection operator selects a single query
to measure whereas most query selection operators select a set of
queries such that the queries in the set measure disjoint partitions
of the data. By the parallel composition property of differential pri-
vacy, measuring the entire set has the same privacy cost as asking
any single query from the set. This means that MWEM could be

measuring more than a single query per round (with no additional
consumption of the privacy budget). To exploit this opportunity, we
designed an augmented query selection operator that adds to the
worst-approximated query by attempting to build a binary hierarchi-
cal set of queries over the rounds of the algorithm. In round one, it
adds any unit length queries that do not intersect with the selected
query. In round two, it adds length two queries, and so on.

Adding more measurements to MWEM has an undesirable side
effect on runtime, however. Because it measures a much larger
number of queries across rounds of the algorithm, and because the
runtime of multiplicative weights inference scales with the number
of measured queries, the inference step can be considerably slower.
Thus, we also use recombination to replace it with a version of least-
squares with a non-negativity constraint (NNLS) and incorporate
a high-confidence estimate of the total which is assumed by the
MWEM algorithm.

In total, we consider three MWEM variants: an alternative query
selection operator (PLAN #16), an alternative inference operator
(PLAN #17), and the addition of both alternative operators (PLAN

#18). These are shown in Fig. 2 and evaluated in Sec. 8.

7 CASE STUDIES: ϵKTELO IN ACTION
In this section we consider two practical use-cases. While existing
algorithms can be applied to these cases, particular applications often
benefit from custom algorithm design. We show below how a plan
author can construct novel plans that outperform existing solutions,
solely using operators implemented in ϵKTELO.

7.1 Census case-study
The U.S. Census Bureau collects data about U.S. citizens and re-
leases a wide variety of tabulations describing the demographic
properties of individuals. We consider a subset of the (publicly re-
leased) March 2000 Current Population Survey. The data report on
49,436 heads-of-household describing their income, age (in years),
race, marital status, and gender. We divide Income into 5000 uniform
ranges from (0, 750000), age in 5 uniform ranges from (0, 100), and
there are 7, 4 and 2 possible values for status, race and gender.

We author differentially private plans for answering a workload
of queries similar to Census tabulations. This is challenging because
the data domain is large and involves multiple dimensions. The
workloads we consider are: (a) the Identity workload (or counts on
the full domain of 1.4M cells), (b) a workload of all 2-way marginals
(age × gender, race × status, and so on), and (c) a workload suggested
by U.S. Census Bureau staff: Prefix(Income) which consists of all
counting queries of the form (income ∈ (0, ihiдh ), age=a, marital=m,
race=r , gender=д) where (0, ihiдh) is an income range, and a,m, r ,д
may be values from their resp. domains, or <any>.

There are few existing algorithms suitable for this task. We were
unable to run the DAWA [20] algorithm directly on such a large do-
main, and, in addition, it was designed for 1d- and 2d- inputs. One of
the few algorithms designed to scale to high dimensions is PrivBayes
[35]. While not a workload-adaptive algorithm, PrivBayes generates
synthetic data which can support the census workloads above. We
use PrivBayes as a baseline and we use ϵKTELO to construct three
new plans composed of operators in our library. The proposed plans
are: HB-STRIPED (PLAN #14), DAWA-STRIPED (PLAN #13), and



SIGMOD’18, June 10–15, 2018, Houston, TX, USA D. Zhang et al.

PRIVBAYESLS (PLAN #15). The first two “striped” plans showcase
the ability to adapt lower dimensional techniques to a higher dimen-
sional problem avoiding scalability issues. The third plan considers
improving on PrivBayes by changing its inference step.

Both HB-STRIPED and DAWA-STRIPED use the same plan struc-
ture: first they partition the full domain, then they execute subplans
to select measurements for each partition, and lastly, given the mea-
surement answers, they perform inference on the full domain and
answer the workload queries. The partitioning of the initial step is
done as follows: given a high dimensional dataset with N attributes
and an attribute A of that domain, our partitions are parallel “stripes”
of that domain for each fixed value of the rest of the N − 1 attributes,
so that the measurements are essentially the one-dimensional his-
tograms resulting from each stripe. In the case of HB-STRIPED, the
subplan executed on each partition is the HB algorithm [29], which
builds an optimized hierarchical set of queries, while in the case of
the DAWA-STRIPED the subplan is DAWA algorithm [20]. Note that
while the data-independent nature of the HB subplan means that all
the measurements from each stripe are the same, that is not the case
with DAWA, which potentially selects different measurement queries
for each stripe, depending on the local vector it sees. For our exper-
iments, the attribute chosen was Income, and for DAWA-STRIPED

we set the DAWA parameter ρ to 0.25. Our final plan is a variant of
PRIVBAYES in which we replace the original inference method with
least squares, retaining the original PRIVBAYES query selection and
query steps. We call this algorithm PRIVBAYESLS. HB-STRIPED

and PRIVBAYESLS are fully described in Appendix A.3.
We evaluate the error incurred by these plans in Sec. 8.1.1, and

show that the best of our plans outperforms the state-of-the-art
PRIVBAYES by at least 10× in terms of error.

7.2 Naive Bayes case study
We also demonstrate how ϵKTELO can be used for constructing a
Naive Bayes classifier. To learn a NaiveBayes classifier that predicts
a binary label attribute Y using predictor variables (X1, . . . ,Xk)
requires computing 2k+1 1d histograms: a histogram onY , histogram
on eachXi conditioned on each value onY . We design ϵKTELO plans
to compute this workload of 2k+1 histograms, and use them to fit
the classifier under the Multinomial statistical model [18].

We develop two new plans and compare them to two plans that
correspond to algorithms considered in prior work. WORKLOAD

represents the 2k+1 histograms as a matrix, and uses VECTOR

LAPLACE to estimate the histogram counts. This corresponds to
a technique proposed in the literature [5]. The other baseline is
IDENTITY (Plan 1): it estimates all point queries in the contingency
table defined by the attributes, adds noise to it, and marginalizes the
noisy contingency table to compute the histograms.

The first new plan is WORKLOADLS which runs WORKLOAD

followed by a least squares inference operator, which for this spe-
cific workload would make all histograms have consistent totals. Our
second plan is called SELECTLS (fully described in Appendix A.3)
and selects a different algorithm (subplan) for estimating each of
the histograms. SELECTLS first runs 2k+1 domain reductions to
compute 2k+1 vectors, one for each histogram. Then, for each vec-
tor, SELECTLS uses a conditional statement to select between two
subplans: if the domain size of the vector is less than 80, IDENTITY

Table 1: Results on Census data; domain size 1,400,000; scale
of error is indicated under each workload.

Workload

Algorithm
Identity
(1e−9)

2-way Marg.
(1e−7)

Prefix (Income)
(1e−7)

IDENTITY 24.18 12.04 18.97
PRIVBAYES 92.61 161.90 381.97
PRIVBAYESLS 6.17 20.13 58.18
HB-STRIPED 70.31 21.91 4.13
DAWA-STRIPED 3.43 1.96 2.50

is chosen, else a subplan that runs DAWA partition selection fol-
lowed by IDENTITY is chosen. We combine the answers from all
subplans and use least squares inference jointly on all measurements.
The inputs to the inference operator are the noisy answers and the
workload of effective queries on the full domain. In Sec. 8.1.2 we
show that our new plans not only outperforms existing plans, but also
approach the accuracy of the non-private classifier in some cases.

8 EXPERIMENTAL EVALUATION
Our prototype implementation of ϵKTELO, including all algorithms
and variants used below, consists of 3700 lines of Python code: 22% is
the framework itself, while 62% consists of operator implementations.
The remaining 16% are definitions of plans used in our experiments.

We evaluate the ϵKTELO framework in two ways. First, we report
the results of using ϵKTELO in the case studies of Sec. 7. Then
we do a focused evaluation of the impact of the three algorithmic
innovations proposed in Section 6.

8.1 Case studies
8.1.1 Census data analysis. We consider the task of com-

puting workloads inspired by Census tabulations (Sec. 7.1) and
compare our three new plans PRIVBAYESLS, HB-STRIPED, and
DAWA-STRIPED with the baseline algorithms IDENTITY (plan 1
in Fig. 2) and PRIVBAYES, our ϵKTELO reimplementation of a
state-of-the-art algorithm for high dimensional data [35].

Table 1 presents the results for each of the workloads consid-
ered. We use scaled, per-query L2 error as our accuracy measure.
First, we find that PRIVBAYES performs worse than IDENTITY on
all workloads. Interestingly, it is highly improved by our new plan
PRIVBAYESLS that replaces its inference step with least squares.
PRIVBAYES may be more suitable to input data with higher correla-
tions between the attributes. Second, our striped plans HB-STRIPED

and DAWA-STRIPED offer significant improvements in error. DAWA-
STRIPED is the best performer: the data-dependent nature of DAWA
exploits uniform regions in the partitioned data vectors. This shows
the benefit from ϵKTELO in allowing algorithm idioms designed for
lower-dimensional data to be adapted to high dimensional problems.

8.1.2 Naive Bayes classification. We evaluate the perfor-
mance of the Naive Bayes classifier on Credit Default [33], a credit
card clients dataset which we use to predict whether a client will de-
fault on their payment or not. The data consists of 30k tuples and 24
attributes from which one is the target binary variable “Default” and
the rest are the predictive variables. We used the predictive variables
X3 −X6 for a total combined domain size of 17, 248.
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Figure 3: New ϵKTELO plans WORKLOADLS and SELECTLS
result in NaiveBayes classifiers with lower error than plans that
correspond to algorithms from prior work, and approach the
accuracy of a non-private classifier for various ϵ values.

In our experiments we measure the average area under the curve
(AUC) of the receiver operating characteristic curve across a 10-
fold cross validation test. The AUC measures the probability that
a randomly chosen positive instance will be ranked higher than a
randomly chosen negative instance. We repeat this process 10 times
(for a total of 100 unique testing/training splits) to account for the
randomness of the differentially private algorithms and report the
{25, 50, 75}-percentiles of the average AUC. As a baseline we show
the majority classifier, which always predicts the majority class of
the training data and also show the unperturbed classifier as an upper
bound for the utility of our algorithms.

In Fig. 3 we report our findings: each group of bars corresponds
to a different ϵ value and each bar shows the median value of the
AUC for an algorithm. For each DP algorithm we also plot the error
bars at the 25 and 75 percentiles. The dotted line is plotted at 0.5067
and shows the AUC of the majority classifier. The continuous red
line is the performance of the non-private classifier (Unperturbed).
For larger ϵ values we see that our plans significantly outperform
the baseline and reach AUC levels close to the unperturbed. As
ϵ decreases, the quality of the private classifiers degrades and for
ϵ = 10−3 the noise added to the empirical distributions drowns the
signal and the AUC of the private classifiers reach 0.5, which is
the performance of a random classifier. Our plan WORKLOADLS is
essentially the CORMODE algorithm with an extra inference operator,
this shows that the addition of an extra operator to a previous solution
significantly increases its performance.

8.2 Evaluation of algorithmic innovations
Our final experiments demonstrate the improvements resulting from
each of the innovations proposed in Section 6.

8.2.1 Scalability of inference. Inference is one of the most
computation-intensive operators in ϵKTELO especially for large
domains resulting from multidimensional data. Fig. 4 (on a log-log
scale) shows the computation time for running our main inference op-
erators (LS and NNLS) as a function of data vector size. Recall that
the methods described in Sec. 6.1 provide efficiency improvements
by using iterative solution strategies (iterative instead of direct in the
figure) and exploiting sparsity in the measurement matrix (sparse
as opposed to dense in the figure). For this experiment we fix the
measured query set to consist of binary hierarchical measurements
[16]. Fig. 4 shows that these methods allow inference to scale to data

Table 2: Runtime (sec) and error improvements resulting from
workload-based domain reduction. (W=RandomRange, small
ranges. Original domain size: AHP (128,128), DAWA 4096,
Identity (256,256), HB 4096)

Algorithm
Original
Domain

Reduced
Domain

Factor
Improved

Error/Runtime Error/Runtime Error/Runtime
AHP 1.68e−5 777.10 1.30e−5 145.00 1.29 5.36
DAWA 1.06e−5 0.23 1.07e−5 0.25 0.99 0.92
IDENTITY 4.74e−5 0.66 1.64e−5 0.90 2.89 0.73
HB 3.20e−5 0.05 2.38e−5 0.08 1.34 0.62

vectors consisting of millions of counts on a single machine in less
than a minute. Imposing non-negativity constraints does have a cost
in terms of scalability, but is still feasible for large domains.
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Figure 4: For a given computation time, the proposed iterative
and sparse inference methods permit scaling to data vector sizes
as much as 100× larger than previous techniques.

8.2.2 Workload-driven data reduction. Next we evaluate
the impact of workload-driven data reduction, as described in Sec-
tion 6.2. For selected algorithms, Table 2 shows that performing
workload-driven data reduction improves error and runtime, almost
universally. The biggest improvement in error (a factor of 2.89) is
witnessed for the IDENTITY algorithm. Without workload-driven
reduction, groups of elements of the domain are estimated indepen-
dently even though the workload only uses the total of the group.
After reduction, the sum of the group of elements is estimated, and
will have lower variance than the sum of independent measurements.

The biggest improvement in runtime occurs for the AHP algo-
rithm. This algorithm has an expensive clustering step, performed on
each element of the data vector. Workload-driven reduction reduces
the cost of this step, since it is performed on a smaller data vector. It
also tends to improve error because higher-quality clusters are found
on the reduced data representation.

8.2.3 MWEM: improved query selection & inference. Lastly
we evaluate the three new algorithms described in Sec. 6.3 which
were inspired by MWEM [14] and created using operator inception
and recombination. These algorithms are data-dependent algorithms
so we evaluate them over a diverse collection of 10 datasets taken
from DPBench [15]. The results are shown in Table 3. The perfor-
mance of the first variant, line (b), shows that its alternative query
selection operator can significantly improve error: by a factor of 2.8
on average (over various input datasets) and by as much as a factor
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Table 3: For three new algorithms, (b), (c), and (d), the multi-
plicative factors by which error is improved, presented as (min,
mean, max) over datasets. For runtime, the mean is shown,
normalized to the runtime of standard MWEM. (1D, n=4096,
W=RandomRange(1000), ϵ = 0.1)

MWEM Variants ERROR IMPROVEMENT RUNTIME
Measure Selection Inference min mean max mean

(a) worst-approx MW 1 1 1 1
(b) worst-approx + H2 MW 1.03 2.80 7.93 354.9
(c) worst-approx NNLS, known total 0.78 1.08 1.54 1.0
(d) worst-approx + H2 NNLS, known total 0.89 2.64 8.13 9.0

of 7.9. (Error and runtime measures are normalized to the values for
the original MWEM; min/mean/max error values represent varia-
tion across datasets.) Unfortunately, this operator substitution has
a considerable impact on performance: it slows down by a factor
of more than 300. But combining augmented query selection with
NNLS inference, line (d), improves performance significantly: it
is still slower than the original MWEM algorithm, but by only a
factor of 9. Using the original MWEM query selection with NNLS
inference, line (c), has largely equivalent error and runtime to the
original MWEM. Thus, NNLS inference for this class of algorithms
becomes especially useful when the number of measured queries
grows, which can significantly improve this class of algorithms.

Summary of Findings The case studies on Census data and Naive
Bayes classification show that ϵKTELO can be used to design novel
algorithms from existing building blocks, offering state-of-the-art
error rates. The evaluation of the algorithmic innovations described
in Sec. 6 show that the new inference operators scales to 100x
larger data vectors, and the workload-driven data reduction improves
accuracy and runtime, almost universally, so that it can be added
to all workload-based plans with little cost and significant potential
for gains. Finally, the evaluation shows how recombination can lead
to improvements in existing algorithms with little effort from the
programmer: the MWEM algorithm can be improved significantly
with better query selection and inference operators.

9 RELATED WORK
A number of languages and programming frameworks have been
proposed to make it easier for users to write private programs [9,
24, 27, 30]. The Privacy Integrated Queries (PINQ) platform began
this line of work and is an important foundation for ϵKTELO. We
use the fundamentals of PINQ to ensure that plans implemented in
ϵKTELO are differentially private. In particular, we adapt and extend
a formal model of a subset of PINQ features, called Featherweight
PINQ [9], to show that plans written using ϵKTELO operators satisfy
differential privacy. Our extension adds support for the partition
operator, a valuable operator for designing complex plans.

Additionally, there is a growing literature on formal verification
tools that prove that an algorithm satisfies differential privacy [4, 12,
34]. For instance, LightDP [34] is a simple imperative language in
which differentially private programs can be written. LightDP allows
for verification of sophisticated differentially private algorithms
with little manual effort. LightDP’s goal is orthogonal to that of
ϵKTELO: it simplifies proofs of privacy, while ϵKTELO’s goal is
to simplify the design of algorithms that achieve high accuracy.

Nevertheless, an interesting future direction would be to implement
ϵKTELO operators in LightDP to simplify both problems of verifying
privacy and achieving high utility.

Concurrently with our work, Kellaris et al. [17] observe that
algorithms for single-dimensional histogram tasks share subroutines
that perform common functions. The authors compare a number of
existing algorithms along with new variants formed by combining
subroutines, empirically evaluating tradeoffs between accuracy and
efficiency. They do not include a well-developed framework for
authoring new algorithms and do not extend beyond 1D tasks.

The use of inference in differentially private algorithm design is
not new [3, 16, 31], and is used in various guises throughout recent
work [2, 6, 19, 20, 23, 26, 32, 37]. Proserpio et al. [26] propose a
general-purpose inference engine based on MCMC that leverages
properties of its operators to offset the otherwise high time/space
costs of this form of inference. Our work is complementary in that
we focus on a different kind of inference (based on least squares)
in part because it is used, often implicitly, in many published tech-
niques. A deeper investigation of alternative inference strategies is a
compelling research direction.

The matrix mechanism [23] formulates an optimization problem
that corresponds to query selection in ϵKTELO. The mechanism then
estimates the selected queries and applies least squares inference.
This can be seen as a kind of plan optimization, but in a limited plan
space which admits only data-independent plans.

Recent work [18] examines the problem of algorithm selection—
selecting the best algorithm for a given private dataset and task—and
proposes a meta-algorithm, Pythia, capable of choosing among a set
of “black box” algorithms. Pythia could be adapted to automatically
select operators in ϵKTELO and Pythia itself could be implemented
as an ϵKTELO plan.

10 CONCLUSIONS
We have described the design and implementation of ϵKTELO: an
extensible programming framework and system for defining and
executing differentially private algorithms. Many state-of-the-art
differentially private algorithms can be specified as plans consisting
of sequences of operators, increasing code reuse and facilitating
more transparent algorithm comparisons. Algorithms implemented
in ϵKTELO are often faster and return more accurate answers. Using
ϵKTELO, we designed new algorithms that outperform the state of
the art in accuracy on some linear query answering tasks.

ϵKTELO is extensible and, through the addition of a few new
operators, we hope to substantially expand the classes of tasks that
can be supported. For example, adding non-linear transformations
could allow non-linear aggregation queries to be expressed linearly
over transformed data. As a result, we could reuse many of the
existing operators for linear estimation in order to answer non-linear
queries. In addition, we believe even greater scalability could be
achieved by the addition of new inference operators that do not
require full vectorization of the input data.
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A APPENDIX
A.1 Workload Based Domain Reduction
The new workload-based partition selection operator can be formal-
ized in terms of a linear matrix operator, as follows:

Definition A.1 (Workload-based partition selection). Let w1, . . . ,wn
denote the columns vectors in W and let u1, . . . ,up denote those that
are unique. For h(u) = {j ⋃︀ wj = u}, define the transformation ma-
trix P ∈ Rp×n to have P(︀i, j⌋︀ = 1 if j ∈ h(ui) and P(︀i, j⌋︀ = 0 otherwise.
The reverse transformation is the pseudo-inverse P+ ∈ Rn×p .

The matrix P defines a partition of the data, which can be passed to
V-REDUCEBYPARTITION to transform the data vector, and P+ can
be used to transform the workload accordingly. When P is passed
to V-REDUCEBYPARTITION , the operator produces a new data
vector x′ = Px where x′(︀i⌋︀ is the sum of entries in x that belong to
ith group of P. When viewed as an operation on the workload, P+

merges duplicate columns by taking the row-wise average for each
group. This is formalized as follows:

PROPOSITION A.2 (PROPERTIES: WORKLOAD-BASED REDUC-
TION). Given transform matrix P and its pseudo-inverse P+, the
following hold:
● x′ = Px is the reduced data vector;
● W′ =WP+ is the workload matrix, represented over x ′;
● The transformation is lossless: Wx =W′x′

PROOF: First note that P+ = PTD−1 where D is the p ×p diagonal
matrix with D(︀i, i⌋︀ = ⋃︀h(ui)⋃︀ for h defined in Def. A.1. Since P has
linearly independent rows, P+ = PT (PPT )−1 and PPT = D because
h(ui) and h(uj) are disjoint for i ≠ j. By definition of P, we see
that x′(︀i⌋︀ = ∑j∈h(ui) x(︀j⌋︀ for 1 ≤ i ≤ p. Similarly, the ith column
of W′ is given by w′i = 1

⋃︀h(ui)⋃︀ ∑j∈h(ui)wj. Since wj = ui when

j ∈ h(ui), we have w′i = ui, which shows that W′ is just W with the
duplicate columns removed. Using these definitions, we show that
the transformation is lossless:

Wx =
n
∑
i=1

wix(︀i⌋︀ =
p

∑
i=1

ui ∑
j∈h(ui)

x(︀j⌋︀ =
p

∑
i=1

w′ix
′(︀i⌋︀ =W′x′

The computation of partition P in Def. A.1 is conceptually straight-
forward: it simply requires grouping the columns of W. However,
explicitly representing the workload as a matrix is sometimes incon-
venient or prohibitive, especially for high-dimensional data. Algo-
rithm 2 is an efficient method for finding the column groupings that
does not require a complete matrix representation, as long as it is
possible to compute the dot product vW. This approach is highly
scalable and naturally extends to sparse matrix representations of the
workload or other specialized encodings of W (e.g. if W consists of
range or marginal queries).
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Algorithm 2 An algorithm for workload-based data reduction
1: procedure COMPUTE REDUCTION MATRIX(W )
2: Input: m × n matrix W
3: Output: p × n matrix P where p ≤ n
4: set v = vector of m samples from Uniform(0, 1) ▷ 1 ×m
5: compute h = vW ▷ 1 × n
6: let G = д1, . . . , дp be groups of common values in h
7: initialize matrix P with zeros ▷ p × n
8: for дi in G do
9: set row i of P to 1 in each position of дi

10: end for
11: return P
12: end procedure

By grouping the elements of h (line 6) we recover the column
groupings of W almost surely. Note that this algorithm is correct
because if wi = wj then hi = hj and if wi ≠ wj then P(hi = hj) = 0
since hi and hj are continuous random variables.3

As noted in Example 6.1, not all workloads allow for reduction (in
some cases, the P matrix computed above is the identity). But others
may allow a significant reduction, which improves the efficiency
of subsequent operators. Less obvious is that workload-based data
reduction would impact accuracy. In fact, many query selection
methods from existing work depend implicitly on the representation
of the data in vector form, and these approaches may be improved
by domain reduction. In Sec. 8.2 we measure the impact of this
transform on accuracy and efficiency.

We show next that this reduction does not hurt accuracy: for
any selected set of measurement queries, their reduction will pro-
vide lower error after transformation. Proof is omitted due to space
constraints.

THEOREM A.3. Given a workload W and data vector x, let M
be any query matrix that answers W. Then if q′ = qP+ is a reduced
query and M′ = MP+ is the query matrix on the reduced domain,
Errorq′(M′) ≤ Errorq(M) for all q ∈W.

A.2 Background: algorithms for linear queries
Here we provide additional background on the algorithms re-impl-
emented in ϵKTELO, namely plans 1 through 12 in Fig. 2. The
algorithms in Fig. 2 are listed roughly in the order in which they were
proposed in the literature and reflect the evolution of increasingly
complex algorithmic techniques. The simplest plan, IDENTITY (plan
1), is a natural application of the Laplace mechanism for answering
linear queries. It simply measures each component of the data vector
and since its measurement set is so simple, no inference is necessary.

Plans 2 through 5 reflect the evolution of more sophisticated
measurements selection, targeted towards specific workloads. Many
of these techniques were originally designed to support range queries
(a small subclass of linear queries) over one- or two-dimensional
data. PRIVELET uses a Haar wavelet as its measurements, which
allows for sensitivity that grows logarithmically with the domain
size, yet allows accurate reconstruction of any range query. The
HIERARCHICAL (H2) technique uses measurements that form a
binary tree over the domain, achieving effects similar to the wavelet

3The probability of incorrectly grouping two different columns is approximately 10−16

with a 64-bit floating point representation, but if needed we can repeat the procedure k
times until the probability of failure (∼ 10−16k ) is vanishingly small.

measurements. QUADTREE (algorithm 10) is the 2-dimensional
realization of the hierarchical structures, which supports 2D range
queries. When these more complex measurement selection methods
are used, inference becomes important because it allows a single
consistent estimate to be derived, and provably reduces error.

The plans above provide measurement selection tuned to range
query workloads, but measurement selection is always static. The
next innovation in the literature consists of adaptive measurement
selection. HIERARCHICAL OPT (HB) provides an intelligent heuris-
tic for tuning the branching factor of hierarchical measurements
to the domain size, often lowering error. GREEDY-H (which was
proposed as a subroutine of the DAWA algorithm but can be used by
itself) finds an optimal weighting of hierarchical measurements that
minimizes error on an input workload.

All of the plans above are data-independent, with error rates that
remain constant for any input dataset. More recent algorithms are
data-dependent, displaying different error rates on different inputs,
often because the algorithmic techniques are adapting to features
of the data to lower error. The simplest data-dependent algorithm
is UNIFORM (plan 6) which simply estimates the total number of
records in the input and assumes uniformity across the data vec-
tor. It is primarily used as a baseline and sanity-check for other
data-dependent algorithms. The Multiplicative-Weights Exponential
Mechanism (MWEM, plan 7) takes a workload of linear queries as
input and runs a sequence of rounds of estimation, measuring one
workload query in each round, and using the multiplicative update
rule to revise its estimate of the data vector. In each round, the Expo-
nential Mechanism is used to select the workload query that is most
poorly approximated using the current data vector estimate. In Fig. 2,
the iteration inherent to MWEM is shown with I ∶ (..). Other data-
dependent algorithms exploit partitioning, in which components of
the data vector are merged and estimated only in their entirety, which
uniformity assumption imposed within the regions. The DAWA and
AHP algorithms have custom partition selection methods which
consume part of the privacy budget to identify approximately uni-
form partition blocks. UNIFORMGRID and ADAPTIVEGRID focus
on 2D data and both end up with partitioned sets of measurements
forming a grid over a 2D domain. UNIFORMGRID imposes a static
grid, while ADAPTIVEGRID uses an initial round of measurements
to adjust the coarseness of the grid, avoiding estimation of small
sparse regions.

A.3 New plans for case studies
Algorithms 3, 4 and 5 fully describe the new plans proposed to
support the Census and Naive Bayes use cases.

A.4 Privacy Proof
This section presents a proof of Theorem 4.3.

Preliminaries We introduce some concepts and notation for the
proof. (Some notation is adapted from [9].) A configuration, denoted
� = ∐︀P,PK̃︀, captures the state of the client, denoted P, and the state
of the protected kernel, denoted PK. The client state can be arbitrary,
but state updates are assumed to be deterministic. The protected
kernel state PK consists of the following components:

● A set of source variables SV .
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Algorithm 3 HB-STRIPED

1: D ← PROTECTED(source_uri) ▷ Init
2: x← T-VECTORIZE(D) ▷ Transform
3: R ← StripeReduction(x , Att) ▷ Partition Selection
4: xR ← V-SPLITBYPARTITION (x, R)
5: M← ∅
6: y← ∅
7: for x′ ∈ xR do
8: M←M∪ HB(x′) ▷ Query Selection
9: y← y∪ VECLAPLACE(x′, M, ϵ ) ▷ Query

10: end for
11: x̂← LS(M, y)
12: return x̂ ▷ Output

Algorithm 4 PRIVBAYESLS
1: D ← PROTECTED(source_uri) ▷ Init
2: x← T-VECTORIZE(D) ▷ Transform
3: M← PBSELECT(x, ϵ2) ▷ Query Selection
4: y← VECLAPLACE(x, M, ϵ3) ▷ Query
5: x̂← LS(M, y) ▷ Inference
6: return W ⋅ x̂ ▷ Output

Algorithm 5 SELECTLS
1: D ← PROTECTED(source_uri) ▷ Init
2: x← T-VECTORIZE(D) ▷ Transform
3: R ← MARGREDUCTION(x , Att) ▷ Partition Selection
4: M← ∅, y← ∅
5: for i = 1 ∶ k do ▷ Iterate over Dimensions
6: x′ ← V-REDUCEBYPARTITION (x, Ri )
7: if DomainSizei > 80 then
8: R′ ← RDAWA (x′, ϵ1/k) ▷ Partition Selection
9: x′R ← V-REDUCEBYPARTITION (x, R′)

10: M← GREEDYH(x′R ) ▷ Query Selection
11: y← y∪ VECLAPLACE(x′R , M, ϵ2/k) ▷ Query
12: else
13: M←M∪ IDENTITY(x′) ▷ Query Selection
14: y← y∪ VECLAPLACE(x′, M , ϵ /k) ▷ Query
15: end if
16: x← V-REDUCEBYPARTITION (x′, Ri ) ▷ Domain Expansion
17: end for
18: x̂← LS(M, y)
19: return x̂ ▷ Output

● A data source environment E maps each source variable sv ∈
SV to an actual data source S , as in E(sv) = S . (Recall that
sources can be tables or vectors. This dummy variable is used in
Algorithm 6.)

● A transformation graph where nodes are the elements of SV and
there is an edge from sv to sv′ if sv′ was derived via transfor-
mation from sv. (Note: a partition transformation introduces a
special dummy data source variable whose parent is the source
variable being partitioned and whose children are the variables
associated with each partition.)

● A stability tracker St maps each source variable sv ∈ SV to a
non-negative number: St(sv) represents the stability factor of
the transformations that created the data source sv, or 1 if sv is
the initial source.

● A budget consumption tracker B that maps each source variable
sv ∈ SV to a non-negative number: B(sv) represents the total
budget consumption made by queries to sv or to any source
derived from sv.

● Query history for each source variable. 𝒬(sv) captures infor-
mation about the state of queries asked about sv or any of its
descendants. Specifically, it consists of a set of tuples (q, s,σ ,v)
where the meaning of the tuple is that query q was executed on
data source s (which is sv or one of its descendants) with σ noise,
the result was v.

● The global privacy budget, denoted ϵtot .

We can define the similarity of two configurations � and �′ as fol-
lows. (Notation: we use X ′ to refer to component X of configuration
�
′.) We say that � ∼ �′ iff P = P′ and PK′ ∼ PK′ where PK ∼ PK′

iff SV = SV ′ and the transformation graphs are identical and for each
sv ∈ SV the following conditions hold:

● St(sv) = St ′(sv), B(sv) = B′(sv),𝒬(sv) = 𝒬′(sv), and ϵtot =
ϵ′tot .

● ⋃︀E(sv)⊕ E′(sv)⋃︀ ≤ St(sv) = St ′(sv) where ⋃︀x ⊕y⋃︀ is measured
as symmetric difference when the sources x and y are tables and
L1 distance for vectors; see Definition 3.4.)

When the protected kernel is initialized, as in Init(T ,ϵtot ), it sets
global budget to ϵtot , creates new source variable svroot , sets
E(svroot ) = T , sets St(svroot ) = 1, and B(svroot ) = 0, and adds
svroot to the transformation graph.

Lemma on Budget Management When a query request is issued
to the protected kernel, the protected kernel uses Algorithm 6 to
check whether the query can be answered given the available privacy
budget.

We introduce a lemma that bounds the difference probability be-
tween query answers. Let P(q(E(s),σ) = v) denote the probability
that query operator q when applied to data source E(s) with noise σ
returns answer v.

LEMMA A.4. Let � ∼ �′. For any sv ∈ SV with non-empty
𝒬(sv), the following holds:

∏
(q,s,σ ,v)∈𝒬(sv)

P(q(E(s), σ) = v) (3)

≤ exp(B(sv) × ⋃︀E(sv)⊕ E′(sv)⋃︀) × ∏
(q,s,σ ,v)∈𝒬′(sv)

P(q(E′(s), σ) = v)

PROOF OF LEMMA A.4. Proof by induction on a reverse topo-
logical order of the transformation graph.

Base case: Consider a single sv at the end of the topological order
(therefore it has no children). If 𝒬(sv) is empty, it holds trivially.
Assume non-empty. Consider any (q, s,σ ,v) ∈ 𝒬(sv). Since sv
has no children, then s = sv. Furthermore, because the only budget
requests that apply to sv are from direct queries, we have (according
to Algorithm 6), B(sv) = ∑(q,s,σ ,v)∈𝒬(sv) σ . Since we assume
that any query operator satisfies ϵ-differential privacy with respect
to its source input, we have P(q(E(s),σ) = v) ≤ P(q(E′(s),σ) =
v) × exp(σ × ⋃︀E(s) ⊕ E′(s)⋃︀). Substituting sv for s and taking the
product over all terms in𝒬(sv), we get Eq. (3).

Inductive case: Assume Eq. (3) holds for all nodes later in the
topological order. Therefore it holds for any child c of sv. We can
combine the inequalities for each child into the following inequality
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over all children,
∏

c∈children(sv)
∏

(q,s,σ ,v)∈𝒬(c)
P(q(E(s), σ) = v)

≤ ∏
c∈children(sv)

exp(B(c) × ⋃︀E(c)⊕ E′(c)⋃︀) × ∏
(q,s,σ ,v)∈𝒬(c)

P(q(E′(s), σ) = v)

= exp
⎛
⎝ ∑
c∈children(sv)

B(c) × ⋃︀E(c)⊕ E′(c)⋃︀
⎞
⎠

× ∏
c∈children(sv)

∏
(q,s,σ ,v)∈𝒬(c)

P(q(E′(s), σ) = v)

There are two cases, depending what type of table variable sv is.
First, consider the case when sv is not a special partition variable.

We know by transformation stability that ⋃︀E(c)⊕E′(c)⋃︀ ≤ s×⋃︀E(sv)⊕
E′(sv)⋃︀ where s is the stability factor for the transformation. In
addition, ∑c B(c) × s ≤ B(sv) because, according to Algorithm 6,
every time a request of σ is made to child c, a request of s × σ is
made to sv. Therefore,
∑

c∈children(sv)
B(c) × ⋃︀E(c)⊕ E′(c)⋃︀ ≤ ∑

c∈children(sv)
B(c) × s × ⋃︀E(sv)⊕ E′(sv)⋃︀

≤ B(sv) × ⋃︀E(sv)⊕ E′(sv)⋃︀

Furthermore, observe that each term in (q, s,σ ,v) ∈ 𝒬(c) also
appears in 𝒬(sv). In addition, 𝒬(sv) includes any queries on sv
directly (and we know from an argument similar to the base case
that Eq. (3) holds for these queries). Therefore Eq. (3) holds on sv.

Now, consider the case where sv is the special partition variable.
Letm = maxc B(c). We get the following

∑
c∈children(sv)

B(c) × ⋃︀E(c)⊕ E′(c)⋃︀ ≤ ∑
c∈children(sv)

m × ⋃︀E(c)⊕ E′(c)⋃︀

=m × ∑
c∈children(sv)

⋃︀E(c)⊕ E′(c)⋃︀ =m × ⋃︀E(sv)⊕ E′(sv)⋃︀

= B(sv) × ⋃︀E(sv)⊕ E′(sv)⋃︀
The second to last line follows from the fact that sv is partition
transformation. The last line follows from how B(sv) is updated
according Algorithm 6. □

Main Proof We use �0(T ,ϵtot ,P0) to denote the initial config-
uration in which the protected kernel has been initialized with
Init(T ,ϵtot ) and the client state is initialized to P0. We use the

notation �0(T ,ϵtot ,P0)
t⇒p � to mean that starting in �0 after t

operations, the probability of being in configuration � is p.

THEOREM A.5. If T ∼1 T
′ and �0(T ,ϵtot ,P0)

t⇒p � such that
B(svroot ) = ϵ in �, then ϵ ≤ ϵtot and there exists �′ such that

�0(T ′,ϵtot ,P0)
t⇒q �

′ where � ∼ �′ and p ≤ q ⋅ exp(ϵ).

Theorem 4.3 follows as a corollary from Theorem A.5.

PROOF OF THEOREM A.5. Proof by induction on t .
Base case: t = 0. This implies that p = q = 1, ϵ = 0, and � =

�0(T ,ϵtot ,P0) and �′ = �0(T ′,ϵtot ,P0). It follows that � ∼ �′
because we are given that T ∼1 T

′ and the rest of the claim follows.
Inductive case: Assume the claim holds for t , we will show it

holds for t+1. Let�1 be any configuration such that�0(T ,ϵtot ,P0)
t⇒p1

�1 where in �1, we have B(svroot ) = ϵ1.
The inductive hypothesis tells us that ϵ1 ≤ ϵtot and that there

exists a �′1 such that �0(T ′,ϵtot ,P0)
t⇒q1 �

′
1 and �1 ∼ �′1 and

p1 ≤ q1 × exp(ϵ1).

Because �1 ∼ �′1, it follows that the client is in the same state and
so the next operation request from the client will be the same in �1
and �′1. The proof requires a case analysis based on the nature of the
operator. We omit analysis of transformation operators or operators
that are purely on the client side as those cases are straightforward:
essentially we must show that the appropriate bookkeeping is per-
formed by the protected kernel. We focus on the case where the
operator is a query operator.

For a query operator, there are two cases: (a) running out of
budget, and (b) executing a query. For the first case, by the inductive
hypothesis �1 ∼ �′1 and therefore if executing Algorithm 6 yields
False on the protected kernel state in �1, it will also do so on the
protected kernel state in �′1. For the second case, suppose query q is
executed on source sv with noise σ and answer v is obtained. The
protected kernel adds the correpsonding entry to the query history
𝒬. Let � denote the resulting state. Let �′ correspond to extending
�
′
1 in a similar way. Thus � ∼ �′.
It remains to show two things. First, letting B(svroot ) = ϵ , we

must show that ϵ ≤ ϵtot . This follows from Algorithm 6 which does
not permit B(svroot ) to exceed ϵtot . Second, we must bound the
probabilities. Suppose that the probability of this query answer in �
is p2 and the probability of this answer on �′ is q2. It remains to show
that p1 ⋅p2 ≤ exp(ϵ) ⋅q1 ⋅q2. For this we rely on Lemma A.4 applied
to svroot with the observations that the product of probabilities
bounded in Lemma A.4 corresponds to the probabilities in p1 ⋅p2 that
do not trivially equal 1 and that ⋃︀E(svroot )⊕ E′(svroot )⋃︀ = 1. □

Algorithm 6 An algorithm for budget requests

1: procedure REQUEST(sv, σ )
2: if sv is the root then
3: If B(sv) + σ > ϵtot , return FALSE. Otherwise B(sv) +=

σ and return TRUE.
4: else if sv is a partition variable then
5: Let svchild be the child from which the request came..
6: Let r = max{B(svchild) + σ − B(sv), 0}
7: Let ans = REQUEST(parent(sv), r ).
8: If ans = FALSE, return FALSE. Otherwise, B(sv) += r

and return TRUE.
9: else

10: ans = REQUEST(parent(sv), s ⋅ σ ) ▷ s is stability
factor of sv wrt its parent

11: if ans = FALSE, return FALSE.
12: B(sv) += σ . Return TRUE.
13: end if
14: end procedure
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