
Generating Private Synthetic Databases for
Untrusted System Evaluation

Wentian Lu, Gerome Miklau, Vani Gupta

School of Computer Science, University of Massachusetts Amherst
{wen,miklau,vani}@cs.umass.edu

Abstract—Evaluating the performance of database systems is
crucial when database vendors or researchers are developing
new technologies. But such evaluation tasks rely heavily on
actual data and query workloads that are often unavailable to
researchers due to privacy restrictions. To overcome this barrier,
we propose a framework for the release of a synthetic database
which accurately models selected performance properties of
the original database. We improve on prior work on synthetic
database generation by providing a formal, rigorous guarantee of
privacy. Accuracy is achieved by generating synthetic data using a
carefully selected set of statistical properties of the original data
which balance privacy loss with relevance to the given query
workload. An important contribution of our framework is an
extension of standard differential privacy to multiple tables.

I. INTRODUCTION

Assessing the performance of database technologies de-
pends critically on test databases and sample query work-
loads. A database vendor or researcher who has designed
a novel database feature needs to evaluate the performance
of her technology in the context of a real enterprise in
order to measure performance gains. This applies broadly to
new storage architectures, new query optimization strategies,
new cardinality estimation methods, new physical or logical
designs, new algorithms for automated index selection, etc.

This system evaluation would ideally be carried out using
the actual data and query workloads used by the enterprise.
Unfortunately, the actual data is often unavailable to the
evaluator because privacy, security, and competitiveness con-
cerns prevent the enterprise from releasing their data. The
evaluator could resort to common benchmark databases (e.g.
a TPC benchmark), which have been designed to capture
common properties of popular application domains. But be-
cause benchmarks target the common case, they often can-
not reflect particular properties that may significantly impact
performance for a given enterprise. Researchers have also
proposed a number of database generation techniques [17],
[4], [27], [1], [3], [21] that are able to create databases with
specific characteristics. For example, when testing cardinality
estimation methods, it is typically important to manipulate
the skew of attribute distributions in test data. But without
access to real databases and workloads, they can only guess at
meaningful parameter settings for database generators. A final
alternative is to employ techniques for synthesizing databases
that match a given true database [2], [11], [1]. Unfortunately,
none of these approaches provide a guarantee of privacy and,
in fact, many of them produce output that can easily lead to

serious privacy leaks.
The goal of our work is to safely support accurate per-

formance analysis by potentially untrusted evaluators. We
describe techniques for synthesizing, in a provably private
manner, a relational database instance that matches the per-
formance properties of the original database, especially with
respect to a given target workload of SQL queries. The private
synthetic data sets can be safely released to a vendor or
researcher, and are designed to preserve core performance
properties of queries such as IO counts, results sizes, and
execution times.

Our approach is based on model-based database synthesis,
as illustrated in Figure 1. We consider the owner of a sensitive
database instance D, which conforms to schema S, along with
a workload W containing queries commonly executed over the
database. An untrusted evaluator would ideally like to carry
out performance analysis using each of S, D, and W , but is
prevented from doing so by privacy concerns. We obfuscate
the schema by transforming S into an isomorphic schema S′,
and likewise transform W into W ′ by re-expressing queries
in W in terms of the new schema S′.

We then provide a method for the owner to select, based
on the schema and workload, a set of queries that serve as a
model Q of the database D. Using this model and the dataset,
a set of statistics are calculated and then perturbed so that
it satisfies the formal standard of differential privacy. The
perturbed results, Q′, can be safely released to the evaluator
and any computation using Q′ will not weaken the privacy
guarantee. Finally, the analyst, in possession of S′, W ′, and
Q′, can generate a synthetic database instance consistent
with the schema and statistics. There are typically many
instances consistent with Q′, so the analyst can generate many
alternative database instances by sampling. An appealing by-
product of our approach is that the analyst can also choose to
generate scaled-up synthetic databases to evaluate performance
on larger, statistically-similar instances.

Our work is a novel combination of research into private
data release and synthetic database generation. Generating pri-
vate synthetic data is a common goal of privacy research, but
existing techniques do not support complex relational schemas
and have not targeted our specific utility goal: accurate system
testing and evaluation. Likewise, generating synthetic rela-
tional data is a common goal of relational database research.
Privacy concerns are often mentioned as one motivation for
the use of synthetic databases, however the vast majority of

Model
Selection PerturbationSchema

(S')

Workload
(W')

Model
(Q)

Instance
(D)

Model
w/ noise

(Q0)

Sampling
Process

Synthetic
Instance

(D')

Synthetic
Instance

(D')

Synthetic
Instance

(D')

Private
Performed by the owner

Public
Performed by the analyst

1 3 52 4

Fig. 1. Our Approach: the owner selects (procedure of box 1, Section III) a model Q (rounded box 2) given schema and workload. A model contains a set
of carefully chosen queries, and their answers (statistics) can be calculated with instance (D). The owner now perturbs (procedure of box 3, Section V) the
statistics to get a differentially private Q′ (rounded box 4). With the release of Q′, the analyst can create/sample (procedure of box 5, Section VI) one or
more synthetic instances.

database generation approaches [2], [1], [4], [21], [17] do
not offer any formal privacy guarantees. Instead, they often
rely merely on the fact that data is generated from aggregate
statistics about the database. Unfortunately, this does not imply
that the synthetic data is safe to release. For example, Arasu et
al [1] acknowledge the privacy issues of releasing cardinality
information during data generation. One exception is the work
of Wu et al. [28], in which cell suppression and perturbation
are used to offer some protection against disclosures, but this
method cannot satisfy differential privacy and is susceptible to
the previously-documented attacks on anonymization schemes.

Contributions: We achieve the goals of untrusted system
evaluation through the following contributions. First, we ex-
tend differential privacy to multiple tables, re-defining the
concept of neighboring databases and sensitivity. This is a
crucial extension for our framework and also useful beyond
the present work. Next we propose a novel algorithm for
selecting the queries that constitute the model Q, where
we must balance descriptive power with accuracy achievable
under the privacy condition. After privately estimating the
selected model statistics to produce Q′ we then propose an
efficient method for consistently sampling from Q′ to generate
a privacy-preserving synthetic instance of the database. Lastly,
we assess the accuracy of our techniques for a range of
performance metrics. We compare the value of these metrics
for the true database, synthetic data generated from non-private
models, and synthetic data generated from private models. We
conclude that the distortion due to privacy is modest and that
important performance properties are retained in the output.

II. PRELIMINARIES

In this section we describe our data model, queries, the
definition of differential privacy, and the primary privacy
mechanism we apply.

A. Data model and queries

We consider a database D that is an instance of schema
S = {R1, R2, . . .}. System evaluation is performed with
respect to a workload of queries W consisting of SQL queries.
A table R = (A1, A2, . . .) in S contains key attributes and
non-key attributes, where the key attributes may be primary
or foreign keys. Throughout the paper, we focus on workload
queries involving joins only on key attributes. This assumption
is also accepted by the literature (e.g. [1]) and it actually covers
a wide range of applications, including TPC-H benchmark.

R N C O

L

S

PSP

Fig. 2. The schema of TPC-H represented as a directed graph.

However, we claim that our privacy definition and mechanism
is not restricted to such queries. We represent the schema
S as a directed graph GS , where each table is then a node
and edges are drawn from Ri to Rj when Rj contains a
foreign key reference to a key attribute in Ri. An example
schema graph for TPC-H is shown in Figure 2, contain-
ing relations R(region), N(nation), C(customer), O(orders),
L(lineitem), P(part), S(supplier) and PS(partsupp). We limit
our attention to schemas with acyclic schema graphs.

A counting query q is an aggregate query that returns the
number of tuples satisfying one or more predicates. A counting
query may involve a single table or multiple tables joined by
their keys and foreign-keys. We refer to the relationship among
tables involved in the query as its signature, denoted by v(q).
Counting queries are written in relational algebra, as in the
following examples:

q1 : |σC.gender=M (C)|
q2 : |σC.gender=M (C ./ O)|

These two counting queries return the number of male cus-
tomers and the number of orders from male customers, re-
spectively. The signature of q1 is v(q1) = C and the signature
of q2 is v(q2) = C ./ O.

The model Q of the owner’s database, shown in Fig. 1 and
described in detail in the next section, is defined by a set
of counting queries derived from the workload. We refer to
this set of counting queries as the model queries. Note that
while the model queries are restricted to counting queries, the
workload may contain more general queries.

B. The differential privacy guarantee

An algorithm is differentially private if its output is statis-
tically close on two database inputs that differ by one record.
Two such databases are called neighbors.

Definition 2.1 (Differential Privacy): Let D and D′ be
neighboring databases and K be any algorithm. For any subset

of outputs O ⊆ Range(K), the following holds:

Pr[K(D) ∈ O] ≤ exp(ε)× Pr[K(D′) ∈ O] + δ

If δ = 0, K is ε-differentially private, according to the standard
definition. Otherwise, K is (ε, δ)-differentially private.

Differential privacy provides a well-founded means for
protecting individual tuples in a table while releasing rea-
sonably accurate aggregate properties of the entire table. It
is robust against attackers with background knowledge about
the database. Achieving differential privacy requires perturbing
statistics computed from the true database. This perturbation
protects against disclosures that can result from releasing exact
statistics about the original database, as is done by existing
database synthesis techniques [2], [11], [1].

In Section IV we extend differential privacy to complex
schemas with multiple tables by focusing on a protected entity
and the entity’s relationships. However, we note that even un-
der this extension, differential privacy does not offer protection
for the population. In our setting, the differential guarantee
(which applies to the model Q of D) means that we reveal
very little about protected entities and their relationships. But
it does not prevent the release of accurate aggregates for
the population (and in fact we require reasonably accurate
aggregates in order to capture the properties of D). In some
settings, these aggregate query answers may not be acceptable
to release. For example, the average revenue for a company or
the total number of customers may be sensitive values, even
when the individual records contributing to these aggregates
remain protected. In domains where population aggregates are
highly sensitive, accurate and private database synthesis is
likely to be impossible. Nevertheless, we believe there are a
wide range of applications in which the primarily concern is
the sensitivity of individual entities for which our techniques
provide strong privacy. Practical examples are requirements of
working with medical information [12], location data [7] and
network traces [22].

C. Differentially private mechanisms

Differential privacy can be achieved by adding noise to the
output of algorithms according to the privacy parameters (ε and
δ) and the query sensitivity. The sensitivity of a query is the
maximum possible difference in the output when evaluating
the query on two neighboring databases.

The models of the database we consider are defined (in the
next section) by sets of counting queries over D. To release a
differentially-private model to the evaluator, we must produce
private answers to a large and potentially complex set of
counting queries. The standard mechanisms (the Laplace for
ε-differential privacy and Gaussian (ε, δ)-differential privacy)
are quite effective at answering single queries, but can be
highly sub-optimal for the large sets of queries we consider.
Intuitively, one reason for this is that the counting queries in
our models may overlap, leading to high sensitivity and high
per-query error.

Improved methods for answering sets of counting queries
have received considerable attention from the research com-

munity recently [30], [16], [19], [31], [8], [32], [15], [6]. Our
goal is framework for database generation that is agnostic to
any particular privacy mechanism. Thus choose to adapt the
recent work by Li et al [20], based on the matrix mechanism
[19], for answering multiple linear counting queries with low
error. This technique offers an adaptive mechanism which
adds noise customized to the set of counting queries required
by the model. The adaptive method works best for (ε, δ)-
differential privacy (achieving error rates that are very close to
a theoretical lower bound for mechanisms of this form) and we
therefore focus our experiments on the mechanism satisfying
this relaxed version of differential privacy.

We emphasize that our framework is largely independent of
a particular mechanism used to derive the private model. This
means that, in the future, better utility could be achieved using
our framework as privacy techniques advance.

III. DERIVING A MODEL FROM A QUERY WORKLOAD

In this section we describe the process for deriving a
statistical model of the input database, and in particular, a
model which is specialized to a given set of workload queries.
The challenge is selecting a model that captures properties of
the database relevant to performance evaluation while at the
same time allowing for accurate release under differential pri-
vacy. We restrict our attention to classical relational database
systems and workloads of SQL queries.

A. Extracting counting queries

The selected model will be defined by a set of counting
queries. We select counting queries relevant to a given work-
load of SQL queries by considering intermediate operations
in the query evaluation process, similar to Arasu et al [1].
Ideally, the synthetic database sampled should produce similar
executions when running each workload query. The cardinality
of each intermediate operator output are called an intermediate
count. Since a modern query optimizer uses table statistics to
generate query plans, if our model gathers all the intermediate
counts of query trees, i.e., the size of intermediate results on
each node of the query tree, the optimizer will utilize the same
table statistics as the original databases to produce query plans.

The intermediate counts are represented as counting queries,
and they are independent of the data instance, DBMS and
physical organization of data. Let w be a single workload
query. Γ(w) is the set of statistics (counting queries) that can
be extracted from any possible query tree of w. With v(w) as
the signature of w and |v(w)| as the number of tables in the
signature, we can describe Γ(w) as follows:

Γ(w) = {Γ0(w),Γ1(w),Γ2(w), . . . ,Γ|v(w)|(w)}

Each Γi(w) is the set of all counting queries over an i-
way join of a subset of tables in v(w). In fact, each item in
Γi(w) represents the size of the intermediate result of a node
that involves an i-way join, thus each counting query can be
mapped to a node in some query tree. In particular, Γ0(w) con-
tains counting queries for the size of each table in v(w). For a

��

σ σ

C O C O

σ

��

σ

C O

σ

��

σ

C O

��

σ

Fig. 3. Possible query trees for σC.gender=M∧O.amount>100(C ./ O)

multi-query workload W , we let m = maxw∈W (|v(w)|), and
Γi(W) =

⋃
w∈W Γi(w), and define:

Γ(W) =
⋃

i=0,1,..,m

Γi(W)

Example 1: Assume a workload W = {w1, w2} consisting
of two queries:

w1 : σC.gender=M∧O.year=2010(C ./ O)

w2 : σC.age=40(C)

Γ(w1) includes intermediate counts up to the 2-way join
and Γ(w2) includes counts over a single table. The set of
intermediate counts of w1 is derived from the four possible
query trees (Figure 3). Thus, Γ(W) is the union of following:

Γ0(W) : |C|, |O|
Γ1(W) : |σC.gender=M (C)|, |σO.year=2010(O)|,

|σC.age=40(O)|
Γ2(W) : |σC.gender=M (C ./ O)|, |σO.year=2010(C ./ O)|,

|σC.gender=M∧O.year=2010(C ./ O)|

To select a good query plan, the query optimizer will
estimate the number of rows retrieved by the query using
stored statistics on the data distribution. Although we do not
directly measure the data distribution on all attributes, the
counting queries we extract as model statistics represent a
rough approximation of this, namely those statistics relevant
to the queries in the workload of interest.

B. A spectrum of models

Next we define a spectrum of models, each derived from
the workload. While the most descriptive model would likely
be preferred in the absence of privacy concerns, in our setting,
a more descriptive model can ultimately be less effective
because more distortion must be applied to satisfy the privacy
condition.

The most descriptive model is a Saturated Model (SM)
that contains all intermediate counts (counting queries) of any
possible query tree. SM gathers the most information from
the workload, but its size grows quickly as the workload
becomes larger, particularly when multiway joins are involved.
Moreover, SM will typically contain many related counting
queries, resulting in high sensitivity, and requiring signifi-
cant noise in the perturbation step. Therefore, we identify
a number of simpler models. The idea is to quantify proper
correlation among tables using intermediate counts, which is
generally identified as Correlation of i-Table Model, shortened
as CiTM, where i ∈ N.

The C1TM model considers just intermediate counts within
a single table, which are the set of all counting queries
corresponding to leaf nodes in a query tree. The C2TM model
includes up to 2-way cross-table correlations, consisting of the
intermediate counts in a query tree from the leaves and their
parents. In general, there exist models that include up to the
i-way cross-table relationships. For comparison purposes, we
also consider a Null Model (NM), reflecting only of the size of
each relation and containing nothing about the workload. For
a set of workload queries W , these models can be formally
described as follows:

QSM = Γ(W)

QCiTM = Γ0(W) ∪ Γ1(W) ∪ . . . ∪ Γi(W)

QNM = Γ0(W)

With Γ(W), we are able to define a family of models, by
putting together arbitrary Γi(W). Selecting a model is com-
plex because greater descriptive power in a model generally
means it has a higher privacy cost and therefore demands
greater perturbation for a fixed setting of the privacy parame-
ters. We will show in the following sections that the amount of
perturbation required by a model can be calculated directly and
we evaluate the impact of distortion on performance testing in
the experimental evaluation.

IV. DIFFERENTIAL PRIVACY FOR MULTIPLE-RELATION
DATABASES

In this section we extend the standard definition of dif-
ferential privacy from a single relation to multiple relations.
The original differential guarantee protects individuals in a
single-relation database by requiring statistically close outputs
on neighboring databases that differ on a single tuple. Using
such a notion of neighboring databases in the context of a
multi-relation database is insufficient because an individual’s
sensitive information will be represented in multiple tables.
Considering TPC-H as an example, each customer is asso-
ciated with multiple orders. Under single-table differential
privacy, a query reporting the average order amount for a
customer may reveal the fact that a customer has an extremely
high number of orders due to insufficient noise. A similar
issue has been identified by Kifer et al [18]. However, since
a general schema may have complicated relationships among
relations, defining differential privacy for multiple relations
is not straightforward. We will show below that even the
calculation of query sensitivity requires careful consideration.
The PINQ system [24] also deals with this problem, but instead
of proposing a direct solution, it uses a modified non-standard
semantics of join which is not applicable in our scenario.

In the following, we first generalize the notion of neigh-
boring databases, focusing on a single protected entity but
accounting for tables related by key/foreign-key relationships.
We then discuss the calculation of query sensitivity and the
calculation of sensitivity for the queries that make up a model.

A. Multi-relation neighboring databases
We assume that a single table is identified as the primary

protected entity in the schema. In TPC-H , we choose the

nation pop
USA 200

Canada 100

name N_nation age
Ann USA 30
Bob Canada 45
Chris USA 59

id C_name date
1 Ann Mon
2 Ann Tues
3 Bob Wed
4 Bob Thur
5 Chris Fri

name age N_nation N_pop
Ann 30 USA 200
Bob 45 Canada 100
Chris 59 USA 200

Nation

Customer

Orders

id C_name date
1 Ann Mon
2 Ann Tues
3 Bob Wed
4 Bob Thur
5 Chris Fri

OrdersCustomer

nation pop
USA 200

name N_nation age
Ann USA 30
Chirs USA 59

id C_name date
1 Ann Mon
2 Ann Tues
5 Chris Fri

name age N_nation N_pop
Ann 30 USA 200
Chris 59 USA 200

Nation

Customer

Orders

id C_name date
1 Ann Mon
2 Ann Tues
5 Chris Fri

OrdersCustomer
join Nation and Customer

normalize c(D)

delete customer Bob

normalize c(D0)

join Nation and Customer

delete customer Bob

Fig. 4. An example of neighboring multi-relation databases for schema S = {N,C,O}. D and D′ are neighbors because collapsed instances c(D) and
c(D′) are neighbors where c(D′) is generated by a cascading deletion of customer Bob from c(D). Note that Canada is missing from D′ as Bob is the only
customer from Canada.

customer table as the protected entity (relation C). We then
seek to protect each customer’s data, including their partici-
pation across multiple relations connected by key/foreign-key
constraints. To do so, we consider the following categorization
of tables based on a schema graph.

1) Relations that are ancestors of the protected entity repre-
sent properties of the entity that happen to be stored in separate
relations. These should be protected along with attributes in
the tuples of the protected entity table. For example, table N
is an ancestor of C in the graph defined by the TPC-H schema
and stores a customers’ nationality, which should be protected.

2) Relations that are descendants of the protected entity
represent a set-valued property of the entity that should be
protected. For example, O and L are descendants of C. In the
order table O, there are multiple orders associated with each
customer which deserve protection. Removing one customer
should result in a cascading deletion of tuples from descendant
relations, e.g., deleting the multiple associated orders from O.

3) Ancestors of the protected entity’s descendants (but
not direct ancestors) can be viewed as properties of the
items represented by entity’s descendants. E.g., when protect-
ing lineitem L as a set-valued property of customers, each
lineitem’s supplier, stored in S, should also be protected.

To formalize neighboring databases in multiple relations,
we introduce a partially denormalized version of D, c(D),
generated by repeatedly performing pairwise joins on key and
foreign keys until the database contains only the protected
relation R and its descendants (see Figure 4 for an example).
We say c(D) is reversible, if the normalization of c(D)
results in the original D. Consider a relation X’s primary
key is referenced by Y ’s foreign key, X → Y , we say this
relationship satisfies an inclusion constraint if each of X’s
keys are referenced at least once in Y . If inclusion constraints
are held among all of the pairs of tables that are being joined
during the creation of c(D), reversibility is then guaranteed,
giving us the ability of rebuilding the original database.

Definition 4.1 (Neighboring databases): Let D and D′ be
instances of schema S such that their partially denormalized
versions c(D) and c(D′) are reversible. D and D′ are neigh-
bors if c(D) is generated by cascade deleting some tuple in
c(D) from database c(D′), or vice versa.

Definition 4.1 completes our definition of neighboring
databases for multi-relation databases, where denormalized
databases help to take care of cascading deletion starting
from the protected entity, and reversibility helps to maintain
consistency on all other tables that are not involved in the
cascading process.

Example 2: Suppose we have a simplified TPC-H schema
S = {N,C,O} with N→ C→ O. Figure 4 demonstrates two
example neighboring databases and their collapsed versions,
and the relationship between these two versions.
Remark. The assumption of reversibility simplifies the defi-
nition of neighboring databases, but is not a requirement. Due
to the lack of space, we omit the details of that.

B. Query sensitivity

We turn next to computing the sensitivity of queries, which
is the maximum change in a query answer for two neighboring
databases. We first calculate ∆q under single table differential
privacy by viewing signature v(q) as a virtually materialized
single table and therefore the difference between neighbors is
one. Under multi-relation differential privacy, v(q) in neigh-
bors can differ by more than one, thus the sensitivity of q
should be augmented a factor of that difference (the df value):

∆q · df(v(q)) (1)

From this point forward, without additional notation, ∆
always refers to the sensitivity in multi-relation differential
privacy, as single-relation differential privacy is just a special
case with df value equal to 1 for every table.

The key of computing sensitivity under multi-relation dif-
ferential privacy is to calculate the df value. We begin by
considering a single-table counting query, where the signature
is always a single relation, say X . It is obvious that df(X)
is one if X is the protected entity table, but for other tables
this number is not constant, as one customer could potentially
match as many orders as possible so df value of O table could
be as large as its size.

We address this issue by assuming a bound on the join
frequency across tables. We refer to this as a propagation
constraint, K(X,Y), defined as the maximum number of
times that each primary key in table X can be referenced

R N C O

L

S

PSP

1 k1

k1k2k1k2

k1k2 + 1

k1k2

k1k2 + 1

k1k2

Fig. 5. Difference (df value) between neighboring TPC-H instances.

in table Y for the key/foreign-key relationship X → Y .
With a fixed schema, the propagation constraint is the only
variation to decide a query’s sensitivity. A given propagation
constraint K indicates that differential privacy fully protects the
individual/entity that has join frequency smaller than K. Those
with frequency larger than K, will be partially protected.
Therefore, with consideration of utility, we also choose K
as large as possible. When K is equal to the maximum join
frequency, all tuples in X are protected.

Algorithm IV.1 computes the df value for each table,
assuming R is the protected entity for schema graph GS . We
use desc(R) to refer to the set of all descendants of R.

Algorithm IV.1 Compute df value
1: for X in topological order of GS do
2: if X == R then df(X) = 1
3: else if X ∈ desc(R) then
4: df(X) =

∑
Y→X K(Y,X)df(Y)

5: else df(X) = 0

6: for X in reverse topological order of GS do
7: df(X) = df(X) +

∑
X→Y [df(Y)−K(X,Y)df(X)]

return all df values

Example 3: Let C be the protected table and K(C,O) = k1,
K(O, L) = k2. As shown in Fig. 5, df(C) = 1. If each cus-
tomer associates with at most k1 orders, df(O) is 1∗k1 = k1.
Similarly, df(L) = k1k2. Then we begin the round of reverse
topological order. We pick the PS table, since it is the only
table with all of its children (L) computed. If k1k2 lineitems
are deleted in L, there are at most k1k2 tuples deleted in PS
(an upper bound for all cases). Thus, df(PS) = k1k2. After
that, we consider P and S. df(N) = df(S) + df(C) because
deleted tuples in S and C could refer to different nations. At
last, we calculate df(R).

Now we consider the case that a counting query’s signa-
ture involves joins of multiple tables. As the join operation
propagates the primary-key table into the foreign-key table,
the maximum difference after the join is just the df value of
the foreign key table, given by the following equation for a
2-way join:

df(X ./ Y) = df(Y) if X → Y

For example, in Figure 5, df(N ./ C) = df(C) = 1, since
the removal of one tuple in the customer table will cause at
most one nation to be deleted in the nation table. We do not
consider deletions propagated from S, because they do not
influence the join on N and C. Generally, if there are multiple

tables joined (i.e. more than two) in the signature of a query,
we repeatedly apply this equation, and the df value is always
equal to the last referenced table if there is only one such table.
If the signature of a query is not sequential (e.g., C ./ O ./ L)
or snowflake (e.g., (P ./ (S ./ PS)), its overall df is the
sum of df values on each of last referenced table, such as
df(S ./ N ./ C) = df(S) + df(C). Moreover, the definition
of neighboring databases proposed in Section IV-A is indeed
independent of queries, which means with proper modification
to the methods discussed above (e.g., knowing propagation
factors for non-key attributes), we can calculate the sensitivity
for queries that beyond key-key joins. We omit them from the
discussion here.

V. MODEL PERTURBATION

Given a selected model Q, our next goal is to perturb the
true query answers of the model to satisfy multi-relational
differential privacy. A simple approach is to calculate the
sensitivity of the whole model and then add noise calibrated
to the sensitivity. However, in the case of multi-relations,
this method would add more noise than strictly necessary to
satisfy the privacy criterion, and would hurt utility. Instead
we invoke privacy mechanisms multiple times, the challenges
are to generate an optimal mechanism composition and bud-
get allocation, and effectively deal with data representation
for multi-relation correlations. In this section, we propose a
framework for resolving these challenges.

A. General framework for working with multi-relations

We apply a data vector based representation for databases
and queries to help deploy the perturbation process. In our
framework, each table is encoded as a data vector. A data
vector x consists of cell counts, which are the counts of
tuples that satisfy a set of disjoint cell conditions (Fig-
ure 6(b)). Essentially, a data vector is similar to a multi-
dimensional histogram, containing a set of dimensions, e.g.,
dim(x) = {age, gender}. Note that the dimensions do not
need to contain all attributes of a table. Using data vector x,
a counting query q can be expressed as |x| coefficients and
all counting queries are combined as a query matrix Q with
each row as one query. E.g., Q (Figure 6(c)) is the query
matrix containing the three counting queries of Figure 6(a)
based on x in Figure 6(b). The true answers to the counting
queries are computed as the matrix product of Q and x. Thus,
the Gaussian mechanism for the single-table database, which
adds Gaussian noise calibrated to the L2 sensitivity (noted as
∆) to achieve (ε, δ)-differential privacy [9], can be defined as:

Definition 5.1 (Gaussian Mechanism): Assume Q contains
d queries, the following randomized algorithm G provides
(ε, δ)-differential privacy on input database D. Here the sen-
sitivity ∆Q is equal to the maximum L2 norm of a column.

G(Q, D) = Q(D) + Normal(
∆Q

√
2 ln(2/δ)

ε
)d

With multiple relations, it is not possible to construct a
single data vector and format all the model queries. Instead,

the general framework is that we encode a multi-relation
database into a set of data vectors X = {x1,x2, . . . xn}
and thus a model Q can be represented as n query matrices
Q = {Q1, Q2, . . . ,Qn}. Since there is no direct privacy
mechanism designed for multiple relations, we invoke a single-
table mechanism multiple times under mechanism composition
with a properly distributed the privacy budget. We call such a
mechanism a unit mechanism. A simple example is to set the
unit mechanism to be Gaussian mechanism and run it on each
(x,Q) pairs, under both sequential and parallel composition
rules.

The first problem of this composition framework is the
choice of data vectors because there is more than one way
to represent X . Although we always have logically equiva-
lent representations of the model queries, the choice of X
can impact answer consistency. Consider a model with two
counting queries q1 = |O| and q2 = |C ./ O|, represented
by two different data vectors encoding O and C ./ O without
common dimensions. When applying a unit mechanism on
each of them, independent noise will be added and the
perturbed answers will not necessarily be the same. This is
an inconsistent state because these two queries are actually
equivalent if a foreign key constraint holds. As the perturbation
of each (x,Q) is independent, the data vector representation
does not depend on the unit mechanism used in the framework.

The other problem is to distribute the privacy budget effi-
ciently. Data vectors may come from tables with different df
values in terms of sensitivity calculation (Section IV-B), thus
simply splitting the privacy budget evenly among invocations
does not always give the minimal error under composition.
Other than the choice of data vector representation, each
choice of unit mechanism needs a particular budget alloca-
tion plan to optimize the perturbation error. For example,
the Laplace and Gaussian mechanism have different budget
allocation in our framework.

B. Choice of data vectors

Inconsistency from noisy answers arises because there is
shared information among data vectors. In the example above,
two data vectors share common total counts. The solution is
to build data vectors that always contain all key/foreign-key
relationships of ancestors. We refer to them as denormalized
data vectors, where attributes in ancestors are viewed as
simple properties of the current relation. For example, for
relation O, with ancestors R,N and C, we build a data vector
based on the joined result of R ./ N ./ C ./ O. We do this for
each relation in the database and now the two queries in the
example above will be represented using the data vector on
O and consistency is maintained after perturbation. Under this
scheme, when merging two data vectors, correspondent model
queries can be transformed automatically, essentially summing
over the extra dimensions in the expanded data vector.

Example 4: Consider the saturated model for workload
queries W in Example 1 (Section III-A). A consistent
representation can be built with two data vectors xC and
xO, where dim(xC) = {C.age,C.gender} and dim(xO) =

q1: number of customers
q2: number of male

customers
q3: difference between young

and old customers

(a) Counting queries

x cell condition
2 age≤40, gender=M
1 age≤40, gender=F
2 age>40, gender=M
1 age>40, gender=F

(b) data vector x of customer
table1 1 1 1

1 0 1 0
1 1 −1 −1

 ·


2
1
1
2

 =

6
3
0


(c) The counting queries from (a) represented as a matrix Q
based on x. The answers to Q are Qx.

Fig. 6. An example of counting queries and a data vector.

{C.gender,O.year}. These two vectors contain all ances-
tor relationships, but skip unnecessary columns to minimize
the size of the vectors, e.g., xO does not include C.age
as no model queries related to xO apply conditions on it.
For model query transformation, look at |σC.gender=M (C)|,
a model query in the C1TM model. By introducing xC, it
will be rewritten to sum up all male ages in the xC, that is
|σC.gender=M,C.age=∗(C)|.
C. Minimizing perturbation error

Now we state our algorithm for budget allocation. A
standard choice for the unit mechanism would be Laplace
or Gaussian mechanism, both of which can fit well in our
framework when finding a best budget distribution plan is not
difficult. To illustrate that our framework is independent of unit
mechanisms, we employ the more advanced matrix mechanism
[19]. Although it requires more dedicated design for budget
allocation, we can reach much lower perturbation error. (In
fact, the allocation algorithm for the matrix mechanism is an
extended version of the allocation for Gaussian mechanism.)

1) The matrix mechanism: Under single-relation differen-
tial privacy, we can formally define the matrix mechanism as
follows, where the key difference is that a new query set (the
strategy, A) is answered with the Gaussian mechanism and
then the desired queries Q are derived from it:

Definition 5.2 (Matrix Mechanism): [19] Let A be a query
strategy matrix and A+ = (AtA)−1At, the pseudo-inverse of
A. The randomized algorithm MA offers (ε, δ)-differential
privacy.

MA(Q,x) = QA+G(A,x)

Intuitively, answering the strategy queries privately and then
deriving the desired workload queries leads to greater accuracy
when the workload queries have high sensitivity caused by
many overlapping queries. The error of query estimates in the
matrix mechanism is measured by the mean squared error,
determined by Q and strategy A (independent of x). The total
error is given by the following equation:

ERR(Q,A) =
2 ln(2/δ)

ε2
∆2

A trace(Q(AtA)
−1

Qt) (2)

The main challenge of the matrix mechanism is choosing
a good strategy for the given queries Q and we rely on

the algorithm in [20] to compute an approximately optimal
strategy for any given Q. So in our multi-relation framework,
multiple runs of matrix mechanism will need a series of
strategies A = {A1,A2, . . . ,An} matched with data vectors
X and Q.

2) Sensitivity and composition rules: The sensitivity for a
single Q or strategy matrix A is its maximum L2 norm of
a column, multiplied by the df value of the query signature.
In general, the total sensitivity of multiple matrices may not
be equal to the summation of each of them, i.e. ∆2

Q ≤∑
Q∈Q∆2

Q. This is due to the possible correlation among
query matrices. In fact, calculation of the exact sensitivity
relies on searching for a proper series of columns across
each query matrix that maximize the sum of the square of
L2 norms. We omit the detailed discussion on sensitivity
computation here, as we are always safe to use the upper bound
as the sensitivity. In addition, in matrix mechanism, an optimal
strategy matrix will always maximize the L2 norm on each
column [20], meaning all the columns have the same norm.
Thus, each matrix contributes its full ability in the overall
sensitivity of A, which means it reaches the upper bound
∆2
A =

∑
i ∆2

Ai
. However, note this equation does not hold

for a general case of multiple query matrices.
An important part of our framework is to have certain com-

position rules for the unit mechanisms. We use the following
sequential and parallel composition rules, originally proposed
for the Laplace and Gaussian mechanisms [9], [24], [23], also
apply to the matrix mechanism, for the first time.

Proposition 1 (Sequential composition): If each matrix
mechanism MAi

, operating on workload Qi and data
vector xi, provides (εi, δi)-differential privacy, sequential
application of MAi on each workload in Q satisfies
(
∑
εi,

∑
δi)-differential privacy.

Proposition 2 (Parallel composition): If each matrix mech-
anismMAi uses the overall sensitivity for all strategy matrices
∆A to answer Qi over xi, combination of all MAi

satisfies
(ε, δ)-differential privacy.

Using these two composition rules, we partition Q into
multiple disjoint subsets/groups, such that the union of these
sets equals Q, and then apply Proposition 2 inside each group
and Proposition 1 across groups. Note thatA is also partitioned
in the same way. All strategy matrices in one group will get a
unified privacy budget assigned to that group. Let I be the set
of all partitions forQ. Two extreme partitions are the fully split
one Is with only single-sized groups (applying Proposition 1
only) and the fully joined one Ij with one group that contains
all query matrices (applying Proposition 2 only).

3) Error for a partition: The total error of applying privacy
mechanism M on partition I is the sum of errors from each
group g ∈ I . Let ERRGM(g, εg, δg) be the error of group g
given privacy budget εg and δg . So the minimum total error
of partition I , MINERRM(I), is

MINERRM(I) = min
∑

group g∈I
ERRGM(g, εg, δg) (3)

From Equation (2), the total error of applying matrix mech-
anism on one query matrix is ERRM = 2 ln(2/δ)/ε2∆2

Ab,
where the trace value b = tr(Q(AtA)

−1
Qt). Let ∆g(A) be

the sensitivity of group g’s strategy matrices.

ERRGM(g, εg, δg) =
∑
i∈g

2 ln(2/δg)

ε2g
∆2
g(A) bi

=
2 ln(2/δg)

ε2g
(
∑
i∈g

∆2
Ai

)(
∑
i∈g

bi) (4)

To calculate MINERRM(I), we apply Lagrange multiplier
to solve the optimization problem with objective function
Equation (3) and two equality constraints

∑
g εg = ε and∑

g δg = δ, which gives us the following results:

MINERRM(I) =
2

ε2

 ∑
group g∈I

3

√
ln(

2

δg
) · bgcg

3

(5)

Here, the group trace value, bg , is defined as
∑

Qi,Ai∈g
tr(Qi (Ai

tAi)
−1

Qt
i). Group sensitivity factor, cg =∑

Ai∈g ∆2
Ai

. The distribution of δ among groups satis-
fies the condition that for any two groups g, g′ ∈ I ,

3
√
bgcg

δg ln2/3(2/δg)
=

3
√
bg′cg′

δg′ ln
2/3(2/δg′)

, from which we can solve
δg for each group. Then the distribution of ε is therefore
εg = ε 3

√
ln(2/δg)bgcg/Z, where Z =

∑
g∈I

3
√

ln(2/δg)bgcg .
Example 5: Let a model Q with three matrices be par-

titioned into two groups as {(Q1,Q2), (Q3)}. Suppose the
trace values b = [1, 10, 1000] and sensitivity of strategies
are all equal to 1. Under (1, 0.01)-matrix mechanism, the
distribution of ε and δ {0.23, 0.77} and {0.002, 0.008}, gives
us the minimum error of this partition. This means, we run
matrix mechanism on Q1 and Q2 each with privacy budget
(0.23, 0.002) and Q3 with budget (0.77, 0.008).

4) Choosing an optimal partition: The next step is to
choose a partition I that minimizes MINERRM(I) over all
valid partitions I. As the total number of partitions is exponen-
tial in n, a naive search algorithm will cost exponential time
to find the optimal partition. We propose a heuristic algorithm
limiting searching a polynomial space based on the following
observation.

Consider a model with only two query matrices. It is easy
to find out that parallel composition is better and reaches the
most advantage when b1/c1 = b2/c2, where group trace value
bi and group sensitivity factor ci are defined in Equation (5).
Assume φ is the angle between vectors (b1, c1) and (b2, c2)
in a 2-dimensional space, this means φ = 0. Sequential
composition only benefits when φ is large. When coming
to n-sized model, we can apply the similar idea: we keep
elements in each group close to each other (smaller φ) and
large difference across groups (bigger φ).

We say partition I of a set is a refinement of a partition
I ′ of the same set, if every element of I is a subset of some
element of I ′, noted as I � I ′. This means elements in I ′ can
be obtained by combine some elements in I . In such cases, we
say I is finer than I ′ and I ′ is coarser than I . E.g., consider

x1 cell condition
0 C.age≤40
3 C.age>40

(a) xC

x2 cell condition
9 O.year=2010,C.age≤40
2 O.year=2010,C.age>40
7 O.year=2011,C.age≤40
6 O.year=2011,C.age>40

(b) xO
Fig. 7. Non-realizable data vectors as xC indicates no customer is younger
than 40 while xO shows there must be some.

the fully split partition Is and fully joined partition Ij , we
have Is � Ij . In fact, (I,�) defines a complete lattice. We
use csr(I) to denote all partitions that one-step coarser than
I , meaning each of which is generated by merging exactly
two groups in I . The algorithm is to start from Is, and search
the space of csr(I) for the current best partition I at each
step and stops when all partitions in csr(I) are worse than I .
This procedure reduces the exponential search space to O(n3)
where n is the number of query matrices and our simulation
shows it always approaches the optimal partition.

VI. SAMPLING SYNTHETIC DATABASES

The private, noisy answers to the model queries, generated
using the techniques of the last section, are not sufficient for
carrying out performance evaluation. It remains to generate
a complete synthetic database instance from the perturbed
model. The major challenge results from the fact that a model
with perturbed data vectors might not be realizable: it is
possible that there is no database instance that conforms with
the perturbed model statistics. An example is illustrated in
Figure 7. The idea of consistent data vectors discussed in
Section V-B is only a necessary condition for realizability.
Realizability depends on a proper relationship across different
data vectors. Unfortunately, existing sampling techniques are
designed only for unperturbed, realizable models.

To address this challenge, we propose a two-step approach:
first we calculate a realizable model and then sample from
it using standard methods proposed from literature (e.g. [1]).
Note that these steps use the private perturbed model as input
and make no further use of the original database. As a result,
there is no impact on the privacy guarantee.

Realizable model: A perturbed model may fail to be realiz-
able largely because the perturbation process does not respect
key-foreign key relationships. Intuitively, when you sample
from a realizable model, each cell in any data vector should
have sufficiently high counts to allow propagation to each of
its direct descendants.

Formally, let x[ψ] denote the summation of the cell counts
in a data vector x that satisfy the condition ψ. For exam-
ple, in Figure 7, xO[O.year=2011]=7+6=13. Define Csr =
dim(xr) ∩ dim(xs), the set of common dimensions between
two data vectors xs and xr. We also use Esr to represent
the dimensions that belong to dim(xs) − dim(xr) and at
the same time are attributes of table r or r’s ancestors. In
Figure 7, CO

C = {C.age}. If dim(xO) also includes N.nation,
EO

C = {N.nation} because the dimension N.nation is not in
xC and is an attribute of N, an ancestor of C.

Theorem 1: Assume R and S are any two tables such that
S ∈ desc(R) and let xr and xs be their corresponding data
vectors. Csr and Esr are defined as above. A model is realizable
if: ∀c ∈ dom(Csr),

xr[C
s
r = c] ≥

∑
e∈dom(Es

r)

d 1

K(R,S)
· xs[Csr = c, Esr = e]e

In Figure 7, the violation happens because

xC[C.age ≤ 40] 6≥ d 1

K(C,O)
· xO[C.age ≤ 40]e

In the theorem above, we use propagation constraints de-
fined in Section IV-A to restrict the propagation behavior. In
the context of privacy, the information of K is possibly treated
as sensitive information of the original dataset and the data
owner could choose not to disclose it to the third party. So
from their perspective, they are going to later sample synthetic
databases with the assumption that K is infinity. Or the owner
could also release the perturbed version of K.

To calibrate the data vectors and make it realizable, we
should make changes to cell counts if necessary. An inference
process that minimizes the L2 distance of all cell counts can
then be represented as a quadratic program with least squares
as the objective function. However, in real applications, data
vectors could be high dimensional with millions of entries, in
which case, standard quadratic programming inference could
be quite expensive. We design a linear-time approximation
which works quite well in our application (See Section VII-C).
The idea is that whenever the inequality in Theorem 1 is
violated, we choose to increase minimally the cell counts on
the left side of the inequality. To calibrate all data vectors into
a realizable state, we test each pair of data vectors in reverse
topological order of the schema graph.

VII. EVALUATION

In this section, we implement the modeling and sampling
methods proposed in the previous sections and evaluate the
accuracy of performance evaluation on synthetic data. We
build various models for a given workload, perturb the models,
sample a set of synthetic databases, and finally run the original
workload on both the original and synthetic databases. The
primary goal of the experiments is to compare the accuracy,
w.r.t. performance evaluation of the workload, of the non-
private and private synthetic databases.

A. Experimental setup

Datasets and workload: We use two datasets conforming
to the TPC-H schema, the uniform TPC-H generator1 with
scale factor 1 and the skewed TPC-H (denoted sTPC-H) gen-
erator [5], which generates non-uniform columns distributions
from a Zipfian distribution, where the Zipf value (z) is set to
1.25. The workload queries are generated from TPC-H query
blueprints 1, 3, 6 and 10 with various parameters substitution,
which are queries involving up to 4-way joins on primary keys
and foreign keys.

1http://www.tpc.org/tpch/

0
5000

10000
15000
20000
25000
30000

NM C1TM C2TM C3TM
model selection

av
er

ag
e

er
ro

r o
f t

he
 m

od
el

Split budget evenly Optimal partition

Fig. 8. Comparison of the error rates for different choices
of privacy budget distribution

non-private epsilon=1 epsilon=0.1

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

E
stim

ated cost
R

unning tim
e

NM C1TMC2TMC3TM NM C1TMC2TMC3TM NM C1TMC2TMC3TM
models

re
la

tiv
e

er
ro

r

DB Source

TPC-H

sTPC-H

Fig. 9. Model Error and perturbation error of TPC-H and sTPC-H

Neighboring databases definition: We assume the cus-
tomer table C is the protected entity. For this schema, we
only need to constrain the propagation to C’s descendants,
K(C,O) and K(O, L). In both datasets, propagation from
O to L is uniformly distributed from 1 to 7. By definition
of our neighboring databases, a single counting query on
Lineitem of TPC-H then has sensitivity 41 ∗ 7 = 287. It is
obvious that the strongest privacy guarantee is offered when
the propagation constraint K is set as large as the maximum.
Since the maximum propagation between C and O in sTPC-H
is 15935, the sensitivity of the same query is 15935 ∗ 7. This
is indeed the unavoidable case when conservative propagation
constraints will be too big to maintain a reasonable level of
perturbation. Thus using the modified K is one way to avoid
bad utility while still providing strong protection to the vast
majority of participants in the database. In addition, we also
want to show a fair comparison between TPC-H and sTPC-H
, so K(C,O) is set to 41 and K(O, L) is set to 7 for both
datasets. In sTPC-H, 99.764% of customers have 41 orders or
less, so setting K to 41 means 99.764% of customers have full
protection.

We set ε = 1, 0.1 and δ = 0.01. According to Equation (2),
changing δ from 0.01 to 0.001 has a factor of 1.43. Thus, they
are equivalent to ε = 1.19, 0.119 and δ = 0.001.

B. Modeling

We implement the model family described in Section III-B.
The null model (NM) serves as a baseline approach because
it does not depend on the workload. Table I shows details
about the models. For example, we see an enormous jump in
data vectors’ size for more complex models. Our algorithm
has three phases: selecting a strategy, distributing the privacy
budget and adding noise. We want to emphasize that the cost
for strategy selection is incurred only once for each workload
of queries, independent of a particular database or setting of
epsilon. Once this cost is incurred, generating perturbed data
for any database instance or setting of the privacy parameters
is efficient, and we therefore consider the overall cost of
the algorithm acceptable. For example, in our experiments,
even though we sample synthetic databases based on both
datasets, and run experiments under multiple choices of ε, we
only run the strategy selection step once for C3TM. Later
steps of distributing the privacy budget and performing actual

perturbation run in approximately 20 seconds, even for C3TM
with 106 cells in its data vectors. Figure 8 tells that our budget
allocation algorithm can reach much lower total error than
simply splitting budget evenly.

C. Sampling

The sampling process involves two steps: realization and
sampling. We apply the approximated realization introduced
in Section VI, avoiding expensive quadric programming. In the
last row of Table I we show the L1 distance on data vectors
before and after realization, which is basically negligible com-
pared to the size of database. The running time of realization
is less than a couple of seconds for all models.

NM C1TM C2TM C3TM
model queries 8 250 338 463

size of data vectors 101 103 105 106
modeling time (sec) 5 262 760 3009

changes after realization 1 17 45 60
TABLE I

DETAILED INFORMATION ABOUT MODELS

D. Utility

To assess the utility of the framework, we run workload
queries with synthetic databases and measure the performance
metrics of by comparing them with execution using the origi-
nal databases. We use PostgreSQL, and observe two measures:
1) Estimated cost. The optimizer uses statistics of databases
to decide a best query plan, and estimates the running time.
2) Running time, which is actual execution time. Note that
these two metrics are not necessarily correlated even in modern
DBMS.

Model error: In the absence of privacy, we apply standard
sampling to generate synthetic databases from unperturbed
models and run evaluation tasks on them. The error between
the collected measurements from these synthetic instances and
the true measurements from the original databases is called
model error, which helps us to understand the quality of
the selected models. We measure the model error of each
metric P by its relative error. Let Po and Ps be the value
of P on the original database and the synthetic database
respectively. The relative error of P is r(P) = |Ps−Po|

Po
. The

results are summarized in the first column of Figure 9, “non-
private”, where each bar and its error bar represents “mean ±
standard error” of the relative error. We find that all models
outperform the baseline model NM significantly, illustrating

0

1000

2000

3000

4000

25 50 75 100
choice of protection percentage

av
er

ag
e

er
ro

r o
f t

he
 m

od
el

DB Source TPC-H sTPC-H

Fig. 10. Influence of protection percentage on error rates of
model C2TM

non-private epsilon=1 epsilon=0.1

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

N
o join

Join 2 tables
Join 3+ tables

NM C1TM C2TM C3TM NM C1TM C2TM C3TM NM C1TM C2TM C3TM
models

re
la

tiv
e

er
ro

r

DB Source

TPC-H

sTPC-H

Fig. 11. Detailed model error and perturbation error of workload running time based on query
complexity

that the models are effective and that customizing the model
to the workload is important. As expected, high-level models
(C3TM and C2TM) are better than low-level ones.

Perturbation error: Next we want to evaluate the accu-
racy of performance metrics for databases synthesized using
the perturbed private models. We refer to this as perturbation
error, which includes model error and the additional distortion
of the privacy mechanism. The results, shown in Figure 9,
are presented in terms of ε in the second and third column.
With ε = 1, our models can handle noise easily, maintaining
very small lost of performance compared to non-private case.
With ε = 0.1, noise becomes more influential. We see
obvious increase of both metrics across all models. Because
the estimated cost reflects how query planner sees the table
statistics and the simpler models add less distortion to model
queries, they suffer less from low budget. For actual running
time, we see only C2TM can stay in sub-20% for both metrics
at ε = 0.1.

Utility breakdown: Our model series are constructed by
stacking up more cross table correlations, so we’d like to
differentiate the performance with joins, i.e. no-join, joining
two tables and joining 3 or more tables. The breakdown on
running time metric is illustrated in Figure 11 (We don’t
show results for estimated cost, because error is much smaller
there in all cases.) Note that, in the non-private case, C1TM
matches only non-join queries, C2TM can do up to 2-way
joins, and C3TM works for up to 3-way joins, all of which are
demonstrated in the first column. It turns out that C1TM is not
capable of dealing with high joins, especially for the skewed
database source. At ε = 1, both C2TM and C3TM shows
modest distortion, consistent with their overall performance
from Figure 9. At ε = 0.1, C2TM is marginally better than
C3TM, across all queries. This is because C3TM’s noise level
at ε = 0.1 finally ruins the benefit of having more information.
Overall, C2TM and C3TM are good for ε = 1 and C2TM
works best for ε = 0.1 but only marginally better than C3TM.

Better utility by changing protection percentage: At the
beginning of this section, we discuss that the strongest privacy
is guaranteed when setting propagation to its maximum value,
where 100% of customers is fully protected. However, large
propagation increases the sensitivity and thus noise. If reduc-
ing the percentage of customers being protected is allowed,
we get better utility. E.g., in Figure 10, we can almost achieve

half perturbation error for C2TM when only fully protecting
90% of customers from sTPC-H .

Outside workload: The model-and-sample approach is
tailored for particular workloads. The benefit of having syn-
thetic databases is to allow users to run those queries the way
they want without privacy budget concerns, e.g., using differ-
ent DBMS systems. Besides well-modeled workload queries,
it is generally interesting to see the performance of outside
queries. However, arbitrary queries might not work correctly.
E.g., if workload queries do not touch customer’s age, none
of models will have information for that. Querying customer’s
age is nothing more than getting randomly generated numbers
between 1 and 100. To test outside queries, we randomly
combines modeled attributes from any models into multi-joins.
Given the size of models and data vectors, this still represents
a big space of outside queries. We generate 20 queries, ranging
from no joins to 4-way joins, and repeat the evaluation process
above. The performance of no-join and 2-way join queries can
match up the utility of given workload, if not worse, with all
privacy budgets. For queries containing more than three joins,
the result becomes unpredictable. However, it is mostly model
error that damages the utility, and we do not see much extra
distortion from perturbation error.

VIII. RELATED WORK

There have been many proposed methods for synthesizing
relational databases [13], [17], [4], [27], [1], [2], [3], [21].
Privacy is a commonly-cited motivation [27], [1]. Yet only
one paper actually specifies a privacy condition for generated
data [28] and that condition is based on anonymization ap-
proaches that lack rigorous gaurantees and may be vulnerable
to a range of attacks demonstrated by the anonymization com-
munity. In addition, they do not provide a detailed evaluation
of utility, so a comparison with our proposal is difficult.

Among the many works on database synthesis (without
privacy), the classical method is to sample databases to derive
the data distribution and underlying attribute correlations.
Synthesis of the database is then workload-independent [13],
[17], [4], [27] (i.e., intended to support any set of queries
considered) or workload-aware [1], [3], [21] (tailored to a spe-
cific workload of interest). We argue that the workload-aware
approach is better for database synthesis, since workload-
independent approaches may maintain irrelevant information

for particular applications, as Seltzer et al. [26] observed. From
the perspective of differential privacy, supporting arbitrary
workloads requires more noise and results in lower utility.
Our modeling method, based on counting queries extracted
from workloads, is carefully adapted to the given workload.
Many researchers [4], [3] have used cardinality statistics for
(non-privately) synthesizing a database.

Differential privacy [10] has been one of the most popular
privacy definitions in recent years. Generating differentially
private synthetic datasets has been a common goal, but only
for single-table schemas [16], [32], [29], [30]. Existing results
show that in order to achieve accurate results, the data must
be targeted to a constrained set of workload queries. Recent
work from Li et al. [19], [20] proposed matrix mechanism
that is able to compute optimal noise on a set of correlated
queries and we extend that to work in a multi-relation setting.
The techniques in this paper are a significant extension to
preliminary work [14]. The PINQ framework [24] discusses
privacy for multi-relation schemas. However, the protected
entity and neighboring databases are not clearly defined and
the semantics of the join operation is modified. Lastly, Rastogi
et al [25] consider queries with joins and show that certain lim-
iting assumptions about the adversary can result in improved
utility under a model of adversarial privacy.

IX. CONCLUSION

We consider the problem of allowing untrusted analysts to
run accurate performance evaluation tasks without compro-
mising privacy. Our method releases a differentially private
model of the database, allowing an analyst to sample synthetic
databases consistent with the model. To achieve this we
re-define differential privacy for multi-relations, and present
novel techniques for selecting the model, perturbing statistics
and sampling databases. To our knowledge, our framework is
the only method for generating test databases while providing
a rigorous guarantee of privacy for individuals in the database.

Because our framework can be deployed using other
differentially-private mechanisms, a natural future direction is
to compare the utility achievable with different mechanisms.
A side effect of protecting the C entity in our multi-relation
scenario is that the descendant entities (O and L) are also
protected. Another future direction is to expand multi-relation
differential privacy if multiple entities other than C and its
descendants need to be protected.

Acknowledgements: The authors are grateful to the anony-
mous reviewers for their feedback. The authors were supported by
NSF IIS-0964094 and IIS-0643681. Any opinions, findings, and
conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES

[1] A. Arasu, R. Kaushik, and J. Li. Data generation using declarative
constraints. In SIGMOD, 2011.

[2] C. Binnig, D. Kossmann, and E. Lo. Reverse query processing. In
ICDE, 2007.

[3] C. Binnig, D. Kossmann, E. Lo, and M. Özsu. Qagen: generating query-
aware test databases. In SIGMOD, 2007.

[4] N. Bruno and S. Chaudhuri. Flexible database generators. In VLDB,
2005.

[5] S. Chaudhuri and V. Narasayya. Automating statistics management
for query optimizers. IEEE Transactions on Knowledge and Data
Engineering, 13:7–20, January 2001.

[6] G. Cormode, C. Procopiuc, D. Srivastava, and T. T. Tran. Differentially
private summaries for sparse data. In ICDT, 2012.

[7] G. Cormode, M. Procopiuc, E. Shen, D. Srivastava, and T. Yu. Differ-
entially private spatial decompositions. ICDE, 2012.

[8] B. Ding, M. Winslett, J. Han, and Z. Li. Differentially private data
cubes: optimizing noise sources and consistency. In SIGMOD, 2011.

[9] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our
data, ourselves: Privacy via distributed noise generation. EUROCRYPT,
2006.

[10] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to
sensitivity in private data analysis. Theory of Cryptography, 2006.

[11] V. Ercegovac, D. DeWitt, and R. Ramakrishnan. The texture benchmark:
measuring performance of text queries on a relational dbms. In VLDB,
2005.

[12] S. Fienberg, A. Slavkovic, and C. Uhler. Privacy preserving gwas data
sharing. In ICDMW, 2011.

[13] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. Weinberger.
Quickly generating billion-record synthetic databases. In SIGMOD,
1994.

[14] V. Gupta, G. Miklau, and N. Polyzotis. Private database synthesis
for outsourced system evaluation. 5th Alberto Mendelzon International
Workshop on Foundations of Data Management, 2011.

[15] M. Hardt, K. Ligett, and F. McSherry. A simple and practical algorithm
for differentially private data release. In NIPS, 2012.

[16] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of
differentially-private histograms through consistency. VLDB, 2010.

[17] K. Houkjær, K. Torp, and R. Wind. Simple and realistic data generation.
In VLDB, 2006.

[18] D. Kifer and A. Machanavajjhala. No free lunch in data privacy. In
SIGMOD, 2011.

[19] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing
linear counting queries under differential privacy. In PODS, 2010.

[20] C. Li and G. Miklau. An adaptive mechanism for accurate query
answering under differential privacy. In VLDB, 2012.

[21] E. Lo, N. Cheng, and W. Hon. Generating databases for query
workloads. VLDB, 2010.

[22] F. McSherry and R. Mahajan. Differentially-private network trace
analysis. In SIGCOMM, 2010.

[23] F. McSherry and I. Mironov. Differentially private recommender
systems: building privacy into the net. In SIGKDD, 2009.

[24] F. D. McSherry. Privacy integrated queries: an extensible platform for
privacy-preserving data analysis. In SIGMOD, 2009.

[25] V. Rastogi, M. Hay, G. Miklau, and D. Suciu. Relationship privacy:
output perturbation for queries with joins. In PODS, 2009.

[26] M. Seltzer, D. Krinsky, K. Smith, and X. Zhang. The case for
application-specific benchmarking. In Hot Topics in OS, 1999.

[27] Y. Tay, B. Dai, T. Wang, Y. Sun, Y. Lin, and Y. Lin. Upsizer:
Synthetically scaling an empirical relational database. Technical report,
Nat. Univ. of Singapore, 2010.

[28] X. Wu, Y. Wang, S. Guo, and Y. Zheng. Privacy preserving database
generation for database application testing. Fundamenta Informaticae,
78(4):595–612, 2007.

[29] X. Xiao, G. Bender, M. Hay, and J. Gehrke. ireduct: Differential privacy
with reduced relative errors. In SIGMOD, 2011.

[30] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet
transforms. ICDE, 2010.

[31] G. Yaroslavtsev, G. Cormode, C. Procopiuc, and D. Srivastava. Accurate
and efficient private release of datacubes and contingency tables. ICDE,
2013.

[32] G. Yuan, Z. Zhang, M. Winslett, X. Xiao, Y. Yang, and Z. Hao. Low-
rank mechanism: Optimizing batch queries under differential privacy.
VLDB, 2012.

