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ABSTRACT
We propose a novel mechanism for answering sets of count-
ing queries under differential privacy. Given a workload of
counting queries, the mechanism automatically selects a dif-
ferent set of “strategy” queries to answer privately, using
those answers to derive answers to the workload. The main
algorithm proposed in this paper approximates the optimal
strategy for any workload of linear counting queries. With no
cost to the privacy guarantee, the mechanism improves sig-
nificantly on prior approaches and achieves near-optimal er-
ror for many workloads, when applied under (ε, δ)-differential
privacy. The result is an adaptive mechanism which can help
users achieve good utility without requiring that they reason
carefully about the best formulation of their task.

1. INTRODUCTION
Differential privacy [10] guarantees that information re-

leased about participants in a data set will be virtually indis-
tinguishable whether or not their personal data is included.
There are now many algorithms satisfying differential pri-
vacy [8], however, when adopting differential privacy, users
must reason carefully about alternative mechanisms and the
formulation of their task. Their choices may have a signifi-
cant impact on the utility of the output, for the same level
of privacy. Even using the PINQ framework [16], designed
to aid uninitiated users in writing differentially-private pro-
grams, users can be faced with vastly different degrees of
accuracy depending on how their task is expressed.

Further, there are few results showing that proposed algo-
rithms are optimally accurate—that is, that they introduce
the least possible distortion required to satisfy the privacy
criterion.1 Thus, if the utility they achieve is unacceptable,
users often do not know if better utility is possible with a

1For a single numerical query, the addition of appropriately-
scaled discrete Laplace noise satisfies ε-differential privacy
and has been proven optimally accurate [11]. For workloads
of multiple queries, optimally accurate mechanisms are not
known.

different algorithm, or if their utility goals are fundamentally
incompatible with differential privacy.

In this work, we attempt to relieve the user of some of
these difficulties by developing a mechanism that automati-
cally adapts to the set of submitted queries and provides sig-
nificantly improved utility over competing approaches. We
focus on batch query answering, in which a set of queries is
answered at one time, in a single interaction with the pri-
vate server. We call the set of queries a workload, which
we allow to be any collection of linear counting queries.
This general class of queries can be used to express his-
tograms, marginals, data cubes, empirical cumulative distri-
bution functions, common aggregation queries with group-
ing, and more.

One of the motivations for considering batch query-ans-
wering of large workloads is to avoid the complications of
online mechanisms in which a user must carefully manage
their privacy budget, and, in addition, multiple users may be
required to share a single privacy budget to avoid a breach
of the privacy definition resulting from collusion. It is there-
fore appealing to structure large workloads that contain the
sufficient statistics of a data mining task, or which can si-
multaneously support the intended tasks of a group of users.
In fact, the output of our algorithms can often be treated as
a synthetic data set, albeit one which is tailored specifically
for accuracy on the queries in the given workload.

The standard approach for answering a workload of queries
under ε-differential privacy is the Laplace mechanism, which
adds to each query a sample chosen independently at ran-
dom from a Laplace distribution. The noise distribution is
scaled to the sensitivity of the workload: the maximum pos-
sible change to the query answers induced by the addition
or removal of one tuple. Large workloads often have high
sensitivity, in which case the Laplace mechanism results in
extremely noisy query answers because the noise added to
each query in the workload is proportional to the sensitivity
of the workload.

Recently, a number of related approaches have been pro-
posed which improve on the Laplace mechanism, sometimes
allowing for low error where only unacceptably high error
was possible before. They each embody a basic (but per-
haps counter-intuitive) principle: better results are possible
when you don’t ask for what you want.

The earliest example of this approach focuses on work-
loads consisting of sets of k-way marginals, for which Barak
et al. answer a set of Fourier basis queries using the Laplace
mechanism, and then derive the desired marginals [4]. For
workloads consisting of all range-count queries over an or-



dered domain, two approaches have been proposed. Xiao et
al. [21] first answer a set of wavelet basis queries, while Hay
et al. [13] use a hierarchical set of counting queries which
recursively decompose the domain. For workloads consist-
ing of sets of marginals, Ding et al. [7] recently proposed a
method for selecting an alternative set of marginals, from
which the desired counts can be derived.

These techniques can each be described in the framework
of the recently-proposed matrix mechanism [14]. Given a
workload of queries, the matrix mechanism uses the Laplace
mechanism to answer a set of strategy queries. The answers
to the strategy queries are then used to derive answers to
the workload queries by finding a solution that minimizes
squared error. (The derivation by least squares is implicit in
Barak [4] and Xiao [21], but explicit in Hay [13] and Ding
[7]). In these terms, the four approaches described above can
each be seen as providing a set of strategy queries suitable
for a particular kind of workload. Ultimately, the use of
the strategy queries and the derivation process result in a
more complex, non-independent noise distribution which can
reduce error.

The matrix mechanism makes clear that nearly any set
of strategy queries can be used in this manner to answer
a workload. Effective strategies have lower sensitivity than
the workload, and are such that the workload queries can be
concisely represented in terms of the strategy queries. But
the approach remains limited to specific strategies for range
queries [13, 21], and approaches which provide only limited
choices of strategies for marginals [4, 7].

We continue this line of work in order to create a truly
adaptive mechanism that can answer a wide range of work-
loads with low error. The key to such a mechanism is strat-
egy selection: the problem of computing the set of strategy
queries that minimizes error for a given workload. Unfortu-
nately, exact solutions to the strategy selection problem are
infeasible in practice [14]. One of our main contributions is
an approximation algorithm capable of efficiently comput-
ing a nearly optimal strategy in O(n4) time (where n is the
number of individual counting queries required to express
the workload). The result is a mechanism that adapts the
noise distribution to the set of queries of interest, relieving
the user of the burden of choosing among mechanisms or
carefully analyzing their workload.

A few main insights underlie our contributions. First, we
shift our focus to (ε, δ)-differential privacy, a modest relax-
ation of ε-differential privacy. The standard mechanism in
this case is the Gaussian mechanism, which suffers the same
limitations of the Laplace mechanism, and is also improved
by the same approaches described above. The important
difference for our results is that sensitivity is measured us-
ing the L2 metric (instead of L1) which ultimately allows
for better approximate solutions.2 Second, inspired by the
statistical problem of optimal experimental design [5, 18],
we formulate the strategy selection problem as a convex op-
timization problem which chooses n coefficients to serve as
weights for a fixed set of design queries. Third, we show
that the eigenvectors of the workload (when represented in
matrix form) capture the essential building blocks required
for near-optimal strategies and are therefore a very effective

2Our algorithm can also be adapted to ε-differential privacy,
but it is less efficient, appears to be less effective, and is
significantly harder to analyze. (Please see Sec. 3.5.)

choice for the design queries underlying the above optimiza-
tion problem.

Our adaptive mechanism advances the state-of-the-art in
terms of accuracy, under both absolute and relative measures
of error:

– For workloads targeted by prior approaches, our al-
gorithm automatically computes strategies with uni-
formly lower error. For marginals, our error can be re-
duced by as much as 6.2 times over Barak and 3.2 times
over Ding. For range queries, our error is reduced as
much as 2.6 over Xiao and 2.7 times over Hay.

– The power of our adaptive approach is most obvious
when applying the mechanism to ad hoc workloads
(which may result from specializing a larger workload
to a given task, or by combining workloads from mul-
tiple users). Error is reduced by as much as 13 times
over alternative techniques.

– Our algorithm has a provable approximation ratio and
produces strategies with near optimal absolute error
for many workloads of interest. We never witness an
approximation rate greater than 1.3 times the optimal
absolute error. For workloads of marginals, error rates
consistently match the optimal achievable error rates.

Our mechanism is also significantly more general than
prior work. It can be applied to any workload of linear count-
ing queries: a much larger class of queries than marginals or
range queries. In addition, the algorithm avoids a subtle
limitation of some previous approaches [13, 21, 7] in which
achieving promised error rates depends on finding a proper
representation for the workload.

Throughout the paper, all improvements to accuracy are
made with absolutely no cost to privacy: accuracy is im-
proved by constructing a better noise distribution satisfy-
ing the same privacy condition. In addition, while strategy
selection is the most computationally intensive part of the
mechanism, it only needs to be performed once for any work-
load, and need not be recomputed to re-run the mechanism
on a new database instance. Once the selected strategy is
preprocessed, the complexity of executing the mechanism is
no higher than applying the standard Laplace mechanism to
the workload.

The paper is organized as follows. We review definitions
and formally describe the matrix mechanism in Sec. 2. Our
algorithm is presented in Sec. 3, along with a theoretical
analysis that establishes the approximation rate and other
properties. In Sec. 4 we propose performance optimizations
which significantly improve computation time with minimal
impact on solution quality. In Sec. 5, we evaluate both
absolute and relative error rates of our mechanism on a range
of workloads. We discuss related work and conclude in Sec.
6 and Sec. 7.

2. BACKGROUND
In this section we describe our data model and privacy

conditions. We also review the fundamentals of the matrix
mechanism, including error measurement and the problem
of strategy selection. Throughout the paper, we use the no-
tation of linear algebra and employ standard techniques of
matrix analysis. For a matrix A, AT is its transpose and
trace(A) is the sum of values on the main diagonal. If A is
a square matrix with full rank, A−1 denotes its inverse. We



use diag(c1, . . . cn) to indicate an n×n diagonal matrix with
scalars ci on the diagonal.

2.1 Data Model, Linear Queries, and Workloads
The workloads considered in this paper consist of count-

ing queries over a single relation. Let the database I be an
instance of a single-relation schema R(A), with attributes
A = {A1, A2, . . . , Ak}. The crossproduct of the attribute
domains, written dom(A), is the set of all possible tuples
that may occur in I.

In order to express our queries, we first transform the in-
stance I into a data vector x of cell counts. We may choose to
fully represent instance I by defining the vector x with one
cell for every element of dom(A). Then x is a bit vector of
size |dom(A)| with nonzero counts for each tuple present in I.
This is often inefficient (the size of the x vector is the prod-
uct of the attribute domain sizes) and ineffective (the base
counts are typically too small to be estimated accurately un-
der the privacy condition). A common way to form a vector
of base counts over larger cells is to partition each dom(Ai)
into di regions, which could correspond to ranges over an or-
dered domain or individual elements (or sets of elements) in
a categorical domain. Then the individual cells are defined
by taking the cross-product of the regions in each attribute.
The choice of cells in the data vector is ultimately determined
by the workload queries that need to be expressed.

To formally define the data vector we associate, with each
element xi of x, a Boolean cell condition φi, which evaluates
to True or False for any tuple in dom(A). We always require
that the cell conditions be pairwise unsatisfiable: any tuple
in dom(A) will satisfy exactly one cell condition. Then xi is
defined to be the count of the tuples from I which satisfy φi.

Definition 1 (Data vector). Given an ordered list of
cell conditions φ1, φ2 . . . φn the data vector x is a length-n
column vector defined by n positive integral counts xi = |{t ∈
I | φi(t) is True}|.
In the sequel, the length of x is a key parameter, always
denoted by n.

Example 1. Consider the relational schema R(name,
gradyear, gender, gpa) describing students. If we wish to
form queries only over gender (Male or Female), and gpa
ranges [1.0, 2.0), [2.0, 3.0), [3.0, 3.5), [3.5, 4.0), then we can
define the 8 cell conditions enumerated in Fig. 1(a).

A linear query computes a specified linear combination of
the elements of the data vector x.

Definition 2 (Linear query). A linear query is a
length-n row vector q = [q1 . . . qn] with each qi ∈ R. The
answer to a linear query q on x is the vector product qx =
q1x1 + · · ·+ qnxn.

In addition to basic predicate counting queries, other aggre-
gates like sum and average, as well as group-by queries, can
be expressed as linear counting queries. A workload is a set of
linear queries. A workload is represented as a matrix, where
each row is a single linear counting query.

Definition 3 (Query matrix). A query matrix is a
collection of m linear queries, arranged by rows to form an
m× n matrix.

If W is an m × n query matrix, the query answer for W
is a length m column vector of query results, which can be

computed as the matrix product Wx. Note that cell con-
dition φi defines the meaning of the ith position of x, and
accordingly, it determines the meaning of the ith column of
a query matrix.

Example 2. Fig. 1(b) shows a query matrix representing
a workload of 8 linear queries. Fig. 1(c) describes the mean-
ing of the queries w.r.t. the cell conditions in Fig. 1(a).

Note that the data analyst should include in the work-
load all queries of interest, even if some queries could be
computed from others in the workload. In the absence of
noise introduced by the privacy mechanism, it might be rea-
sonable for the analyst to request answers to a small set of
counting queries, from which other queries of interest could
be computed. (E.g., it would be sufficient to recover x itself
by choosing the workload defined by the identity matrix.)
But because the analyst will receive private, noisy estimates
to the workload queries, the error of queries computed from
their combination is often increased. Our adaptive mecha-
nism is designed to optimize error across the entire set of
desired queries, so all queries should be included. As a con-
crete example, in Fig. 1(b), q3 can be computed as (q1−q2)
but is nevertheless included in the workload.

We introduce terminology for a few common workloads
used throughout the paper. The relevant properties of work-
loads are reflected by their matrix representation, so we often
drop explicit mention of the schema and attributes involved
and focus simply on the number of distinct attributes and the
number of disjoint buckets for each attribute, assuming that
cells are formed uniformly in the manner described above.

We consider predicate queries, range queries and k-way
marginal queries. In addition, since each k-way marginal
query covers a single value on the margin, one may need to
sum answers to multiple marginal queries in order to answer
any range query on the margin. When the answers to the
marginal queries have noise, summing introduces too much
accumulated noise. Therefore, in this paper, we also consider
k-way range marginal queries, each of which aggregates mul-
tiple k-way marginal queries so as to cover a range on the
margin.

Example 3. Of the queries in Fig. 1, the first seven
are range queries (and therefore predicate queries as well).
q1 . . .q5 are one-way range marginal queries, in which q1,
q2, q3 are one-way range marginal queries over gender and
q1,q4,q5 are one-way range marginal queries over gpa; q2,q3

are also one-way marginal queries.

We often consider large workloads consisting of all queries
of a given type, such as “all predicate”, “all range”, “all k-
way range marginal”, “all k-way marginal” and “all marginal”
(the union of all k-way marginals for 0 ≤ k ≤ m). Notice
there is no workload of “all range marginal” since it is equiv-
alent to “all range”. Later we will also consider ad hoc work-
loads consisting of arbitrary subsets of each of these types
of queries and their combinations. In practice such work-
loads are important because they may arise from combining
queries of interest to multiple users, or from specializing a
general workload to a more specific task, to improve error.

2.2 Differential Privacy and Gaussian Noise
Standard ε-differential privacy [10] places a bound (con-

trolled by ε) on the difference in the probability of query



φ1 : gpa ∈ [1.0, 2.0) ∧ gender = M
φ2 : gpa ∈ [2.0, 3.0) ∧ gender = M
φ3 : gpa ∈ [3.0, 3.5) ∧ gender = M
φ4 : gpa ∈ [3.5, 4.0) ∧ gender = M
φ5 : gpa ∈ [1.0, 2.0) ∧ gender = F
φ6 : gpa ∈ [2.0, 3.0) ∧ gender = F
φ7 : gpa ∈ [3.0, 3.5) ∧ gender = F
φ8 : gpa ∈ [3.5, 4.0) ∧ gender = F

(a) Cell conditions Φ



1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
1 1 1 1 -1 -1 -1 -1


(b) A query workload W

q1: all students;
q2: female students;
q3: male students;
q4: students with gpa < 3.0;
q5: students with gpa ≥ 3.0;
q6: female students with gpa ≥ 3.0;
q7: male students with gpa < 3.0;
q8: difference between male and female students.

(c) Counting queries defined by rows of W

Figure 1: For schema R = (name, gradyear, gender, gpa), (a) shows 8 cell conditions on attributes gender and gpa.
The database vector x (not shown) will accordingly consist of 8 counts; (b) shows a sample workload matrix
W consisting of 8 queries, each described in (c).

answers for any two neighboring databases. For database in-
stance I, we denote by nbrs(I) the set of databases differing
from I in at most one record. Approximate differential pri-
vacy [9, 17], is a modest relaxation in which the ε bound
on query answer probabilities may be violated with small
probability (controlled by δ).

Definition 4. (Approximate Differential Privacy)
A randomized algorithm K is (ε, δ)-differentially private if for
any instance I, any I ′ ∈ nbrs(I), and any subset of outputs
S ⊆ Range(K), the following holds:

Pr[K(I) ∈ S] ≤ exp(ε)× Pr[K(I ′) ∈ S] + δ

When δ = 0, the condition is standard ε-differential privacy.
Both definitions can be satisfied by adding random noise

to query answers. The magnitude of the required noise is de-
termined by the sensitivity of a set of queries: the maximum
change in a vector of query answers over any two neighboring
databases. But the two privacy definitions differ in the mea-
surement of sensitivity and in their noise distributions. Stan-
dard differential privacy can be achieved by adding Laplace
noise calibrated to the L1 sensitivity of the queries [10].
Approximate differential privacy can be achieved by adding
Gaussian noise calibrated to the L2 sensitivity of the queries
[9, 17]. Our main results focus on approximate differential
privacy, but we discuss extensions to standard differential
privacy in Sec 3.5.

Our query workloads are represented as matrices, so we ex-
press the sensitivity of a workload as a matrix norm. Because
neighboring databases I and I ′ differ in exactly one tuple,
and because cell conditions are disjoint, it follows that the
corresponding vectors x and x′ differ in exactly one compo-
nent, by exactly one, in which case we write x′ ∈ nbrs(x).
The L2 sensitivity of W is equal to the maximum L2 norm
of the columns of W. Below, cols(W) is the set of column
vectors Wi of W.

Proposition 1 (L2 Query matrix sensitivity). The
L2 sensitivity of a query matrix W is denoted ||W||2, defined
as follows:

||W||2
def
= max

x′∈nbrs(x)
||Wx−Wx′||2 = max

Wi∈cols(W)

||Wi||2

For example, for W in Fig. 1(b), we have ||W||2 =
√

5.
The classic differentially private mechanism adds indepen-

dent noise calibrated to the sensitivity of a query workload.
We use Normal(σ)m to denote a column vector consisting of
m independent samples drawn from a Gaussian distribution
with mean 0 and scale σ.

Proposition 2. (Gaussian mechanism [9, 17]) Given
an m× n query matrix W, the randomized algorithm G that
outputs the following vector is (ε, δ)-differentially private:

G(W,x) = Wx + Normal(σ)m

where σ = ||W||2
√

2 ln(2/δ)/ε

Recall that Wx is a vector of the true answers to each
query in W. The algorithm above adds independent Gaus-
sian noise (scaled by ε, δ, and the sensitivity of W) to each
query answer. Thus G(W,x) is a length-m column vector
containing a noisy answer for each linear query in W.

2.3 The Matrix Mechanism
The matrix mechanism has a form similar to the Gaussian

mechanism but adds a more complex noise vector. It uses a
strategy matrix, A, to construct this vector.

Proposition 3. ((ε, δ)-Matrix Mechanism [14]) Given
an m × n query matrix W, and assuming A is a full rank
p × n strategy matrix, the randomized algorithm MA that
outputs the following vector is (ε, δ)-differentially private:

MA(W,x) = Wx + WA+Normal(σ)m.

where σ = ||A||2
√

2 ln(2/δ)/ε

Here A+ is the pseudo-inverse of A: A+ = (ATA)
−1

AT ;
if A is a square matrix, then A+ is just the inverse of A. The
intuitive justification for this mechanism is that it is equiva-
lent to the following three-step process: (1) the queries in the
strategy are submitted to the Gaussian mechanism; (2) an es-
timate x̂ for x is derived by computing the x̂ that minimizes
the squared sum of errors (this step consists of standard lin-
ear regression and requires that A be full rank to ensure a
unique solution); (3) noisy answers to the workload queries
are then computed as Wx̂. The answers to W derived in
step (3) are always consistent because they are computed
from a single noisy version of the cell counts, x̂.

Like the Gaussian mechanism, the matrix mechanism com-
putes the true answer vector Wx and adds noise to each
component. But a key difference is that the scale of the
Gaussian noise is calibrated to the sensitivity of the strategy
matrix A, not that of the workload. In addition, the noise
added to query answers is no longer independent, because
the vector of independent Gaussian samples is transformed
by the matrix WA+.

Example 4. The three strategy matrices in Fig. 2 can be
used by the matrix mechanism to answer the workload W in
Fig. 1(b), with differing results. The first strategy is the iden-
tity matrix, the second is the Haar wavelet strategy, and the
third is the output of the algorithm proposed in Sec 3. With



Identity Wavelet
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




1 1 1 1 1 1 1 1
1 1 1 1 -1 -1 -1 -1
1 1 -1 -1 0 0 0 0
0 0 0 0 1 1 -1 -1
1 -1 0 0 0 0 0 0
0 0 1 -1 0 0 0 0
0 0 0 0 1 -1 0 0
0 0 0 0 0 0 1 -1


Adaptive Algorithm Output 0 0 -.1 .1 .19 -.19 0 0

0 0 .19 -.19 .1 -.1 0 0
-.3 -.3 .33 .33 .33 .33 -.3 -.3
.47 .47 -.5 -.5 .5 .5 -.47 -.47
.56 .56 .53 .53 -.53 -.53 -.56 -.56
.62 .62 .57 .57 .57 .57 .62 .62


Figure 2: Alternative strategy matrices that can be
used to answer workload W from Fig 1(b). The
root mean square error of answering W when us-
ing the identity, wavelet, and adapted strategies is
45.36, 34.62 and 29.79, respectively.

ε = 0.5 and δ = 0.0001, if the workload itself is used as the
strategy, the root mean square error of answering W is 47.78.
The root mean square error using the identity, wavelet, and
adaptive strategies is 45.36, 34.62 and 29.79, respectively. It
is possible to prove that no strategy can answer W with error
less than 29.18, so the algorithm is finding a nearly optimal
strategy for this workload.

Intuitively, by using the identity strategy, we get noisy esti-
mates of each cell count using the Gaussian mechanism, and
then use those estimates to compute the workload queries.
This strategy performs poorly for workload queries that sum
many base counts because the variance of the independent
noise increases additively. The wavelet addresses this lim-
itation by allowing large range queries to be estimated by
combining the answers to just a few of the wavelet strategy
queries. It offers a dramatic improvement over the identity
strategy for workload consisting of all range queries. How-
ever, the wavelet is not necessarily appropriate for every
workload. Our algorithm produces a strategy customized to
W, allowing for reduced error.

2.4 Optimal Error for the Matrix Mechanism
We measure the accuracy of a noisy query answer using

root mean square error. For a workload of queries, the error
is defined as the root mean square error of the vector of
answers, which we refer to simply as workload error in the
remainder of the paper.

Definition 5 (Query and Workload Error). Let
ŵ be the estimate for query w under the matrix mechanism
using query strategy A. That is, ŵ =MA(w,x). The query
error of the estimate for w using strategy A is:

ErrorA(w)
def
=

√
E[(wx− ŵ)2].

Given a workload W consisting of m queries, the workload
error of answering W using strategy A is:

ErrorA(W)
def
=

√
1

m

∑
wi∈W

ErrorA(wi)2.

The query answers returned by the matrix mechanism are
linear combinations of noisy strategy query answers to which
independent Gaussian noise has been added. Thus, as the
following proposition shows, we can directly compute the
error for any linear query w or workload W as a function of
ε, δ, and A:

Proposition 4. (Workload Error) Given a workload
W, the error of answering W using the (ε, δ) matrix mech-
anism with query strategy A is:

ErrorA(W) = ||A||2
√
P (ε, δ) trace(WTW(ATA)−1) (1)

where P (ε, δ) = 2 log(2/δ)

ε2
.

To build a mechanism that adapts to a given workload
W, our goal is to select a strategy A to minimize the above
formula. The optimal strategy for a workload W is defined
to be one that minimizes the workload error:

Problem 1. (Optimal Strategy Selection) Given a
workload W, find a query strategy A0 such that:

ErrorA0(W) = minAErrorA(W). (2)

We denote the problem of computing an optimal strategy
matrix as OptStrat(W) and the workload error under this
strategy as OptError(W). It is possible to compute an ex-
act solution to OptStrat(W) by representing it as a convex
optimization problem [14]. However, encoding the neces-
sary constraints results in a problem with a large number of
variables and optimization takes O(n8) time with standard
solvers, making it infeasible for practical applications. One
of our main goals is to efficiently find approximately optimal
strategy matrices, for any provided workload.

We emphasize that the algorithms in this paper optimize
the workload error, an absolute measure of error. The solu-
tion to this optimization problem depends on the workload
alone, not on the input database. (This is evident from the
fact that x, the vector of database counts, does not appear in
Eq. (1) above.) We also consider relative error in the exper-
imental evaluation, which inherently depends on the input
database. We show that low relative error for a workload W
can be achieved by optimizing (absolute) error of a workload
whose rows have been scaled in a straightforward way.

3. AN ALGORITHM FOR EFFICIENT
STRATEGY SELECTION

In this section we present an approximation algorithm for
the strategy selection problem, prove its approximation rate
and other properties, and discuss adapting the algorithm to
ε-differential privacy.

3.1 Optimal Query Weighting
The main difficulty in solving OptStrat(W) is computing

(subject to complex constraints) all n2 entries of a strategy
matrix. To simplify the problem, we take inspiration from
the related problem of optimal experimental design [18].

Consider a scientist who wishes to estimate the value of n
unknown variables as accurately as possible. The variables
cannot be observed directly, but only by running one or more
of a fixed set of feasible experiments, each of which returns a
linear combination of the variables. The experiments suffer
from observational error, but those errors are assumed inde-
pendent, and it follows that the least square method can be
used to estimate the unknown variables once the results of
the experiments are collected. Each experiment has an as-
sociated cost (which may represent time, effort, or financial
expense) and the scientist has a fixed budget. The optimal
experimental design is the subset (or weighted subset) of fea-
sible experiments offering the best estimate of the unknown
variables and with a cost less than the budget constraint.



There is an immediate analogy to the problem of strategy
selection: our strategy queries are like experiments that pro-
vide partial information about the unknown data vector x,
and the final result will be computed using the least square
method. However, in our setting, we are permitted to ask
any query, with a cost (arising from the increase in sensitiv-
ity) which impacts the added noise. In addition, our goal is
to minimize the workload error, while experimental design
always minimizes the error of the individual variables (i.e.
the error metric in experimental design is equivalent to our
problem only if W is the identity matrix).

Despite these important differences, we adopt from exper-
imental design the idea to limit the selection of our strategy
to weighted combinations of a set of design queries that are
fixed ahead of time. Naturally, design queries with a weight
of zero are omitted. For a set of design queries Q, the fol-
lowing problem, denoted OptStratQ(W), selects the set of
weights which minimizes the workload error for W.

Problem 2 (Approximate Strategy Selection).
Let W be a workload and Q = {q1, . . .qk} the design queries.
For weights Λ = (λ1 . . . λk) ∈ Rk, let matrix AΛ,Q =
[λ1q, . . . , λkqk]T . Choose weights Λ0 ∈ Rk such that:

ErrorAΛ0,Q(W) = minΛ∈RkErrorAΛ,Q(W). (3)

The solution to this problem only approximates the truly
optimal strategy since it is limited to selecting a strategy
that is a weighted combination of the design queries. But
OptStratQ(W) can be computed much more efficiently than
OptStrat(W). To do so, we describe OptStratQ(W) as
a semi-definite program [5], a special form of convex opti-
mization in which a linear objective function is minimized
over the cone of positive semidefinite matrices. Below, ◦
is the Hadamard (entry-wise) product of two matrices, and
for symmetric matrix Q, Q � 0 denotes that Q is positive
semidefinite, which means xTQx ≥ 0 for any vector x.

Program 1 Optimal Query Weighting

Given: c1, . . . , cn, Q = [q1, . . . ,qn].

Choose: u1, . . . , un, v1, . . . , vn.

Mimimize: c1v1 + . . .+ cnvn.

Subject to:

[
ui 1
1 vi

]
� 0, i = 1, . . . , n.

(Q ◦ Q)Tu ≤ 1.

Theorem 1. Given a workload W and a set of design
queries Q = {q1, . . .qn}, let c1, . . . , cn be the squared L2

norms of the columns of matrix WQ+. If the output of
Program 1 is u1, . . . , un then setting Λ = {√u1 . . .

√
un}

achieves OptStratQ(W).

Algorithms for efficiently solving semidefinite programs have
received considerable attention recently [5]. Using standard
algorithms, Program 1 can be solved in O(n|Q|3) time. Re-
call that the complexity of computing OptStrat(W) isO(n8).
Thus, Program 1 offers an efficiency improvement as long as
|Q| = O(n2). This provides a target size for selecting the
design set, which we turn to next.

3.2 Choosing the Design Queries
The potential of the above approach depends on finding

a set of design queries, Q, that is concise (containing no

more than n2, and preferably n, queries) and also expressive
(so that near-optimal solutions can be expressed as weighted
combinations of its elements).

One straightforward idea is to adopt as the design queries
one of the proposed strategy matrices from prior work. These
are good strategy matrices for specific workloads such as the
set of all range queries (wavelet or hierarchical strategy) or
sets of low order marginals (the Fourier strategy). Choos-
ing one of these for Q would guarantee that OptStratQ(W)
produces a solution that improves upon the error of using
that strategy. Unfortunately these strategies are not suf-
ficiently expressive for workloads very different from their
target workloads.

Another possibility is to use the workload itself as the set
of design queries, but there are two difficulties with this.
First, there is no guarantee that a workload includes within
it the components from which a high quality strategy may
be formed, especially if the workload only contains a small
set of queries. The workloads of all range and all predicate
queries are in fact sufficiently expressive (e.g. both the hi-
erarchical strategy and a strategy equivalent to wavelet can
be constructed by applying weights to the set of all range
queries). But this leads to the second issue: these work-
loads, and others that serve important applications, are too
large and fail to meet our conciseness requirement.

To avoid these pitfalls, we will derive the design set from
the given workload W by applying tools of spectral analysis.
Intuitively this is a good choice because the eigenvectors of
a matrix often capture its most important properties. We
will also show in the next section that this choice aids in
the theoretical analysis of the approximation ratio because
it allows us to relate the output of OptStratQ(W) to a lower
bound on error that is a function of the workload eigenvalues.

Recall that the key part of the expression for Eqn. (1) in
Prop. 4 is trace(WTW(ATA)−1), and notice that the work-
load occurs only in the form of WTW. It follows that there
are many workloads with equivalent error because it is easy
to construct a matrix W0 such that WT

0 W0 = WTW by let-
ting W0 = QW for any orthogonal matrix Q. This suggests
that, as far as workload error under the matrix mechanism
is concerned, the essential properties of the workload are re-
flected by WTW. This motivates the following definition of
eigen-queries of a workload, which we will use as our design
set.

Definition 6 (Eigen-queries of a workload).
Given a workload W, consider the eigen-decomposition of
WTW into WTW = QTDQ, where Q is an orthogonal
matrix and D is a diagonal matrix. The eigen-queries of
W are the rows of Q (i.e. the eigenvectors of WTW).

Choosing the eigen-queries of W as the design set meets
our conciseness requirement because there are never more
than n eigen-queries. Thus Program 1, OptStratQ(W), has
complexity O(n4), which is O(n4) times faster than solving
OptStrat(W). We also find that the eigen-queries meet our
expressiveness objective. We will show this next by proving
a bound on the approximation ratio. In Sec. 4 we propose
techniques that exploit the fact that using subsets of the
eigen-queries retain much of the expressiveness and increase
efficiency. And in Section 5, we show experimentally that
weighted eigen-queries allow for near-optimal strategies, and
also that the eigen-queries outperform other natural alterna-
tives for the design set.



3.3 The Eigen-Design Algorithm
It remains to define the complete Eigen-Design algorithm,

which is Program 2:

Program 2 The Eigen-Design Algorithm

Input: Workload matrix W.
Output: Strategy matrix A.
1: Compute the eigenvalue decomposition of WTW = QTDQ,

where D = diag(σ1, . . . , σn) and set Q = Q.
2: Compute weights λ1, . . . , λn by solving Program 1 for above
Q and with ci = σi, i ∈ [1..n].

3: Construct matrix A′ = ΛQ where Λ = diag(λ1, . . . , λn).
4: Let m11, . . . ,mnn be the L2 norm of columns of A′ and define

D′ = diag(maxi{
√
m2
ii −m2

11}, . . . ,maxi{
√
m2
ii −m2

nn}).

5: Return A =
[

A′

D′

]
.

The algorithm performs the decomposition of WTW to
derive the design queries (Step 1), and solves OptStratQ(W)
using the eigen-queries as the design set (Step 2). The ma-
trix A′ that is constructed in Step 3 is a candidate strategy
but may have one or more columns whose norm is less than
the sensitivity. In this case, it is possible to add queries,
completing columns, without raising the sensitivity (Step 4
and 5). These additional queries can only provide more in-
formation about the database, and hence reduce error.

3.4 Analysis of the Eigen-Design Algorithm
We now consider the accuracy and generality of the eigen-

design algorithm, showing a bound on the worst-case approx-
imation rate and that the accuracy of the algorithm is robust
with respect to the representation of the input workload.

Approximation Rate
To bound the approximation rate, we use an existing result
showing a lower bound on the optimal error achievable for a
workload using the (ε, δ)-matrix mechanism [15]. The exis-
tence of this bound does not imply an algorithm for achiev-
ing it, but it is a useful tool for understanding theoretically
and experimentally the quality of the strategies produced by
OptStrat(W) using the eigenvalues of W.

Theorem 2 (Singular Value Bound [15]). Given
any m × n workload W. Let σ1, . . . , σn be the eigenval-
ues of matrix WTW. The singular value bound of W is
svdb(W)= 1

n
(
√
σ1+. . .+

√
σn)2,and bounds OptError(W):

OptError(W) ≥
√
P (ε, δ)svdb(W).

Intuitively, let Al be the strategy that is defined by weight-
ing the eigen queries of W by

√
σ1, . . . ,

√
σn. The singular

value bound comes from underestimating the sensitivity of
Al using

√
trace(AT

l Al)/n. In practice, though the singular
value bound may not be achieved since there is a gap be-
tween the sensitivity of Al and

√
trace(AT

l Al)/n, the idea
of weighting the eigen queries can be combined with the ex-
perimental design method to find good strategies to W.

Notice the strategy Al is contained in the possible solu-
tions of Program 2. Thus the approximation ratio of Pro-
gram 2 can be estimated by using the approximation ratio
of the singular value bound.

Theorem 3. Given workload W, let σ1 be the largest
eigenvalue of WTW, Program 2 gives a strategy that approx-
imates OptError(W) with a ratio of (nσ1/svdb(W))1/4.

This theorem shows that the approximation ratio of applying
Program 2 to a workload W can be bounded by analyzing
the eigenvalues of matrix WTW.

In practice, the ratio between the error of the eigen strate-
gies and the optimal error is much smaller for a wide range
of common workloads. In the experiments in Sec. 5, the
largest ratio is at most 1.3 and in a number of cases the
ratio is essentially equal to 1, modulo numerical imprecision.

Representation Independence
We say that the Eigen-Design algorithm is representation
independent because its output is invariant for semantically
equivalent workloads and error equivalent workloads. Recall
that the logical semantics of a workload matrix W depends
on its cell conditions. For any workload matrix W, reorder-
ing its cell conditions leads to a new matrix W′ with accord-
ingly reordered columns. In this case, we say W and W′ are
semantically-equivalent.

Naturally, we hope for a mechanism with equal error for
any two semantically-equivalent representations of a work-
load. Some prior approaches do not have this property.
For example, the wavelet and hierarchical strategies exploit
the locality present in the canonical representation of range
queries. An alternative matrix representation of the range
queries may result in significantly larger error. The Eigen-
Design algorithm does not suffer from this pitfall:

Proposition 5 (Semantic equivalence). Let W1

and W2 be two semantically-equivalent workloads and sup-
pose Prog. 2 computes strategy A1 on workload W1 and A2

on workload W2. Then ErrorA1(W1) = ErrorA2(W2).

A related issue arises for two workloads that may be se-
mantically different, but can be shown to have equivalent
error. Since W appears as WTW in the expression for er-
ror of a workload, it follows that, for any orthogonal matrix
Q, workload QW has error equal to W under any strategy.
And in particular, any two such workloads have equal min-
imum error. The Eigen-Design algorithm always finds the
same strategies for any two error-equivalent workloads:

Proposition 6 (Error equivalence). Let W1 and
W2 be two error-equivalent workloads (i.e. W1 = QW2

for some orthogonal Q) and suppose Program 2 computes
strategy A1 on workload W1 and A2 on workload W2. Then
ErrorA1(W1) = ErrorA2(W2)

This result follows from the fact that the input to Pro-
gram 1 uses the eigenvectors of WTW, and therefore oper-
ates identically on equivalent workloads.

Optimizing for Relative Error
The discussion above is about workload error, an absolute
measure of error. Our adaptive approach can also be used
to find strategies offering low relative error. However, these
are two fundamentally different optimization objectives and
a single strategy matrix will not, in general, satisfy both.

One major difference between computing absolute error
and relative error is the impact of the L2 norm of a query
vector. According to Prop. 3 and Def. 5, the query error
of w under strategy A is proportional to the L2 norm of
w. Therefore a scaled query kw has k times larger query
error compared with w, and thus a query with higher L2

norm contributes more to workload error. But because the



relative error does not change with the L2 norm of the query,
using strategies optimized for workload error will not lead to
optimal relative error.

Because the matrix mechanism is a data-independent mech-
anism, it is not possible to optimize for relative error directly.
If the distribution of the target dataset were known, we could
scale each query by its weighted L2 norm, where the weight
on each cell is proportional to the inverse of its probability.
This scaling will optimize towards relative error by neutral-
izing the fact that the designed strategies are biased towards
high norm queries. Since the underlying distribution is typ-
ically unknown, we introduce a heuristic scaling, prior to
applying the Eigen-Design algorithm, in which each query
is normalized to make its L2 norm 1. This is equivalent to
assuming a uniform distribution over the cells. In Sec 5,
we show that, for two real datasets, this approach results in
significantly lower relative error than competing techniques.

3.5 Application to the ε-Matrix Mechanism
There are a number of challenges to applying the opti-

mally weighted design approach under ε-differential privacy.
Recall, once again, the formula for workload error from Prop.
4: ||A||2

√
trace(WTW(ATA)−1). To move to ε-differential

privacy, only the sensitivity term changes, from L2 to L1:
||A||1

√
trace(WTW(ATA)−1). In the former case, the sen-

sitivity term ||A||2 is uniquely determined by ATA. But
in the latter case, computing a near-optimal ATA is not
enough, because ||A||1 remains undetermined and is itself
hard to optimize. As a result, it is more challenging (al-
though still possible) to represent the optimal query weight-
ing as a convex optimization problem. We omit its formal
encoding, but note that the resulting problem is also less ef-
ficient because we can no longer rely on second order cone
programming.

Furthermore, there does not seem to be a universally good
design set: the eigen-queries do not outperform other bases,
in general, because they characterize only the properties
of WTW but do not account for the L1 sensitivity. We
can nevertheless still use our algorithm to improve existing
strategies. For example, using the Wavelet basis in the algo-
rithm can improve its performance on all range and random
range queries by a factor of 1.1 and 1.5, respectively; using
the Fourier basis can improve its performance on low order
marginals by a factor of 1.6.

Lastly, we do not know of an analogue of Thm 2 providing
a guaranteed error bound for the ε-Matrix Mechanism to
verify the quality of the output.

These challenges motivate our choice to focus on (ε, δ)-
differential privacy. While the two privacy guarantees are
strictly-speaking incomparable, for conservative settings of
δ, a user may be indifferent between the two. It is then
possible to show that the asymptotic error rates for many
workloads are roughly comparable between the two models.

4. COMPLEXITY AND OPTIMIZATIONS
We focus next on methods to further reduce the complex-

ity of approximate strategy selection. We first analyze the
complexity of the strategy selection algorithm and show that
it can be solved more efficiently for low rank workloads, with
no impact on the quality of the solution. Then we propose
two approaches which can significantly speed up strategy
selection by reducing the size of the input to Program 2. In-
tuitively, both approaches perform strategy selection over a

summary of the workload that is constructed from its most
significant eigenvectors, potentially sacrificing fidelity of the
solution. We evaluate the latter two techniques in Sec 5.2.

4.1 Complexity Analysis
The rank of workload matrix W, denoted by rank(W),

is the size of the largest linearly-independent subset of the
rows (or, equivalently, columns). When rank(W) is its max-
imum value, n, we say that W has full rank, which im-
plies that accurate answers to the workload queries in W
uniquely determine every cell count in x. The complexity
of the strategy selection algorithm can be broken into three
parts: computing the eigenvectors and eigenvalues of matrix
WTW, solving the optimization problem, and constructing
the strategy. If an eigenvalue is equal to zero, the eigenvalue
and its corresponding eigenvectors are not actually involved
the optimization and strategy construction, so they can be
omitted in practice. Since the number of nonzero eigenvalues
of WTW is equal to rank(W), the complexity of Programs 2
is O(nm rank(W) + n rank(W)3).

The complexity analysis above indicates that its efficiency
can be significantly improved when rank(W) � n. For ex-
ample, the rank of low order marginal workloads can be
bounded by the number of queries in the workload. Suppose
a low-order marginal workload is defined on a k-dimensional
space of cell conditions, each of which has size d. If the work-
load only contains one-way marginals, the complexity of solv-
ing Program 2 over this workload is bounded by O(k3d3+k).
If the workload consists of one and two-way marginals the
complexity is O(k6dk+6). Both of these bounds are much
smaller than O(d4k).

4.2 Workload Reduction Approaches
Next we propose two approaches which allow us to re-

duce the number of variables in the optimization problem.
Both are inspired by principal component analysis (PCA),
in which a matrix is characterized by the so-called principal
eigenvectors, which are the eigenvectors associated with the
largest eigenvalues.

In our case, recall that we cannot ignore the non-principal
eigenvectors since the rank of the strategy matrix A cannot
be lower than the workload matrix W. Instead, we either
compute separately the weights for the principal and remain-
ing eigenvectors, or we choose the same weights for all the
remaining eigenvectors.

Eigen-Query Separation
In eigen-query separation, we partition the eigen-queries into
groups of a specified size according to their corresponding
eigenvalues. Treating one group at a time, Program 1 is exe-
cuted to determine the optimal weights just for the eigenvec-
tors of that group. After the individual group optimizations
are finished, another optimization can be used to calculate
the best factor to be applied to all queries in each group. If
the group size is large, all of the principal eigenvectors may
be contained in one group, in which case the most important
weights will be computed precisely.

The complexity of eigen-query separation depends on the
group division. Notice that during the optimization of each
group, the convex optimization problem is equivalent to set-
ting all eigenvalues of excluded eigenvectors to zero. Analo-
gous to the discussion of low rank workloads, letting the size
of group be ng, the complexity of solving the optimization



problem over each group is O(nn3
g). Similarly, the time com-

plexity to combine all the groups is O(n(n/ng)
3), and there-

fore O(n2n3
g + n(n/ng)

3) in total. Asymptotically, the com-
plexity of eigen-query separation is minimized when ng =
O(n1/3). Then the complexity of the entire process is O(n3),
the same as the cost of standard matrix multiplication.

Principal Vectors Optimization
In the principal vector optimization we use a subset of the
k most important eigenvectors as the design set, computing
the optimal weights as usual. Instead of ignoring the less
important eigenvectors (as is typical in PCA) we simply use
a single common weight for each of the excluded vectors that
have non-zero eigenvalues. The number of variables in the
convex optimization is reduced to k + 1 so that the time
complexity is reduced to O(nk3). Experimentally we find
that good results are possible with as little as 10% of the
eigenvectors.

In Sec. 5.2 we show that both of the above approaches
can improve execution time by two orders of magnitude with
modest impact on solution quality. Extending our theoretical
bound on the approximation rate to these approaches is an
interesting direction for future work.

5. EXPERIMENTAL EVALUATION
The empirical evaluation of our mechanism has three ob-

jectives: (i.) to measure solution quality of the Eigen-Design
algorithm using both absolute and relative error; (ii.) to mea-
sure the trade-off between speed-up and solution quality of
our two performance optimizations; and (iii.) to measure
the effectiveness of using the eigen-queries as the design set.
Experimental conclusions are presented in Sec. 5.4.

Experimental Setup
Recall that workload error is an absolute error measure based
on root mean square error. Workload error can be analyti-
cally computed using Prop. 4, and this is precisely the er-
ror that will be witnessed when running repeated trials and
computing the mean deviation. Further, workload error is
independent of the true counts in data vector x. That is,
it is independent of the input data. These facts hold for all
instances of the matrix mechanism, and therefore for each
of the competing techniques we consider below. Therefore,
when evaluating this absolute error measure, we do not per-
form repeated trials with samples of random noise nor do
we use any datasets. In addition, all measures of workload
error include the same factor P (ε, δ), so that changing the
privacy parameters impacts each method with the same fac-
tor, leaving the ratio of their error the same. Consequently,
for workload error, we simply fix ε = 0.5 and δ = 0.0001.

For workload error, all error measurements are purely a
function of the workload, reflecting the hardness of simulta-
neously answering a set of queries under differential privacy.
In addition, these error rates can be compared directly with
the lower bound as Theorem 2, reflecting a bound on the
approximation rate. (This lower bound is not known to be
achievable for all workloads, but nevertheless informs the
quality of the eigen-strategy and its competitors.)

We also evaluate the relative error rates achievable using
our algorithm by computing the strategy that minimizes ab-
solute error on a scaled workload, as described in Sec. 3.4. Of
course, the relative error rates reported in experiments are

always for the original input workload. In these experiments
we vary the value of ε, for a fixed δ = 0.0001, and consider
two real datasets. The first dataset is the US individual cen-
sus data in the past five years3, which are aggregated on age,
occupation and income. The second is the Adult dataset4, in
which tuples are weight-aggregated on age, work, education
and income. The size and dimensions of the datasets are:

Dataset Dimension # Tuples
US Census 8× 16× 16 15M

Adult 8× 8× 16× 2 33K

Table 1: The size and dimensions of the datasets

All experiments are executed on a quad-core 3.16GHz In-
tel CPU with 8 GB memory. Our Python implementation
extends publicly-available code for the matrix mechanism [2]
and also uses the dsdp solver [3] in the cvxopt [1] package.

Competing Approaches
We compare the Eigen-Design strategy with the following
four alternatives. Although originally proposed in the con-
text of ε-differential privacy, each is easily adapted to (ε, δ)-
differential privacy and the shift generally improves the rela-
tionship to the optimal error rate (with the exception of the
Fourier strategy, noted below).

Fourier is designed for workloads consisting of all k-way
marginals, for given k [4]. The strategy transforms
the cell counts with the Fourier transformation and
computes the marginals from the Fourier parameters.
When the workload is not full rank, the unnecessary
queries of the Fourier basis are removed from the strat-
egy to reduce sensitivity. The effectiveness of the Fourier
strategy is somewhat reduced under (ε, δ)-differential
privacy because dropping unnecessary queries results
in a smaller sensitivity reduction using L2.

DataCube is an adaptive method that supports marginal
workloads [7]. We implemented the BMAX algorithm,
which chooses a subset of input marginals so as to min-
imize the maximum error when answering the input
workload. To adapt the algorithm to (ε, δ)-differential
privacy, sensitivity is measured under L2 instead of L1.

Wavelet supports multi-dimensional range workloads by
applying the Haar wavelet transformation to each di-
mension [21]. When using ε-differential privacy, Xiao
et al. also introduced a hybrid algorithm that uses the
identity strategy on dimensions with small size. This
optimization is unnecessary under (ε, δ)-differential pri-
vacy: the hybrid algorithm does not lead to smaller
error when sensitivity is measured under L2.

Hierarchical aims to answer workloads of range queries
using a binary tree structure of queries: the first query
is the sum of all cells and the rest of the queries re-
cursively divide the first query into parts [13]. We test
binary hierarchical strategies (although higher orders
are possible). The strategy in [13] supports one di-
mensional range workloads, but is adapted to multiple
dimensions in a manner analogous to Wavelet [21].

We do not compare with the error of the standard Gaus-
sian mechanism, which, for the workloads considered, is far
3Integrated Public Use Microdata Series: usa.ipums.org
4UCI Machine Learning Repository: archive.ics.uci.edu/ml/
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Figure 3: Absolute and relative error for the Eigen-Design algorithm and competitors, for range and marginal
workloads, on 2048 cells. “Lower Bound” is a bound on the best possible error achievable by any strategy.

worse than all alternatives. Prior works [13, 21, 7] compared
the error rates of their approaches with the identity strategy.
We omit this explicit comparison, since the identity is always
within the space of possible strategies the Eigen-Design could
choose, but is not competitive.

5.1 Error of the Eigen-Design Algorithm
We now measure the improvement in absolute and relative

error offered by the Eigen-Design algorithm along with its ap-
proximation to optimal absolute error. Below we refer to the
strategy produced by the Eigen-Design algorithm, for a given
workload, as the eigen-strategy. We consider three classes of
workloads, beginning with workloads of range queries, then
workloads of marginals, and then some alternative workloads
designed to test the adaptivity of the mechanism.

Workloads of Range Queries. Figs. 3(a),(b) contain ex-
periments on workloads of all range queries and random
range queries. The random ranges are sampled with the
two-step sampling method in [21]. Here the eigen-strategies
are compared with Hierarchical and Wavelet strategy. The
figures are in log scale, except Fig. 3(a) on all range queries.
The results show that the eigen-design strategies reduce er-
ror by a factor of 1.2 to 2.1 in workload error and 1.3 to 1.5
in relative error compared to the best competing strategies.
In addition, for workload error, the eigen-design strategy is
within a factor of 1.3 to the lower bound.

Workloads of Marginals. Figs. 3(c),(d) contain experi-
ments on workloads of 2-way marginal queries and random
marginal queries, in which the random marginals are sampled
with the sampling method in [7]. Here the eigen-strategies
are compared with Fourier and DataCube. The figures are
in linear scale for workload error and log scale for relative
error. The results show that the eigen-design strategies re-
duce error by a factor of 1.3 to 2.2 compared to the best
competing strategies in workload error, and by a factor of
1.1 to 2.7 in relative error. In addition, the error of eigen-
design strategies match the lower bound of workload error,
indicating that our algorithm found an optimal strategy with

respect to workload error.

Workload
Error Ratio Best/Worst

CompetitorErr Type Best/Worst Bound
1D Range
(Permuted)

workload 9.62/13.16 0.99 Wav./Hier.
relative 1.51/2.43 - Wav./Hier.

1Way Range
Marginal

workload 1.30/7.69 0.98 D.Cube/Four.
relative 1.36/4.93 - D.Cube/Four.

2Way Range
Marginal

workload 1.63/3.23 0.95 Hier./Four.
relative 1.81/2.38 - Wav./D.Cube

1D CDF
workload 1.01/1.01 0.80 Wav./Hier.
relative 0.46/0.54 - Wav./Hier.

Predicate
workload 1.39/1.94 1.00 Wav./Four.
relative 1.42/3.55 - Four./Hier.

Table 2: The factor of error reduced for the Eigen-
Design algorithm w.r.t. the best/worst competitors
strategies and the theoretical bound, for alternative
workloads, on 2048 cells.

Alternative Workloads. To demonstrate that our mecha-
nism is adaptive over variety of workloads, we also include
other workloads that have not been studied in prior work.
First we show that our mechanism adapts to semantically
equivalent workloads, in which we repeat the experiment on
range Workload but randomly permute the order of cell con-
ditions. The justification for this experiment comes from the
fact that the user may wish to answer queries in which the
order of the cell conditions is not obvious, such as predicate
queries over categorial attributes.

In addition, we run experiments on three other workloads:
the range marginals workload, the cumulative distribution
(CDF) workload, and uniformly sampled predicate queries.
The range marginals workload is important because most
data analyses using marginals do not simply use individual
counts, but also aggregate counts. If this is the case, sim-
ply computing the marginals workload privately is the wrong
approach because error accumulates for aggregations. Last,
the CDF workload is a highly-skewed set of one-dimensional
range queries where the sensitivity in the first cell is n, de-
creasing linearly to 1 for the last cell.

We summarize the experimental results on alternative work-
loads in Table 2. For relative errors, due to space con-
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Figure 4: Quality and efficiency of approximation methods on 8192 cell conditions

straints, we only present results on US census data with
ε = 0.5 and δ = 0.0001. We present, for each workload, the
factor of error reduction achieved by our algorithm compared
to the best and worst competing approach, whose name is
shown in the last column of the table. (Datacube is only con-
sidered for range marginals and Fourier is not considered on
permuted range and CDF.) In addition, for workload error,
we also include the ratio to the error lower bound.

The results show that the eigen-strategy can improve ab-
solute error by as much as 13 times (on permuted range
queries) and relative error as much as 5 times (on one-way
range marginals). The workload error of competing strate-
gies is heavily impacted by the permutation but the relative
errors are not as bad since queries of individual cells and
small ranges dominate the workload, which do not change
too much under permutation. On all workloads but one, the
eigen-strategy beats every competitor by at least a factor of
1.3, and is very close to—or achieves—the theoretical error
lower bound. The only exception is the CDF workload, in
which the eigen-strategy is only a bit better than the com-
petitor for workload error and worse (than Hierarchical and
Wavelet) for relative error. Overall, the results for workload
and relative error are largely similar for range marginals and
the predicate workload.

5.2 Performance Optimizations
Fig. 4 illustrates the trade-off between computational

speed-up and solution quality for the eigen-separation and
principal vector performance optimizations described in Sec-
tion 4. We only present results with workload errors here
(the results with relative error are similar or even better).
Error and computation time are plotted together using two
y-axes: the left axis measures workload error and the right
axis measures execution time in seconds. The baselines for
error are the lower bound and the best competing technique.

The running time of using the standard Eigen-Design al-
gorithm can be estimated from the running time of the prin-
cipal vector method, which is more than an order of mag-
nitude slower than the principal vector method with 25% of
the eigenvectors. Comparing with this estimated time, both
methods can reduce the running time by two orders of mag-
nitude while the error they introduced is less than 12% over
the lower bound. For the eigen-separation method, the com-
putation in each group takes more time with larger group
sizes while the computation of merging groups takes more
time with smaller group sizes. Theoretically, the best choice
for group size of the eigen-separation method is n1/3, which
is closest to 16 in this case. Using eigen-query separation
with a group size of 16, the error is 5% higher on all range
queries and 11% higher on all marginal queries. Using the
principal vectors optimization with 6% of the eigenvectors,
the error is 10% higher on all range queries and the same as

the optimal on all marginal queries.
According to the results, the eigen-separation performs

better on range queries while the principal vectors method
is better on marginals. In either case, the performance im-
provements still produce results that are significantly better
than competing techniques.

5.3 The Choice of Design Queries
To evaluate our claim from Section 3.2 that the eigen-

queries are an effective choice for the design queries we com-
pare strategies computed by Program 1 using the eigen-
queries, the Wavelet matrix and Fourier matrix as the design
queries. Since using the eigen-queries introduces the same er-
ror to semantically equivalent workloads, we also empirically
verify this property on other sets of designed queries. Fig. 5
shows the results of those comparisons over two structured
workloads considered above, as well as the same workloads
with the order of the cell conditions permuted.
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Figure 5: Comparison of design queries

The results show that using the Fourier or the Wavelet
strategy as the set of design queries introduces 20% more
error over all one dimensional range queries and achieves
the same error on two-way marginals. However these design
queries can not maintain their performance for workloads
represented under a permutation of the cell conditions: they
are worse than the eigen-queries by more than 4 times over
the permuted one-dimensional range queries.

5.4 Experimental Conclusions
The experimental results show that, for the workloads

specifically targeted by competing techniques, those tech-
niques achieve error that is not too far from optimal (usu-
ally a factor of about 1.2 to 3.4 times the lower bound on
error). But for broader classes or workloads, or ad hoc sub-
sets of structured workloads, existing techniques are limited
and the adaptivity of the Eigen-Design can improve relative
or absolute error by a larger factor. We have confirmed the
versatility of our algorithm, as it improves on all competing
techniques for virtually every workload considered. The one
exception is the highly skewed CDF workload. The lowest
error strategy we are aware of for this workload is produced
by our design algorithm, but with an alternative basis.



6. RELATED WORK
The present work uses the framework of the matrix mecha-

nism to develop an adaptive query answering algorithm. The
original work on the matrix mechanism [14] described and
analyzed in a unified framework two prior techniques specif-
ically tailored to range queries. The first used a wavelet
transformation [21]; the second used a hierarchical set of
queries followed by inference [13]. Originally, the matrix
mechanism focused mainly on ε-differential privacy, although
(ε, δ)-differential privacy was also considered briefly. Prior
work on the matrix mechanism never considered strategies
beyond those proposed in the previous literature, or natural
candidates like the identity matrix. The convex optimization
formalization in prior work only runs on small n (n < 64)
and cannot be used in practice.

Low order marginals are studied in [4] using Fourier trans-
formation. They also consider enforcing integral consistency
on the output, an objective we do not consider here. Re-
cently, Ding et al. proposed an adaptive algorithm to an-
swer workloads consisting of data cube queries [7], which (de-
scribed in our terms) considers strategies composed only of
individual marginal queries and optimizes the workload error
approximately. The algorithm adapts a known approxima-
tion algorithm for the subset-sum problem and cannot be ap-
plied to general linear queries. Most of these techniques focus
on ε-differential privacy, however they are actually more ef-
fective under (ε, δ)- differential privacy, so comparisons with
our algorithms are meaningful.

The error rates of the matrix mechanism are independent
of the database instance. Recently, a number of data de-
pendent algorithms for answering linear queries under diff-
erential privacy have been proposed. Xiao et al. [22] pro-
pose a method for computing a strategy matrix using KD-
trees, and Cormode et al. [6] propose a related method in
which a differentially-private median computation is used to
guide hierarchical range queries. While promising, these ap-
proaches appear to restrict the strategy to hierarchical struc-
tures which we have shown are suboptimal for many work-
loads. Dynamic strategy selection can also increase compu-
tation cost. These tradeoffs deserve further investigation.

Focusing on relative error, Xiao et al. [20] propose a data-
dependent algorithm to minimize the relative error with an
innovative resampling function. Data-dependent interactive
(as opposed to batch) mechanisms have been considered by
Roth and Roughgarden [19], who answer predicate queries on
databases with 0-1 entries. Hardt et. al [12] provide a linear
time algorithm for the same query and database setting.

7. CONCLUSIONS AND FUTURE WORK
We have described an adaptive mechanism for answering

complex workloads of counting queries under differential pri-
vacy. The mechanism can be seen to automatically select,
for a given workload, a noise distribution composed of lin-
ear combinations of independent Gaussian noise. With no
reduction in privacy, the mechanism can significantly reduce
error over competing techniques and is close to optimal with
respect to the class of perturbation methods considered.

In the future we hope to extend our theoretical approxi-
mation bounds to the eigen-separation and principal vector
optimizations, and apply our approach to non-linear queries.
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