
Private Database Synthesis for Outsourced
System Evaluation

Vani Gupta1, Gerome Miklau1, and Neoklis Polyzotis2

1 Dept. of Computer Science, University of Massachusetts, Amherst, MA, USA
2 Dept. of Computer Science, University of California, Santa Cruz, CA, USA

Abstract. The goal of this paper is to permit secure outsourced system
evaluation. We propose a method for generating synthetic databases and
obfuscating a workload of queries in order to protect the sensitive infor-
mation present in the database. The synthetic database and workload can
be used by a third party to accurately carry out performance tuning, in-
dex selection, or other system evaluation tasks. As a result, an untrusted
third party can evaluate whether a new technology would benefit the
data owner without the risk of a privacy breach.
Our approach is to employ state-of-the-art privacy mechanisms to com-
pute the sufficient statistics of a statistical model of the true database.
These statistics are safe to release, so a third party can then use them
to generate one or more synthetic databases to be used as a surrogate
for the true database.

1 Introduction

Enterprises managing large databases commonly need to perform system eval-
uation tasks. These include tuning the performance of existing systems (e.g.
through physical design, logical design, index selection, or optimizer tweaking)
or exploring potential benefits of adopting new systems or architectures (e.g.
moving from a row-store to a column-store, or moving from a centralized to a
parallel system). These system evaluation tasks are typically performed only by
trusted parties employed by the enterprise because enterprise data and associ-
ated query workloads are too sensitive to reveal.

The goal of this paper is to permit secure outsourced system evaluation –
that is, to allow these system evaluation tasks to be carried out accurately and
safely by an untrusted party. This may be economically advantageous, for ex-
ample, when an enterprise seeks to outsource performance tuning, or to simplify
commercial software evaluation. Or it may benefit scientists, for instance, when
a researcher wants to evaluate new database technology on realistic data.

It is currently very difficult to achieve the benefits of outsourced system
evaluation. One possible solution is for the researcher or vendor to provide the
owner with a working prototype system so the owner can deploy it using the
real enterprise data. But this puts the burden of system setup on the owner
and limits the ability of the vendor or researcher to customize the system. The
researcher or vendor could also test on a benchmark database and workload
(such as a TPC variant), designed to reflect properties commonly found in real

2

applications. This permits the researcher to perform system setup and report
results to the data owner, but the results may not be convincing since they do not
reflect the particular properties of the owner’s workload. In fact, we argue that
benchmarks are frequently misused in experimental evaluation because realistic
database workloads are unavailable. Benchmarks allow for the fair comparison of
performance properties across systems. They are intended to be representative
of some reasonably realistic scenario, but they do not represent the peculiar
characteristics of real applications.

The goal of our work is therefore to construct, based on the real data of an
enterprise, a synthetic database instance and query workload that: (1) can be
safely released because it does not reveal sensitive information about enterprise
data or proprietary practices; and (2) accurately reflects the physical and sta-
tistical properties of the database and workload so that system evaluation can
be carried out on the synthetic data in place of the real data. In addition to
supporting safe outsourced system evaluation, such techniques could be used to
create a public repository of database instances and workloads to benefit the
research community.

We focus on supporting system evaluation tasks which are determined by
a relational database instance (tables and their contents) and a workload (a
set of relational queries). For example, the task of automatic index selection
algorithm involves computing the set of indexes which will result in the lowest
aggregate query execution time for a given database and workload. Similarly, a
new component of a query optimizer is evaluated by comparing performance on
a given database and workload.

To achieve our goal we need to ensure that sensitive information present in
the database and workload is protected. As schemas are likely to be the least
sensitive, we assume that the release of a schema isomorphic to the original, with
obfuscated attribute names, is acceptable to the enterprise. We rename tables
and columns, remove detailed domain information, but preserve key-foreign key
relationships and general data types. We transform the workload of queries to
the new schema, and obfuscate constants appearing in queries. Lastly, the actual
contents of the database are the most sensitive as they may contain credit card
numbers, personal information, financial records, etc. We use the formal standard
of differential privacy [4] to guarantee the protection of individual data values.

Creating synthetic databases that protect individual records is in fact a com-
mon goal in privacy research. Existing results show that if such a synthetic
instance accurately preserves too many properties of the original data, it must
violate privacy [3]. Thus, in order to remain private, a synthetic database must
be tailored to a relatively small class of properties that it can support accu-
rately, while other properties will necessarily fail to be preserved. The novel
question investigated here is whether recent advances in privacy mechanisms
can be adapted to preserve, with sufficient accuracy, the properties required for
system evaluation.

Our contributions include the following. First, we initiate the study of private
workload release by considering the potential privacy threats in an enterprise

3

schema, query workload, and database instance. Second, we propose obfuscating
transformations for the schema and workload, and we adapt state-of-the-art
privacy mechanisms to the release of key statistics about the instance. Third,
we carry out preliminary experiments showing that the level of noise required to
satisfy privacy standards is acceptable for system evaluation tasks, particularly
for large databases.

2 A framework for safe workload release

In our framework, the owner of an enterprise database is interested in outsourc-
ing performance analysis tasks but must ensure that sensitive information is
protected. The owner’s data consists of S, a relational schema including data
types, domains, and foreign key constraints; a database instance D conforming
to S; and a query workload W , consisting of a collection of SQL queries over S.

The analyst would ideally like to acquire the entire collection (S, D, W)
to carry out performance analysis. Due to privacy concerns, we release only a
transformed version of these objects. Our approach is to obfuscate the schema
by transforming S into an isomorphic schema S′, and to transform W into W ′

by re-expressing queries in W in terms of the new schema S′ and translating
constants in a manner described below. We do not release a surrogate dataset in
place of D. Instead, we first compute a set of statistics ST on D, and then we
transform it into ST ′ using a differentially private algorithm. These statistics can
be seen as the parameters of a simple statistical model of D. Given that these
statistics are computed using an algorithm that satisfies differential privacy, they
can be safely released to the analyst.

The analyst, in possession of S′, W ′, and ST ′, can generate a synthetic
database instance consistent with the schema and statistics. There are typically
many instances consistent with ST ′, so the analyst can generate many alternative
database instances by sampling. An appealing by-product of our approach is that
the analyst can also choose to generate scaled-up synthetic databases to evaluate
performance on larger, statistically-similar instances.

Figure 1 provides an overview of the roles of the owner and analyst, the
process of translation for S, D, and W , and the generation of synthetic database
instances. In the following sections we explain each transformation processes in
detail.

2.1 Schema and Domain Translation: S → S′

The schema S is transformed into S′ by obfuscating table and attribute names,
and by transforming (or normalizing) the domains of the attributes. To transform
S into S′, we map each relation in S to a new relation in S′. For each relation
in S, we map each attribute to a new relation in the corresponding table. We
denote this one-to-one mapping φ. The result is a schema S′ that is isomorphic
to S, but with attribute and table names replaced with canonical values. We
also preserve key and foreign key constraints, mapping them consistently to S′.

4

Fig. 1. The schema S, database instance D, and workload W are translated by the
owner into schema S′, differentially-private statistics ST ′, and workload W ′. Using
ST ′, the analyst can create one or more synthetic instances.

If data types and detailed domain information reveal too much about the
schema, they may be obfuscated. For example, if R1.salary is an attribute with
a domain consisting of integers between 25,000 and 200,000, we may transform
and generalize the domain to be integers between 0 and 500,000.

It is possible to consider more complex mappings between S and a new
schema, including those that insert/remove columns or tables. This may offer
better protection of the original schema, but at a cost of fidelity for the physical
properties of the synthetic instances. We leave more complex mappings as a
possible direction for future work.

2.2 Workload Translation: W → W ′

We apply the mapping φ to the workload of queries expressed on S to get
a workload of queries expressed on S′. We assume it is acceptable to release
structurally equivalent queries over the translated schema. However, constants
appearing in queries are often closely related to actual data values contained
in the database, and as a result, could be sensitive. We map query constants
to the translated domain, thereby obfuscating them, but preserving the basic
relationship of constants to the transformed domain.

Example 1. We use the TPC-H schema in examples and later experiments.
Suppose we have the following query in the true workload: SELECT * FROM
Lineitem, Orders WHERE L shipdate >= c1 AND L shipdate < c2. If the true
domain for shipdate consists of dates between (dmin, dmax) and the mapped do-
main is (d′min, d

′
max), then we map c1 to c′1 = d′min + (c1 − dmin) and c2 to

c′2 = c′1 + (c2 − c1).

2.3 Private Database Statistics

The greatest privacy risk of releasing database workloads is the sensitivity of
the contents of the database itself. So while we settle for simply obfuscating

5

schemas and queries, we take a more rigorous approach to protecting data val-
ues. We adapt recent privacy techniques to the task of computing a set of statis-
tics describing salient properties of the data owner’s instance, D. Because these
statistics are computed to satisfy the rigorous standards of differential privacy,
the owner can be confident that the data values are protected, subject to appro-
priate choice of privacy parameters. The analyst may then use the statistics to
generate database instances D′, similar to D.

The choice of statistics computed from D is a crucial aspect of our framework,
and will vary depending on the schema, the workload, and the requirements of
the intended tasks to be performed by the analyst. Informally, the more detailed
the statistics that are computed, the greater the distortion must be to maintain
privacy. In addition, because we ask for multiple statistics, we need to carefully
determine the relative importance of accuracy of each statistic to utilize our
privacy budget effectively.

Statistical models of database instances We use statistics to model proper-
ties of columns, or sets of columns, in relational tables. Our most expressive mod-
els of database are joint histograms reflecting the distribution of values across
multiple columns. However, depending on how columns are used in workload
queries and the properties of the original table that need to be preserved, the
owner may choose more or less descriptive statistics for columns. For each table
we begin by estimating (privately) the number of records in the table. We then
use one of the following models for each non-key column.

Null Model of Bi The null model for a column reflects no additional infor-
mation beyond what is known about the domain for that column. Modeling
a column using a null model does little more than ensure that it will occupy
the proper space on disk.

Distinct Values Model of Bi This model has a single statistic: the number
of distinct values in column Bi.

Histogram Model of Bi This model divides the domain of Bi into k bins
and records the number of tuples in the relation having values in each bin.

Joint Histogram Model of Bi, Bi+1, . . . Bi+j This model divides each attribute
domain into k1, . . . kj buckets and reports a joint histogram, i.e. the number
of tuples contained in each cell defined by the buckets.

Foreign Key Model of Bi This model is valid for attributes Bi which are
foreign keys referencing another relation. The model reports the frequency
with which keys in the referenced relation occur in the column.

Prior to workload release, the owner must decide how to assign models to
each of the columns in each relation in the database. The statistics for any set
of models can be computed privately (as described in Sec. 3). So the selection of
column models is primarily motivated by utility considerations. Models must be
selected to preserve properties of the database relevant to the query workload
and the performance tuning tasks of interest. More descriptive models may better
reflect the properties of the database, but the privacy cost associated with those
models may ultimately not yield better utility for system evaluation tasks.

6

Example 2. Suppose we have a join query on orders and lineitem, with a predi-
cate on l shipdate. We can assign models as follows: histogram model to l shipdate,
foreign key model to l orderkey, primary key model to primary keys, null model
for other attributes. This preserves the primary properties of the database rele-
vant to the query.

2.4 Database Synthesis using Statistics

We use ST ′ to refer to the collection of statistics for each model associated
with D. Given the statistics it is possible to synthesize one or more synthetic
instances D′. When properties of a database are not recorded in ST ′ we simply
assume independence by default. For example, if columns Bi and Bj are each
modeled using distinct histograms, then we generate values for each column
according to the given distributions, but we have no information about how
these column values are paired together, so we assume independence. If cross-
column correlations are to be preserved in the released database, then a joint
histogram model must be used.

Under these assumptions, ST ′ defines a space of possible database instances
consistent with the statistics, and the process of database synthesis consists in
sampling from this space of instances. We have implemented a sampling proce-
dure supporting each of the model types above, except for the joint histogram
model. In Section 4 we use this preliminary implementation to test the synthetic
database instances generated from various models of the TPC-H benchmark
database.

Suppose the original table hasN rows and a columnBi with domain [min,max].
Suppose also the mapped column in the corresponding synthetic table is called
B′i, and the corresponding mapped domain is [min′,max′]. The column B′i is
populated using one of the following generators:

1. Null generator: In this case, B′i is simply generated by picking N random
numbers from the range [min′,max′].

2. Distinct generator: Let D be the total number of distinct values in Bi.
This generator divides [min′,max′] into D − 1 subintervals and picks D
distinct values as the subinterval boundaries, it then randomly picks one of
these D values N times to generate B′i.

3. Histogram generator: Suppose the histogram on Bi is (x1,c2),...,(xm,cm),
where xi is a bucket and ci is its bucket count. Buckets are mapped to the
translated domain, say to x′1,..., x′m. To generate B′i, the generator picks ci
values at random from bucket x′i.

4. Foreign Key generator: Suppose Bi is a foreign key that references Zi

in another table. Let the corresponding synthetic columns be B′i and Z ′i.
Suppose the distinct value histogram on Bi is (y1,c1),,(yp, cp) where yi
is a distinct value in Bi and ci is its frequency. The foreign key generator
generates B′i consistent with the histogram (y′1,c1),....,(y′p,cp), where y′js are
p distinct values from the domain of Z ′i.

7

2.5 Accuracy of synthetic databases

The accuracy of a synthetic database D′ is measured in terms of the performance
of the workload queries. That is, accuracy is measured as the difference between
cost(W,D) and cost(W ′, D′), where cost may be one of a number of performance
properties. These properties of interest are application dependent, but examples
include: query result cardinality, estimated execution metrics (time or IOs), ac-
tual execution metrics (time or IOs), qualitative aspects of the query execution
plans, and properties of index usage.

For a workload W , we refer to the difference in cost between the true database
instance D and a synthetic instance D′ as error, and we distinguish between two
contributing sources of error. Modeling error results from the fact that the only
information the analyst has about the true database instance is that present in
the released statistics. Even when the statistics associated with these models
are reported without distortion, the resulting model only provides partial in-
formation about the true database. Selecting more descriptive models reduces
modeling error. Perturbation error results from the fact that noise is added to
the statistics before releasing them. Thus the space of possible database instance
from which the analyst will sample is only approximately representative of the
true database. Perturbation error is determined by the privacy parameters, which
control the strength of the privacy guarantee required by the owner, as well as
the number of statistics computed. In particular, when many related statistics
are computed about the database, more distortion must be added to maintain a
fixed privacy guarantee.

Note that some of the performance metrics considered above are themselves
imprecise. For example, estimates of query execution time or IOs typically differ
from actual measures. And actual execution times vary based on system state
and load. Our hope is to achieve rates of modeling and perturbation error that are
small, relative to the imprecision or variation inherent in common performance
measures.

3 Privacy Preserving Methods

In this section we describe the privacy guarantees provided by our framework
along with the privacy mechanisms used to compute database statistics. We use
the standard of differential privacy [4], which offers participants in a dataset an
assurance that information released about the dataset is virtually indistinguish-
able whether or not their personal data is included. It protects against powerful
adversaries, and offers precise, quantifiable accuracy guarantees.

Differential privacy is achieved by randomizing the answers to queries over a
sensitive database. To adapt the techniques of differential privacy to our context,
we can view the statistics ST as a set of aggregate queries over D (e.g. pred-
icate counting queries for histograms, or count-distinct queries for the distinct
generator). Using a differentially private algorithm to compute these queries will
result in noisy answers, which constitute the private statistics ST ′.

8

We use (ε, δ)-differential privacy [10], sometimes called approximate differen-
tial privacy, which places a bound (controlled by ε) on the difference in the prob-
ability of any query answer on neighboring databases, but allows that bound to
be violated with small probability (controlled by δ). The definition of differential
privacy relies on the concept of neighboring databases, which are two database
instances that differ by exactly one tuple, denoted nbrs(I, I ′).

Definition 1 (Approximate Differential Privacy). A randomized algorithm
K is (ε, δ)-differentially private if for any instances I, I ′ such that nbrs(I, I ′), and
any subset of outputs S ⊆ Range(K), the following holds:

Pr[K(I) ∈ S] ≤ exp(ε)× Pr[K(I ′) ∈ S] + δ

Limitations of the guarantee While differential privacy offers one of the
strongest guarantees considered by the privacy community, it is important to
consider the implications of adapting differential privacy to our objective of safe
workload release. Differential privacy is designed to protect the sensitive informa-
tion of individuals. When each individual’s information is contained in a single
tuple, an individual can be confident in allowing their data to be included in
the dataset because the answers released are guaranteed to be virtually indistin-
guishable from those released in the absence of their data. In most settings, the
hope is that this individual guarantee can be maintained while aggregate prop-
erties of the database can be released. Indeed, a statistic like the total number of
tuples in the database does not depend much on any one person’s information,
and will typically be estimated very accurately under differential privacy.

As noted in the previous discussion, the privacy concerns in workload release
may go beyond the protection of individual tuples. So in some settings it may
not be acceptable to accurately release aggregate properties of a database. For
example, if the size of a table in an enterprise database will reveal the number
of sales completed by the enterprise, and this fact is sensitive, then protecting
single tuples is not an adequate privacy standard. Differential privacy can easily
be adapted to offer a form of group privacy, in which any set of k tuples are
protected. This is achieved with exactly the same techniques, but requires in-
creasing the noise added to query answers. We adopt this solution, but recognize
that for some applications even this guarantee may not be satisfactory. In such
cases, it may not be feasible to accomplish safe workload release.

3.1 Differentially-private algorithms

In order to satisfy these definitions, the noise added to a query answer must
be calibrated to the sensitivity of the query, a static property of a query which
reflects the worst case impact the addition or deletion of one tuple can have on
the output. Since we will work with sets of queries describing the statistics in
ST , we define sensitivity for a vector of aggregation queries.

9

Definition 2 (Sensitivity). Let Q represent a vector of aggregation queries.
The L2 sensitivity of Q, denoted ||Q||2, is ||Q||2 = max{I,I′|nbrs(I,I′)} ||Q(I)−
Q(I ′)||2

For arbitrary functions, computing the sensitivity may be undecidable. How-
ever for the queries underlying all statistics mentioned Sec. 2.4, the sensitivity
is easily computed.

Example 3. Suppose Q is a vector of k disjoint range-count queries representing
a histogram over an integer attribute with domain [0..100). For example, we can
write Q as (q1 . . . qk) where each qi counts the number of tuples in one of a
disjoint set of ranges over the domain of a single attribute. Then the addition or
deletion of one tuple in I will change exactly one component of Q(I) by exactly
one. Therefore, ||Q||2 = 1.

Approximate differential privacy can be achieved by adding Gaussian noise
calibrated to the L2 sensitivity of the queries. The following proposition defines
an algorithm for achieving approximate differential privacy for any vector of
aggregate queries:

Proposition 1 (Gaussian mechanism). Given a vector of aggregate queries
Q, of length k, the randomized algorithm G that outputs the following vector is
(ε, δ)-differentially private:

G(Q, I) = Q(I) + Normal(
||Q||2
ε

√
2 ln(2/δ))k

The Gaussian mechanism adds k independent samples to the true answer
to Q, where the samples are drawn from a Gaussian distribution scaled to the
sensitivity of Q. This differentially-private mechanism is sufficient for computing
each of the statistics we use to model databases. To do so, we would construct a
single query vector containing all statistics for the chosen models, compute the
sensitivity, and add noise accordingly. Notice that adding additional statistics
that increase the sensitivity will increase the noise added to each of the statistics.
Although this mechanism is sufficient for the modeling tasks discussed in the
previous section, the accuracy of our statistics can be improved by two recently-
proposed techniques [8, 6] which we describe briefly next.

Differentially private histograms The Gaussian mechanism is sufficient for
ensuring differential privacy, but the error rates achieved by the mechanism are
not optimal, particularly when it is applied to multiple queries. The recently
proposed matrix mechanism [8] allows for significantly lower error for workloads
consisting of sets of counting queries, including collections of low-order marginals
and multi-dimensional histograms. The matrix mechanism exploits correlation
in these sets of queries and adds a more complex noise distribution which follows
correlation in the queries. For fixed ε, the mechanism can reduce error rates from
O(n2) to O(log3n) for set of range queries, where n is the size of the domain.
We use these techniques to compute the private statistics for histogram models.

10

1.E+00	

1.E+02	

1.E+04	

1.E+06	

1.E+08	

1.E+10	

1.E+12	

0.0001	 0.001	 0.01	 0.1	 1	

M
ea
n	
Sq
ua

re
d	
Er
ro
r	

Epsilon	

Op-mizer	 Error	

Average	 Per	 Query	 Error	

(a) Error, 3-dimensional histogram

Query Optimizer
Estimate

Model Private
Model

Q1 1.000083 1.000086 1.000086
Q2 1.010152 1.000087 0.999967
Q3 4.191747 1.000742 1.000381
Q4 1.734864 0.998955 1.004799
Q5 1.466320 0.200764 0.199519

(b) Error, synthesized 3-table database

Fig. 2. Error in query result sizes for range queries over the TPC-H schema.

Differentially private frequencies Another recent technique [6] has improved
the accuracy of differentially-private estimates of frequency distributions. This
technique can be used to model key/foreign-key relationships between tables.
If column A is a foreign key referencing table R, then in order to model the
correct join frequencies, we need to gather statistics about the frequency of
occurrence of each value in A. In our setting, we compute these frequencies and
then choose randomly from the set of canonical key values generated for the
synthesized table R. The naive method for estimating such frequencies results
in O(m) total expected error, where m is the size of the database. The improved
technique employing post-processing of the noisy frequencies [6] can reduce this
error to O(dlog3m) where d depends on the number of distinct frequencies in
the sequence, which is likely to be low in practice.

4 Performance Analysis

To assess the feasibility of accurate outsourced system evaluation we carried
out two preliminary experiments. In both cases we use the TPC-H benchmark
database, scale factor 1, and Postgres 8.1. We focused on query result cardinality
as a performance metric. This case would be interesting for a database researcher
who wishes to evaluate selectivity estimation techniques.

In the first experiment, we investigate the overall error achievable when mod-
eling a single relation using a multidimensional histogram. Using the privacy
method for histogram queries described in Sec 3.1 we analytically compute the
expected error in estimating the output cardinality of three dimensional range
queries. These error rates vary with choices of the privacy parameters δ and ε.
We fixed δ at 10−5, which means that the probability of violating the bound
on disclosure is quite low. Figure 2(a) (in log-log scale) shows the relationship
of error as a function of ε. To put these error rates in context, we empirically
calculated the average error of the Postgres optimizer in estimating the output
cardinality of similar range queries. To do this, we generated 500 random range
queries each imposing a range condition on three attributes of the Lineitem ta-

11

ble from the TPC-H schema. Our conclusion is that the error of the privacy
mechanism is acceptable, even for conservative privacy settings.

In the second experiment, we applied our synthetic data generators to a
subset of the TPC-H schema: the Orders, Lineitem, and Customer tables. Due
to lack of space we present only selected results. We considered queries consisting
of the natural join of the three included tables, along with one or more selection
queries on individual attributes from the tables. In the table, Q1 is the natural
join alone, Q2, Q3, Q4 have one range condition each, on Orders, Lineitem, and
Customer, respectively. Q5 combines three range conditions on the tables. We
chose a model designed to support these queries. It uses the null model for all
attributes not used in the queries, foreign key models for all foreign keys, and
one-dimensional histograms on attributes appearing in any WHERE clause.

We evaluated these queries on the original TPC-H tables, synthetic tables
generated using the true statistics (the Model), and synthetic tables generated
using private statistics (the Private Model). The table in Fig. 2(b) reports,
for each query, the result size estimated by the optimizer, computed on the
Model database, and computed on the Private Model database. Result sizes are
reported as a ratio of the true result size of the query on the original database.

Overall, model and perturbation error is low for queries with one selection
condition, suggesting that key-foreign key joins are modeled accurately, even
under the privacy condition. Model error is high for multi-attribute range queries,
reflecting a limitation in our foreign key generator: it models the “out-degree”
of records, but not correlation in foreign key references to attributes of the
referenced table.

5 Related Work

The work closest to our own is a framework for private database synthesis pro-
posed by Wu et al. [13]. Similar to our approach, they release a set of rules rep-
resenting database constraints along with statistics, allowing an external party
to generate a synthetic database. Wu et al. have also extended this framework
with a more expressive statistical model [12]. Their privacy condition, however,
is significantly different from ours. They protect privacy by allowing the data
owner to specify a set of sensitive properties and then transforming the rules
and statistics to avoid disclosure of the properties. Differential privacy offers a
more rigorous privacy guarantee and the opportunity to quantify the error of
the output.

In the absence of privacy concerns, generating realistic synthetic relational
data has received considerable attention in the research community. Some re-
searchers have focused on the underlying data distributions and characteristics
of database instances [2, 5, 7, 11]. Bruno et al. [2] propose a specification lan-
guage that can be used to select existing iterators, or define new iterators based
on data distributions, specify inter-table correlations, and they formalize syn-
thetic database generation. Gray et al. [5] have considered how to design very
efficient generators for large databases, exploiting parallel computation. Houk-

12

jaer et al. [7] propose a graph model that encodes underlying distributions and
parameters, which can be configured by the user. The Up-Sizer system [11] is
intended to preserve statistical properties of a source database while allowing
the generation of larger instances for the realistic investigation of the impacts
of scale-up on a system. More recently, query-aware mechanisms for synthetic
database generation have been proposed. These techniques can produce work-
loads satisfying user-provided constraints on the cardinality of intermediate op-
erators for specified queries [1, 9].

6 Conclusion

We propose a framework for supporting secure outsourced system evaluation
through the private synthesis of database instances and the translation of work-
loads. The results of our preliminary performance evaluation show that the levels
of error due to the privacy mechanism are acceptable, suggesting that accurate
database synthesis should be possible. Remaining challenges include extending
to full schemas and larger workloads, as well as modeling cross-table correlations
more accurately.

References

1. C. Binnig, D. Kossmann, E. Lo, and M. T. Özsu. QAGen: Generating query-aware
test databases. In SIGMOD, 2007.

2. N. Bruno and S. Chaudhuri. Flexible database generators. In VLDB, 2005.
3. I. Dinur and K. Nissim. Revealing information while preserving privacy. In PODS,

pages 202–210, 2003.
4. C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity

in private data analysis. In TCC, 2006.
5. J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger. Quickly

generating billion-record synthetic databases. SIGMOD Record, 23, 1994.
6. M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of

differentially-private histograms through consistency. In VLDB, 2010.
7. K. Houkjaer, K. Torp, and R. Wind. Simple and realistic data generation. In

Conference on Very Large Databases, pages 1243–1246, 2006.
8. C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing linear counting

queries under differential privacy. In PODS, 2010.
9. E. Lo, N. Cheng, and W.-K. Hon. Generating databases for query workloads. Proc.

VLDB Endow., 3:848–859, September 2010.
10. F. McSherry and I. Mironov. Differentially Private Recommender Systems : Build-

ing Privacy into the Netflix Prize Contenders. In SIGKDD, 2009.
11. Y. Tay, B. Dai, T. Wang, Y. Sun, Y. Lin, and Y. Lin. Upsizer: Synthetically scaling

an empirical relational database. Technical report, Nat. Univ. of Singapore, 2010.
12. X. Wu, Y. Wang, S. Guo, and Y. Zheng. Privacy preserving database generation

for database application testing. Fundamenta Informaticae, 78(4):595–612, 2007.
13. X. Wu, Y. Wang, and Y. Zheng. Privacy preserving database application testing.

In Workshop on Privacy in the Electronic Society (WPES), pages 118–128, 2003.

