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ABSTRACT
Individuals are continually observed by an ever-increasing num-

ber of sensors that make up the Internet of Things. The resulting

streams of data, which are analyzed in real time, can reveal sensitive

personal information about individuals. Hence, there is an urgent

need for stream processing solutions that can analyze these data in

real time with provable guarantees of privacy and low error.

We present PeGaSus, a new algorithm for differentially private

stream processing. Unlike prior work that has focused on answer-

ing individual queries over streams, our algorithm is the first that

can simultaneously support a variety of stream processing tasks

– counts, sliding windows, event monitoring – over multiple res-

olutions of the stream. PeGaSus uses a Perturber to release noisy

counts, a data-adaptive Perturber to identify stable uniform regions

in the stream, and a query specific Smoother, which combines the

outputs of the Perturber and Grouper to answer queries with low

error. In a comprehensive study using a WiFi access point dataset,

we empirically show that PeGaSus can answer continuous queries

with lower error than the previous state-of-the-art algorithms, even

those specialized to particular query types.

1 INTRODUCTION
A number of emerging application domains rely on personal data

processed in a streaming manner. Streaming data is the foundation

of the Internet of Things [1] and prevalent in domains like envi-

ronmental sensing, traffic management, health monitoring, and

financial technology. Such data is typically captured and analyzed

continuously and, because of the volume of the data, it is often

processed as it arrives, in real time.

Since this data may report on individuals’ location, health status,

or other sensitive states, directly releasing the data, or even aggre-

gates computed from the data stream, can violate privacy [8, 14].
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In particular, continually updating statistics over time leaks more

and more information to the attackers, potentially causing harmful

privacy leakage [3].

Differential privacy [10], proposed over a decade ago, has be-

come a primary standard for privacy. Informally, a (randomized)

algorithm is differentially private if its output distribution is approx-

imately the same when executed on two inputs that differ by the

presence of a single individual’s data. This condition prevents an

attacker with access to the algorithm output from learning anything

substantial about any one individual.

In this paper we propose a novel technique for releasing contin-

uous query answers on real time streams under differential privacy.

Our technique combines a Perturber, which generates a stream of

noisy counts, and an independent module called a Grouper, which
computes a partition of the data received so far. The Grouper pri-
vately finds partitions of the data which have small absolute devi-

ations from their average. The final module, called the Smoother,
combines the output of both the Perturber and the Grouper, gen-
erating the final private estimate of a query answer at each time

step. The Perturb-Group-Smooth technique (we name it “PeGaSus”)

is data-adaptive: it offers improved accuracy for streams that have

sparse or stable counts because the Grouper detects these regions
and the Smoother uses knowledge of stability within these regions

to infer better estimates.

PeGaSus not only helps release accurate differentially private

streams (individual counts at each time step) but can also simulta-

neously support multiple alternative query workloads including

sliding window queries and event monitoring queries like find-

ing jumping and dropping points or detecting low signal points

in the stream. These different tasks can be solved by reusing the

output of the Perturber and the Grouper, and simply modifying

the Smoother method, without incurring any additional privacy

budget. Surprisingly, for many of these workloads, using our data

dependent strategy outperforms state-of-the-art algorithms that

are designed specifically for the corresponding query workload.

We propose extensions to PeGaSus to answer counting queries

at different hierarchical resolutions on the stream. These extensions

allow us to model typical query workloads that appear in build-

ing or network monitoring, where analysts are interested in both

streams generated by individual sensors (or IP addresses), but also

in aggregate streams generated by groups of sensors (or groups of

IP addresses).
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In summary, we make the following contributions:

• We design PeGaSus, a novel algorithm for answering a large

class of continuous queries over real time data streams under

differential privacy.

• PeGaSus uses a combination of a Perturber, a data-adaptive

Grouper and a query specific Smoother to simultaneously sup-

port a range of query workloads over multiple resolutions over

the stream.

• The Grouper and Smoother, in combination, offer improved ac-

curacy for streams that have sparse or stable counts.

• A thorough empirical evaluation, on a real data stream collected

from 4000 WiFi access points from a large educational insti-

tution, shows that by using different query specific Smoother
methods, PeGaSus outperforms the previous state-of-the-art

algorithms specialized to given workloads. For example, our

data dependent algorithm can compute more accurate sliding

window queries than the previous state-of-the-art algorithm

that is designed for a specific sliding window workload.

The paper is organized as follows. Section 2 reviews the stream-

ing data model, queries on streams, and the semantics of privacy

on streams. In Section 3, we describe the framework of Perturb-

Group-Smooth (PeGaSus) algorithm. In Section 4, we show how

the framework can support multiple query workloads by applying

different query specific Smoother methods. In Section 5, we discuss

how to extend PeGaSus to answer counting queries at different hi-

erarchical resolutions on the stream. Comprehensive experiments

on a real data stream are presented in Section 6. Related work is

discussed in Section 7 and our conclusions are in Section 8.

2 PRELIMINARIES
2.1 Stream data model
We define the source stream D as an infinite sequence of tuples.

Each tuple is of the form (u, s, t ) and is an element from the domain

dom = U × S × T where U is set of user identifiers, S is a set

of possible states, and T is an (infinite) set of timestamps. Each

(u, s, t ) records an atomic event, namely that user u was observed

in state s at time t . Note that this single stream could contain events

from multiple sources – these would be encoded as different states

(elements of S).

To simplify presentation, we represent time using logical times-

tamps letting T = {1, 2, 3, . . . }. The rationale is that the analysis

tasks we consider in Section 2.2 emit an aggregate summary of

the stream periodically (e.g. every five minutes) and thus logical

time t = 1 can be understood as capturing all events that happened

within the first reporting period. Furthermore, this implies that a

tuple (u, s, t ) does not describe a specific, instantaneous event but
rather it encodes the aggregate behavior of user u during the time

step t . Therefore, the states S encode the state of a user during the

logical time step t . We illustrate with an example.

Example 2.1. Consider a data stream management system that

collects data from WiFi access points (APs) distributed across build-

ings on a campus. Users correspond to MAC addresses of individual

devices that connect to WiFi access points. The set of time steps

could represent the aggregated activity of a user over time inter-

vals of 5 minutes each. Thus, time steps t and t + 1 would differ

in wall clock time of 5 minutes. Finally, if there arem WiFi access

points on campus, then we could havem + 1 states: a state s⊥ that

represents “user did not make a successful connection to any AP",

andm states sp , one for each AP p, that represents “user made at

least one successful connection to the AP p".

The tuples in D arrive in order by time. Thus if (u ′, s ′, t ′) arrives
after (u, s, t ) it must be that t ≤ t ′. We use Dt to represent a stream

prefix: the set of tuples that arrive on or before time t .

2.2 Queries on streams
We consider a number of queries on the private stream D. The
answer to a query on D is itself a stream. We focus on counting

queries as well as other queries that can be derived from them.

2.2.1 Queries on a single target state. A counting query takes a

specific target state s and reports, for each time step t , the number

of users who were observed in state s at time t . More formally, let

C (s ) be the infinite stream C (s ) = c1 (s ), c2 (s ), . . . where ct (s ) =
|{(u ′, s ′, t ′) ∈ Dt | t

′ = t and s ′ = s}|. Let Ct (s ) denote the prefix
stream of C (s ) up to time t . When clear from context, we drop the

s and just use C = c1, c2, . . . .
Note that the answer to the query should be generated in “real

time” – i.e., ct should be produced before any tuple (· , · , t + 1) is
observed.

Example 2.2. An analyst might want to visualize the counts of

the number of users who had at least one successful connection

in a time step at access point AP1. Hence, the target state is sAP1 ,
Ct (sAP1 ) represents the number of users with at least one successful

connection toAP1 in time step t , andC (sAP1 ) represents the stream
of counts.

The counting query defined above is referred to as a unit query.

We can also support additional queries, all of which can be derived

from C .

Sliding Windows. A sliding window query with window sizew
and target state s reports, for each time step t , the total number

of times a user has been observed in state s in the most recent

w time steps. More formally, let SW (s,w ) be an infinite stream

SW (s,w ) = sw1, sw2, . . . , where swt (s,w ) = |{(u ′, s ′, t ′) ∈ Dt |

t −w < t ′ ≤ t and s ′ = s}|. Observe that the sliding window query

answers can also be derived by summing corresponding counts in

query C (s ): swt (s,w ) =
∑t
t ′=t−w+1 ct ′ (s ).

Event Monitoring. While each tuple in the stream D captures an

atomic event, the analyst may be interested in monitoring certain

patterns in the event stream. We call this task event monitoring

and consider monitoring event patterns that can be derived from

the counting query stream C .
We define the eventmonitoring query as follows. LetEM (s,w, f ,B)

= b1,b2, . . . be an infinite stream of bits where b1 = 1 if the moni-

tored event has occurred at time t and 0 otherwise. The inputs to

the query EM are the target state s , a desired window size w , an

abitrary function f that computes on a window ofw counts, and a

boolean function B that computes on the ouptut of f . The bit bt is



computed as bt = B ( f (ct−w+1, . . . , ct )). We give two examples of

event monitoring queries.

• Jumping and dropping point: This query monitors whether

the count has changed by at least δ from the count w time

steps ago. Thus, f computes the absolute difference between

the current count and the count receivedw time steps before,

f (ct−w+1, . . . , ct ) = |ct − ct−w+1 | and B compares that differ-

ence to a threshold δ , B (x ) = 1 if x ≥ δ and is 0 otherwise.

• Low signal: This query monitors whether the total count in

a sliding window is smaller than δ . Thus, f computes the to-

tal count, f (ct−w+1, . . . , ct ) =
∑t
t ′=t−w+1 ct ′ and B is again a

threshold function, B (x ) = 1 if x < δ and is 0 otherwise.

2.2.2 Queries on multiple target states. Our approach also sup-

ports queries on multiple target states. Let {s1, . . . , sm } ⊆ S denote

the set of states the analyst is interested in. We support three vari-

ants. First, the analyst can simply issue multiple queries where each

query is on a single target state (i.e., any one of the queries defined

previously). We illustrate this with an example.

Example 2.3. An analyst might be interested in the unit query

for the states sp corresponding to all access points p within a

specific building, as well as a low signal event monitoring query

EM (sq ,w, . . . ), for all access points q housed in conference rooms

across campus.

Second, we also support queries on aggregations of target states.
We denote a single aggregation as aдд ⊆ {s1, s2, . . . , sm }. Any query
that is defined for a single target state can also be defined over an

aggregation of target states by replacing any equality condition on

the state (s ′ = s) with set membership condition (s ′ ∈ aдд). For
example, an aggregated counting query is denoted C (aдд) and it

produces a stream of answersC (aдд) = c (aдд)1, c (aдд)2, . . . where
c (aдд)t =

∑
i ∈aдд ct (si ).

Finally, the analyst may wish to ask a query about more than

one aggregation of states. Let AGG = {aдд1,aдд2, ...} denote a

collection of aggregations. We consider the special case where this

collection has a hierarchical structure.

Definition 2.4. A set of aggregations AGG = {aдд1,aдд2, ...} is
hierarchical if for any two aggregations aдд1,aдд2 ∈ AGG, they
satisfy one of the following two properties:

(1) aдд1 ⊂ aдд2 or aдд2 ⊂ aдд1.
(2) aдд1 ∩ aдд2 = ∅.

Intuitively, a set of hierarchical aggregations AGG can be repre-

sented as a tree or a forest, where any child aggregation contains

a subset of states that its parent aggregation covers, and any two

child aggregations with the same parent aggregation cover two dis-

joint sets of states. We use level (aдд | AGG ) to denote the level of

aдд ∈ AGG . level (aдд | AGG ) = 1 if aдд has no parent aggregation

in AGG. If aдд1,aдд2 ∈ AGG and aдд1 is the child aggregation of

aдд2, level (aдд1 | AGG ) = level (aдд2 | AGG ) + 1.

Example 2.5. An analyst might be interested in aggregate counts

of successful connections at the level of individual sensors, as well

as for aggregations of sensors within the same room, same floor,

and the same building on campus. For each room r , let aддr denote
the aggregation of states sp , where p is an access point in room r .

Similarly, for a floor f and building b, we can define aggregations

aддf and aддb that aggregate states sp , where p is in the floor f or

buildingb, respectively. These sets of aggregations form a hierarchy.

An analyst might be interested in the unit query for aggregate states

at floors and buildings as well as a low signal event monitoring

query EM (aддr ,w, . . . ), for each rooms r .

2.3 Privacy for Streams
Two stream prefixes Dt and D′t are considered neighbors if they
differ by the addition or removal of a single tuple; i.e., |Dt ⊕D′t | = 1

where ⊕ indicates symmetric difference. The algorithms we con-

sider in this paper operate on stream prefixes.

We define privacy for streams as follows, analogous to event

differential privacy [2, 11].

Definition 2.6 (ϵ-differential privacy). Let A be a randomized

algorithm that takes as input a stream prefix of arbitrary size and

outputs an element from a set of possible output sequences O. Then

A satisfies ϵ-differential privacy if for any pair of neighboring

stream prefixes Dt and D′t , for all t , and ∀O ⊆ O,

Pr [A (Dt ) ∈ O] ≤ eϵ × Pr [A (D′t ) ∈ O]

The parameter ϵ controls the privacy risk and smaller ϵ corre-
sponds to stronger privacy protection. The semantics of this privacy

guarantee are discussed further in Section 2.4.

The following composition properties hold for differentially pri-

vate algorithms, each commonly used for building complex dif-

ferentially private algorithms from simpler subroutines. Suppose

A1 (·) and A2 (·) are ϵ1- and ϵ2-differentially private algorithms,

respectively.

• Sequential Composition: Computing A1 (Dt ) and A2 (Dt ) satis-
fies (ϵ1 + ϵ2)-differential privacy for any D.

• Parallel Composition: Let A and B be disjoint subsets of dom.

ComputingA1 (Dt ∩A) andA1 (Dt ∩B), satisfies ϵ1-differential
privacy.

• Postprocessing: For any algorithmA3 (·), releasingA3 (A1 (Dt ))
still satisfies ϵ1-differential privacy for any D. That is, post-
processing an output of a differentially private algorithm does

not incur any additional loss of privacy.

The composition properties allow us to execute multiple differ-

entially private computations and reason about the cumulative

privacy risk. In our applications, we want to bound the total risk so

we impose a total epsilon “privacy budget” and allocate a portion

of the budget to each private computation.

An arbitrary numerical function f can be made differentially

private by adding noise to its output. The amount of noise depends

on the sensitivity of the function.

Definition 2.7 (Sensitivity). Let f be a function that maps datasets

toRn . The sensitivity denoted as∆( f ), is defined to be themaximum

L1 distance between function outputs from any two neighboring

data streams Dt and D′t .

∆( f ) = max

Dt ,D′t : |Dt ⊕D′t |=1
| | f (Dt ) − f (D′t ) | |1.

The Laplace Mechanism [10] achieves differential privacy by

adding noise from Laplace distribution calibrated to the sensitivity.



Definition 2.8 (Laplace Mechanism (LM)). Given a function f that

maps datasets to Rn , the Laplace Mechanism outputs f (Dt ) + η,
where η is a vector of independent random variables drawn from a

Laplace distribution with the probability density function p (x |λ) =
1

2λ e
−|x |/λ

, where λ = ∆( f )/ϵ .

Remark. We make an assumption that each user can be in at

mostm different states s during one time period. Without loss of

generality, we assumem = 1 in our application. Ifm > 1, we can

simply normalize the counts (a user who is in m states at time

t contributes 1/m rather than 1 to the corresponding counting

queries) or increase the amount of noise injected in our algorithm

in order to provide privacy protection in terms of any single user

during one time period.

2.4 Privacy Semantics
In this section, we discuss the semantics of privacy ensured by

Definition 2.6 and justify our choice of this privacy goal.

The privacy ensured by Definition 2.6 can be interpreted in

terms of (a) plausible deniability, and (b) disclosure of secrets to

adversaries. Let ϕu (t ) and ϕ
′
u (t ) be two mutually exclusive boolean

properties about a useru at time step t . Examples of such properties

could be that a user was in building B1 at time t and building B2
at time t , respectively. An algorithm M satisfying Definition 2.6

allows a user to deny that ϕ ′u (t ) is true rather than ϕu (t ) since for
all neighboring streams Dt ,D′t such that ϕu (t ) is true on Dt and

ϕ ′u (t ) is true on D′t , and for all output setsO ∈ ranдe (A), we have:

Pr [A (Dt ) = O] ≤ eϵPr [A (D′t ) = O]

Plausible deniability holds even for properties that span larger

time windows, albeit to a lesser extent and degrades with the length

of the timewindow. That is, ifϕu (t ,k ) andϕ
′
u (t ,k ) are twomutually

exclusive boolean properties about a useru that span a time window

of [t −k + 1, t], then for all streams Dt ,D′t such that ϕu (t ,k ) is true
onDt and ϕ

′
u (t ,k ) is true onD′t , and that differ only in the states in

the time window [t −k +1, t], and for all output setsO ∈ ranдe (A),
we have:

Pr [A (Dt ) = O] ≤ ek ·ϵPr [A (D′t ) = O]

Thus our definition also captures the more generalw-event privacy

[16]. And, if a time step corresponds to 5 minutes, and an algorithm

A satisfies Definition 2.6 with ϵ = 0.1, then for properties that span

10 minutes, we get privacy at a level ϵ = 0.2, and for properties that

span 1 hour, we get privacy at a level of ϵ = 1.2. If the protected

window size goes to infinity (k is unbounded), one can still guaran-

tee privacy with parameter ℓ · ϵ , where ℓ is the maximum number

of tuples in the stream corresponding to a single user. If both k and

ℓ are unbounded, one can extend existing negative results [8] to

show that it is impossible to release accurate statistics at each time

and offer privacy.

Next we explore the semantics of Definition 2.6 in terms of

disclosure of secrets to adversaries, which can be done in terms of

the Pufferfish framework [18]. One can show that if an algorithm

A satisfies Definition 2.6, then the adversary’s posterior odds that

ϕu (t ) is true vs ϕ
′
u (t ) is true after seeing the output of A, for any

pair of mutually exclusive secrets that span a single time step, is no

larger than eϵ times the adversary’s prior odds. However, this strong

privacy guarantee only holds under the restrictive assumptions

that an adversary is not aware of possible correlations between a

user’s states across time steps. With knowledge of correlations, an

adversary can learn sensitive properties of a user within a time step

even from outputs of differentially private algorithms [17, 20, 24].

Nevertheless, the ratio of the adversary’s posterior to prior odds

is still guaranteed to be no larger than eℓϵ even in the presence of

correlations. Recall that ℓ is the maximum number of tuples in the

stream corresponding to a single user.

Recent work [5, 22] has provided methods for deriving an ϵ ′ > ϵ
(but no more than ℓ × ϵ), such that algorithms satisfying Defini-

tion 2.6 with parameter ϵ offer a weaker ϵ ′ bound on privacy loss

even when records are correlated across time steps. For specific

types of correlations, the effective privacy guarantee is closer to ϵ
and much smaller than ℓ × ϵ .

We emphasize that our algorithms are designed to satisfy Defi-

nition 2.6 with parameter ϵ , but simultaneously satisfy all of the

above provable privacy guarantees, with a possibly different pri-

vacy parameter. Therefore, for the remainder of the paper, we focus

exclusively on developing algorithms that satisfy Definition 2.6

while minimizing error.

3 PEGASUS STREAM RELEASE
In this section, we describe a novel, data-dependent method (called

PeGaSus) for private, real-time release of query answers on data

streams. Our algorithm consists of a novel combination of data

perturbation and online partitioning, followed by post-processing.

We first present the algorithm for computing a unit counting

query in a single target state. In Section 4, we explain how the

algorithm can be adapted to answer other kinds of queries on a

single target state and in Section 5, we explain an extension of

the algorithm to support multiple queries over hierarchical aggre-

gations of states. The input to the algorithm consists of the true

answers to the unit counting query C . The output of the algorithm
is Ĉ = ĉ1, ĉ2, . . . , an infinite stream where ĉt is an estimate of the

true answer ct .
The three main modules of our method PeGaSus are as fol-

lows:

• Perturber: The Perturber consumes the input stream, adds

noise to each incoming element of the stream, and releases a

stream of noisy counts.

• Grouper: The Grouper consumes the input stream and groups

elements of the stream seen so far.

• Smoother: The Smoother performs post-processing using the

output of both above modules.

The Perturber is a standard noise-addition mechanism, but the

Grouper carries out an important role of partitioning the data into

regions that can be well-approximated by a uniform sub-stream.

The Smoother then combines this information with the output of

the Perturber. The result is a data-dependent algorithm which can

reduce error for streams with properties that are commonly wit-

nessed in practice.

The combination of the above three modules is formalized in

Algorithm 1, called Perturb-Group-Smooth stream release (PeGa-

Sus). When a new count ct arrives at time t , the Perturber takes



Figure 1: The PeGaSus algorithm for generating private streams. The Perturber and Grouper consume the true input stream,
while the Smoother consumes their output and produces the final result stream.

Algorithm 1 Perturb-Group-Smooth based Stream Release (PeGa-

Sus)

Input: C = c1, c2, . . . , privacy budget ϵ = ϵp + ϵд
Output: Private stream Ĉ = ĉ1, ĉ2, . . . ,

1: for each time t do
2: c̃t ← Perturber (ct , ϵp )
3: Pt ← Grouper (Ct , Pt−1, ϵд )

4: ĉt ← Smoother (C̃t , Pt )
5: Release ĉt
6: end for

the input ct and outputs a noisy version c̃t , using ϵp portion of the

overall ϵ privacy budget (line 2). The Grouper takes as input all of
the data received so far Ct = c1, . . . , ct and the partition from the

previous time Pt−1. (Partition Pt−1 is a partition over the integers

{1, . . . , t − 1} and represents a grouping of the first t − 1 counts.) At
each time step, the Grouper outputs an updated partition Pt with
a portion of the privacy budget ϵд (in line 3). The Smoother then
computes a final estimate ĉt of ct based on all the initial noisy

counts C̃t = c̃1, . . . , c̃t and the current partition Pt (in line 4).

The execution of Algorithm 1 is illustrated in Figure 1. Both the

Perturber and the Grouper are colored red because they consume

the input stream and use the privacy budget. The Smoother is col-
ored blue because it only uses the output of the Perturber and the

Grouper.

Theorem 3.1. When the Perturber satisfies ϵp -differential privacy
and the Grouper satisfies ϵд-differential privacy, Algorithm 1 ensures
ϵp + ϵд = ϵ-differential privacy.

The above theorem follows directly from the sequential com-

position and post-processing properties of differential privacy (as

described in Section 2).

Algorithm 1 forms the basis of a number of algorithm variants

we consider throughout the paper. In the remainder of this section,

we describe below the design of each module, and basic variants for

the Smoother. We also include theoretical analysis that illustrates

cases where smoothing can reduce error. Sections 4 and 5 describe

extensions to the algorithm for other kinds of queries.

Algorithm 2 Deviation based Grouper (DBG)

Input: Ct = c1, . . . , ct , the previous partition Pt−1, ϵд , θ
Output: Pt (a partition of {1, . . . , t })

1: if t = 1 then
2: Pt−1 ← ∅ and let G be closed, empty group.

3: else
4: G ← Last group from Pt−1
5: end if
6: if G has been closed then
7: Pt ← Pt−1 ∪ {{t }} and let the last group {t } be open.

8:
˜θ ← θ + Lap (4/ϵд )

9: else
10:

˜θ ← ˜θprev ▷ ˜θprev cached from previous call.

11: if (dev (Ct [G ∪ {t }]) + Lap (8/ϵд )) < ˜θ then
12: Pt ← Pt−1 with G replaced by G ∪ {t } and G still open.

13: else
14: Pt ← Pt−1 ∪ {{t }} and close both group G and {t }.
15: end if
16: end if
17:

˜θprev ← ˜θ ▷ cache ˜θprev for subsequent calls.

18: Return Pt

3.1 Design of the Perturber
The Perturber takes input ct at each time t and outputs a noisy

version c̃t . We use the Laplace Mechanism (Section 2.3) as the

implementation of the Perturber.

3.2 Design of the Grouper
Next we describe the Deviation-based Grouper (DBG) (Algorithm 2),

a differentially privatemethod for online partitioningwhich chooses

partitions that approximately (subject to distortion introduced for

privacy) minimizes a quality score based on deviation.

Recall that this module runs independently of the Perturber and
does not consume its output. Instead the Grouper takes as input all
of the data received so far, Ct = c1, . . . , ct at time t , and outputs

a partition of Ct . At any time t , the stream seen so far has been

partitioned into contiguous groups. All but the most recent group

are closed and will not be changed, but the most recent group may



continue to grow as new elements arrive, until it is eventually

closed.

To evaluate the quality of a potential group, we use the deviation

function, which measures the absolute difference of a set of counts

from its average. LetG be a group of indexes of dataCt = c1, . . . , ct ,
Ct [G] be the set of corresponding counts inCt and denote by |G | the
size of the group. Then the deviation ofCt [G] is denoteddev (Ct [G])
and is defined:

dev (Ct [G]) =
∑
i ∈G

�����
ci −

∑
i ∈G ci
|G |

�����
.

When the dev (Ct [G]) is small, the counts in Ct [G] are approxi-

mately uniform and the Smoother can exploit this.

Algorithm 2 takes as input the stream seen so far, Ct , the latest
partition, Pt−1, alongwith ϵд and a user-defined deviation threshold
θ which influences the acceptable deviation in a partition. Because

the algorithm uses the Sparse Vector Technique [13], it maintains a

noisy threshold
˜θprev used at the previous time. When a new data

ct arrives at time t , we check the status of the last group G from

the previous partition Pt−1. If G is closed, we put ct into a new

open group and reset the noisy threshold (in lines 6-8). Otherwise,

we compute the deviation of the Ct [G ∪ {t }] and compare a noisy

version of the deviation value with the noisy threshold. If the noisy

deviation is smaller than the noisy threshold, we add {t } into the
openG (in lines 11-12). Otherwise, we add a new group {t } into the
partition and close both G and {t } (in line 14).

The following example explains how the Grouper defined in

Algorithm 2 would run, assuming for simplicity an infinite privacy

budget (so that the noise added in lines 8 and 11 is zero).

Example 3.2. Consider a stream of counts C5 = [5, 5, 6, 9, 10]

and a threshold θ = 2. At time 1, the Grouper generates a partition
P1 containing a single open group G with a single index: G =
{1} and P1 = {G}. At time 2, the last group G = {1} is open and

dev (C2[{1, 2}]) = dev ([5, 5]) = 0. Because the deviation is less

than θ , we add the current data into G and keep G open. P2 still
contains a single group G. At time 3, the last group G = {1, 2} is
open and dev ([5, 5, 6]) = 4

3
< θ . We still add the current data intoG

and keep G open. At time 4, the last group G = {1, 2, 3} is open but

dev ([5, 5, 6, 9]) = 5.5 > θ . Thus we closeG = {1, 2, 3} and create the
second group {4} which is also closed. Thus, P4 = {{1, 2, 3}, {4}}. At
time 5, the last groupG = {4} is closed, so we start with a new open

group G = {5}. The final output at time 5 is P5 = {{1, 2, 3}, {4}, {5}}
.

With a realistic (non-infinite) setting for ϵд , the Grouper runs in
a similar manner but noise is added to both the threshold and to

the deviations that are compared with the threshold. Therefore, the

output partitions will differ.

To prove the privacy of Algorithm 2 we will use the following

lemma:

Lemma 3.3 (Sensitivity of deviation [19]). The global sensi-
tivity of the deviation function ∆(dev ) is bounded by 2.

Theorem 3.4. Using Algorithm 2 to generate a partition at every
time ensures ϵд-differential privacy.

Proof. The algorithm is an implementation of the Sparse Vec-
tor Technique [13] on multiple disjoint sub-streams applied to the

dev function. The noise was injected to both the threshold and

the deviation value in order to ensure privacy. Because the sensi-

tivity of dev is bounded by 2 (Lemma 3.3), the noise added to the

threshold, in line (4), is computed as Lap (4/ϵд ) = Lap (2∆(dev )/ϵд ).
In line (7), the noise added to the deviation value is Lap (8/ϵд ) =
Lap (4∆(dev )/ϵд )). Based on the original proof of Sparse Vector

Technique from [13], this amount of noise ensures ϵд-differential
privacy for each generated group. In addition, the derived streams

from two neighboring source streams can only differ by 1 at one

time. Thus, there will be only one generated group different in

term of two neighboring source streams. By parallel composition,

Algorithm 2 satisfies ϵд-differential privacy. □

3.3 Design of the Smoother
The Smoother computes the final estimate ĉt for each ct received
at time t based on all the noisy counts C̃t from the Perturber, in
combination with the current partition Pt . Suppose the last group
G = {t − k, . . . , t − 1, t } from Pt contains current index t with
the previous k indexes. Given this output from the Grouper, there
are several post-processing methods we may apply to generate an

estimate, ĉt , that improves upon c̃t . These are alternatives for the
Smoother in Algorithm 1:

1. AverageSmoother: We use the average noisy counts of the data

indexed in group G to be the estimate of the current data.

ĉt =

∑
i ∈G c̃i
|G |

.

2. MedianSmoother: We use the median noisy counts of the data

indexed in group G to be the estimate of the current data.

ĉt =median{c̃i | i ∈ G}.

3. JSSmoother: We apply the James-Stein estimator [23] to update

the noisy count of the current data based on the noisy counts

of the data indexed in group G.

ĉt =
c̃t − avд

|G |
+ avд,

where avд =
∑
i∈G c̃i
|G | . We assume uniformity on each group

and apply the James-Stein estimator to let each estimate shrink

to the mean. (We can only use the noisy mean here in terms of

the privacy.)

We theoretically analyze the effect of AverageSmoother in the next

section and empirically evaluate all three variants in Section 6. We

conclude this section with an example.

Example 3.5. Continuing from Example 3.2, we have a stream

of true counts C5 = {5, 5, 6, 9, 10} with noisy counts from the

Perturber of C̃5 = {5.6, 4.4, 6.7, 9.5, 10.2} and a final partition P5 =
{{1, 2, 3}, {4}, {5}} from the Grouper. We now illustrate how the final

estimates Ĉ5 would have been produced using MedianSmoother as
Smoother. Recall that each ĉt is released in real-time based on Pt , the
groups at time t , and not the final grouping P5. At time 1, P1 = {{1}}
and the last group is G = {1}, ĉ1 = median{5.6} = 5.6. At time 2,

the last group is G = {1, 2}, ĉ2 = median{5.6, 4.4} = 5. At time

3, the last group is G = {1, 2, 3}, ĉ3 = median{5.6, 4.4, 6.7} = 5.6.

At time 4, P4 = {{1, 2, 3}, {4}} and the last group is G = {4}, so
ĉ4 = median{9.5} = 9.5. At time 5, the last group is G = {5},



ĉ5 = median{10.2} = 10.2. Thus, the final estimates are Ĉ5 =

{5.6, 5, 5.6, 9.5, 10.2}.

3.4 Error analysis of smoothing
Wenow formally analyze how the online grouping and post-processing

Smoother may help for improving the accuracy of the output.

Theorem 3.6. Suppose one groupG in the resulting partition from
Grouper contains n indexes, i + 1, i + 2, . . . , i + n. Assume that Ĉ is
produced using the AverageSmoother as the Smoother. Then Ĉ[G],
the resulting estimate for groupG , will have lower expected error than
C̃[G], formally stated as

E



Ĉ[G] −C[G]




2 ≤ E



C̃[G] −C[G]




2

provided that the deviation of C[G] satisfies

dev (C[G]) ≤

√
2(n − lnn − 1)

(1 + ln(n − 1))ϵp

Proof. In terms of C̃ which are generated from the Perturber by
applying Laplace Mechanism, we have E




C̃[G] −C[G]



2 = n ×

2

ϵ 2p
.

At each time i+k ,G = {i+1, . . . , i+k }. By using theAverageSmoother,
ĉi+k =

c̃i+1+· · ·+c̃i+k
k . Then the following holds:

E



Ĉ[G] −C[G]




2 = E
( n∑
k=1

(
c̃i+1 + · · · + c̃i+k

k
− ci+k )

2

)
=

n∑
k=1

E[(
c̃i+1 + · · · + c̃i+k

k
− ci+k )

2
]

=

n∑
k=1

E[(
ci+1 + ni+1 + · · · + ci+k + ni+k

k
− ci+k )

2
]

=

n∑
k=1

E[(
ci+1 + · · · + ci+k

k
− ci+k +

ni+1 + · · · + ni+k
k

)2]

=

n∑
k=1

((avдk − ci+k )
2 + E[(

ni+1 + · · · + ni+k
k

)2]

+2 ∗ E[(
ci+1 + · · · + ci+k

k
− ci+k ) ∗

ni+1 + · · · + ni+k
k

]).

Since ni+1, . . . ,ni+n are independent Laplace noise with param-

eter
1

ϵp , E[(
ni+1+· · ·+ni+k

k )2] = 1

k ×
2

ϵ 2p
and E[ni+1+· · ·+ni+kk ] = 0.

Then we have

E



Ĉ[G] −C[G]




2

=

n∑
k=2

(avдk − ci+k )
2 +

n∑
k=1

1

k
×

2

ϵ2p

< (lnn + 1) ×
2

ϵ2p
+

n∑
k=2

(avдk − ci+k )
2

≤ (lnn + 1) ×
2

ϵ2p
+

n∑
k=2

( |avдk − avдn | + |avдn − ci+k |)
2

≤ (lnn + 1) ×
2

ϵ2p
+ (

n∑
k=2

|avдk − avдn | +
n∑

k=2

|avдn − ci+k |)
2

≤ (lnn + 1) ×
2

ϵ2p
+ (

n∑
k=2

|avдk − avдn | + dev (C[G]))
2.

Also, we have

|avдk − avдn | = |
ci+1 + · · · + ci+k

k
− avдn |

= |
ci+1 − avдn

k
+ · · · +

ci+k − avдn
k

|

≤
1

k
( |ci+1 − avдn | + · · · + |ci+k − avдn |)

≤
1

k
( |ci+1 − avдn | + · · · + |ci+n − avдn |) =

1

k
dev (C[G]).

Thus,

E



Ĉ[G] −C[G]




2

≤ (lnn + 1) ×
2

ϵ2p
+ (

n−1∑
k=2

1

k
× dev (C[G]) + dev (C[G]))2

< (lnn + 1) ×
2

ϵ2p
+ (1 + ln(n − 1))2dev (C[G])2,

where avдk =
ci+1+· · ·+ci+k

k for k ∈ [1,n].

Therefore, when dev (C[G]) ≤

√
2(n−lnn−1)

(1+ln(n−1))ϵp
, we have

E



Ĉ[G] −C[G]




2 ≤ E



C̃[G] −C[G]




2
□

Theorem 3.6 implies that when the Grouper finds a group with

large size but small deviation value, using the AverageSmoother can
reduce the error of the estimates. Many realistic data streams are

either sparse or have stable counts, which suggests that smooth-

ing can help reduce error. Although we only theoretically analyze

the AverageSmoother as the Smoother, we empirically compare the

three different post-processing strategies on many real streams (in

Section 6). We find that the Grouper often finds large groups with

low deviation andMedianSmoother consistently generates the most

accurate noisy streams under all settings. Thus, in our algorithms,

we use theMedianSmoother as the default Smoother to compute the

final estimates.



Algorithm 3Window Sum Smoother (WSS)

Input: C̃t = c̃1, . . . , c̃t , Pt ,w
Output: ˆswt

1: ˆswt ← 0

2: for each G ∈ Pt such that G ∩ {t −w + 1, . . . , t } , ∅ do
3: ĉ ←median{c̃i | i ∈ G}
4: ˆswt ← ˆswt + ĉ × |G ∩ {t −w + 1, . . . , t }|
5: end for
6: Return ˆswt

4 SUPPORT FOR OTHER QUERIES
The previous section describes how the PeGaSus algorithm (Algo-

rithm 1) can be used to generate Ĉ , a differentially private answer

to a given unit counting query C . In this section, we describe how

to adapt the algorithm to answer the other queries described in Sec-

tion 2.2, specifically sliding window queries and event monitoring

queries.

A distinctive feature of our approach is that we use the same

basic PeGaSus algorithm for these queries and change only the

Smoother. This is possible because the answers to these queries can
be derived from C . Our approach uses the noisy counts C̃t along
with the group information Pt to do appropriate smoothing for the

specific query. Recall that the Smoother does not take private data
as input and only post-processes the outputs of the differentially

private Perturber and Grouper subroutines. Therefore, we can swap

out Smoother without impacting the privacy guarantee. An added

benefit of this approach is that we can simultaneously support

all three kinds of queries – counting, sliding window, and event

monitors – all using a single privacy budget.

An effective Smoother should be designed in terms of the specific

applications as well as users’ knowledge about the input stream.

For sliding window queries, we propose a new post-processing

strategy called Window Sum Smoother (WSS), which is shown in

Algorithm 3. At time t , for every ct ′ contained in the sliding window
(t ′ ∈ [t − w + 1, t]), we use the MedianSmoother to compute an

estimate ĉt ′ for the count at time t ′. To compute the answer to the

sliding window query, we simply sum up the counts within the

windoww .

Note that this is subtly different from the approach described in

Section 3 because the estimate ĉt ′ for some t ′ in the sliding window

is based on its group G which may include counts received after

t ′ and up to time t . Thus, Window Sum Smoother may provide a

better estimate than just using MedianSmoother as described in

Section 3.3. We make this comparison empirically in Section 6 and

we also compare against the state of the art technique for sliding

window queries [2].

For event monitoring queries, the Smoother depends on the par-

ticular event monitor. For detecting jumps or drops, since we need

the count at time t and the count received at time t − w + 1, we

simply use the MedianSmoother. Actually, we may do better by

also smoothing c̃t−w+1 using its groupG as defined at time t . For
detecting low signal points, we need a sliding window query at

each timestamp. Thus we use theWindow Sum Smoother. Once the
counts have been appropriately smoothed, we pass the estimated

counts to the event monitoring functions B and f to generate an

event stream (as described in Section 2.2).

5 HIERARCHICAL STREAMS
In this section, we describe an extension to PeGaSus to support

queries on multiple target states as well as aggregations of states.

Recall from Section 2.2.2 that the analyst can request queries on

a set of states {s1, . . . , sm } ⊆ S and can also ask queries about

aggregations of states. We focus in particular on the setting in

which the analyst has specified a hierarchy of aggregations AGG
and a query on each aдд ∈ AGG.

For ease of presentation, we describe our approach assuming that

the analyst has requested a unit counting query on each aдд ∈ AGG .
However, our approach extends easily to sliding windows and event

monitoring using an extension analogous to what was described in

Section 4.

5.1 Hierarchical-Stream PeGaSus
First, we observe that we can answer the queries over hierarchical

aggregations by simply treating each aggregation as a separate

stream and running any single-stream algorithm on each input

stream. Therefore, our first solution is to run PeGaSus on each

stream, an algorithm we refer to as Hierarchical-Stream PeGaSus
(HS-PGS). Formally, given a set of aggregations AGG and a corre-

sponding set of input streams C (aдд) = c1 (aдд), c2 (aдд), . . . , for
eachaдд ∈ AGG , the algorithmHS-PGS executes PeGaSus (C (aдд), ϵh )
for each aдд ∈ AGG, where h is the height of AGG.

Theorem 5.1. Hierarchical-Stream PeGaSus satisfies ϵ-differential
privacy.

Proof. The proof follows from (a) the privacy guarantee of Pe-

GaSus (Theorem 3.1), (b) parallel composition of differential privacy

across each level of the hierarchy, and (c) the sequential composition

of differential privacy for each of the h hierarchy levels. □

5.2 Hierarchical-Stream PeGaSus With
Pruning

We next describe an enhancement of Hierarchical-Stream PeGaSus
that is designed to lower error when many of the input streams in

the aggregation hierarchy are sparse.

The hierarchy implies a monotonicity constraint on the counts

in the streams: the counts cannot decrease as one moves up the

hierarchy. More formally, for any aдд1,aдд2 ∈ AGG such that

aдд1 ⊂ aдд2, then for every time step t in streams C (aдд1) and
C (aдд2), it must be that ct (aдд1) ≤ ct (aдд2). Therefore, if the ag-
gregated streamC (aдд2) is observed to have a “small” count at time

t , all the aggregated streams C (aдд1) will also have small counts

at time t if aдд1 ⊂ aдд2. In such cases, it will be wise to prune

the count ct (aдд1) to be zero rather than consume privacy budget

trying to estimate a smaller count. Pruning small counts is also

beneficial because the privacy budget that would have been spent

on these counts can be saved and spent on non-pruned counts.

We use this pruning idea to modify our approach as follows.

At each time step, the hierarchy is traversed and streams with

small counts at this time step are pruned; any streams that remain

unpruned are fed into the usual PeGaSus algorithm. Note that



pruning only affects the current time step; a pruned stream at time

t may become unpruned at time t + 1.
Algorithm 4 presents our solution, which is called Hierarchical-

Stream PeGaSus with Pruning. The function Prune (lines 1-17) de-

scribes a differentially private algorithm for pruning the hierarchy.

This function is based on the idea of the Sparse Vector Technique [13].
Essentially, it checks each aggregation aдд ∈ AGG from level 1 to

level h. If the current aдд has been pruned, all its children are

automatically pruned. Otherwise, we compare this aggregation’s

current count, ct (aдд), against a user-specified threshold β (line

8). If the count is below threshold, it prunes all the children of aдд.
Further, the privacy budget that would have been spent on the

descendants is saved (line 10). To ensure privacy, Laplace noise is

added to both the count ct (aдд) and the threshold β .
The Hierarchical-Stream PeGaSus with Pruning algorithm itself

is described on lines 18-29. At each time step, it calls Prune. Then,

for each aggregation, if it has been pruned, it simply outputs a count

of 0 (line 21). Otherwise, it applies the PeGaSus algorithm to the

stream (lines 23-25) where the privacy budget passed to Perturber
and Grouper is adjusted based on what has been pruned and the

height of the tree.

In our implementation, there is a small modification to Grouper
in that we skip over past time steps that were pruned and therefore

consider potentially non-contiguous groups.

To prove the privacy guarantee of Algorithm 4, we analyze the

Prune function.

Theorem 5.2. The Prune function in Algorithm 4 satisfies ϵ-
differential privacy.

Proof. For any two neighboring source streaming datasets, they

derive neighboring multiple streams that only differ by 1 at one

timestamp on one single stream. In terms of AGG, there is at most

one list of aggregations at different levels that cover this single

stream. Function Prune can be treated as an implementation of the

Sparse Vector Technique from [13], which ensures ϵ-differential
privacy. □

Theorem 5.3. Algorithm 4 satisfies ϵ-differential privacy.

Proof. For any two neighboring source streaming datasets, they

derive neighboring multiple streams that only differ by 1 at one

timestamp on one single stream. Calling function Prune at every

timestamp with ϵpr privacy budget ensures ϵpr -differential privacy
based on Theorem 5.2. For the pruned aggregated streams, we set

the count to be 0, which will not leak any information. For the

non-pruned aggregated streams, we apply an algorithm similar to

Algorithm 1 to compute noisy counts at each timestamp. Based

on the analysis of Theorem 3.1 and sequential composition of dif-

ferential privacy on the aggregation set with h levels, releasing

noisy counts at every timestamp will satisfy ϵp + ϵд-differential
privacy. Thus, Algorithm 4 satisfies ϵ = ϵpr + ϵp + ϵд-differential
privacy. □

6 EVALUATION
In this section, we evaluate the proposed algorithms on real data

streams for a variety of workloads. We design the following experi-

ments:

Algorithm 4 Hierarchical-Stream PeGaSus with Pruning (PHS-

PGS)

Input: AGG with h levels, streams C (aдд) for each aдд ∈ AGG,
privacy budget ϵ = ϵpr + ϵp + ϵд , threshold β

Output: Streams Ĉ (aдд) for each aдд ∈ AGG

1: function Prune(AGG, ct (aдд) for each aдд ∈ AGG, ϵ, β)
2: Pruned ← ∅, ϵAGG ← ∅
3: for level i = 1 to h do
4: for each aдд ∈ AGG at level i do
5: if aдд ∈ Pruned then
6: Add every child of aдд to Pruned
7: Add ϵaдд = 0 to ϵAGG
8: else if (ct (aдд) + Lap (2/ϵ )) < (β +Lap (2/ϵ )) then
9: Add every child of aдд to Pruned
10: Add ϵaдд = h − i + 1 to ϵAGG
11: else
12: Add ϵaдд = 1 to ϵAGG
13: end if
14: end for
15: end for
16: Return Pruned , ϵAGG
17: end function
18: for each timestamp t do
19: Pruned, ϵAGG ← Prune(AGG, ct (aдд) for each aдд ∈

AGG, ϵpr , β)
20: for each aдд ∈ AGG do
21: if aдд ∈ Pruned then ĉt (aдд) ← 0

22: else
23: c̃t (aдд) ← Perturber(ct (aдд),

ϵaдд (ϵp+ϵд )
h −

ϵд
h )

24: Pt ← Grouper(Ct (aдд), Pt−1,
ϵд
h )

25: ĉt (aдд) ← Smoother(C̃t (aдд), Pt )
26: end if
27: Output ĉt (aдд)
28: end for
29: end for

1. We evaluate answering unit counting queries on data streams

with a single target state.

2. We evaluate answering slidingwindow queries on data streams

with a single target state.

3. We evaluate event monitoring (detecting jumping and drop-

ping points as well as low signal points) on data streams

with a single target state.

4. We evaluate answering unit counting queries on a collection

of hierarchical aggregations using data streamswithmultiple

target states.

Dataset : Our source data comes from real traces, taken over a six

month period, from approximately 4000 WiFi access points (AP)

distributed across the campus of a large educational institution. We

set the time interval to be 5 minutes and derive tuples from the

source data. If a useru makes at least one connection to AP s within
time interval t , then a tuple (u, s, t ) will be added to the stream.

Then, for any single AP s , a stream C (s ) = c1 (s ), c2 (s ), . . . will be
generated, where ct (s ) reports the number of users who success-

fully connected to AP s within time interval t . For the evaluation of



Table 1: An overview of the streams derived from real WiFi
access points connection traces. Length refers to the number
of counts, each representing the number of successful con-
nections in a 5 minute interval. Total count is the sum of all
counts in the stream.

Stream Name # of target states Length Total count

Low_5 1 57901 2846

Med_5 1 57901 101843

High_5 1 57901 2141963

Multi_5 128 20000 646254

data streams with a single target state, we pick three representative

APs with different loads (called "Low_5", "Med_5" and "High_5").

For the evaluation of data streams with multiple target states, we

randomly pick 128 APs (called "Multi_5"), and generate a hierar-

chical aggregation of these states as a binary tree of height 8. An

overview of the corresponding derived streams is shown in Table 1.

6.1 Unit counting query on a single target state
Answering a unit counting query on data streams with a single

target state is equivalent to releasing a private version of the entire

stream. Figure 2 shows visually the real and the privately generated

streams for the first 8000 timesteps of stream "High_5" under ϵ = 0.1

and 0.01. We compare our PeGaSus algorithm with the Laplace
Mechanism (LM). In PeGaSus, we set ϵp = 0.8 × ϵ and ϵд = 0.2 × ϵ .

We set θ = 5

ϵд in our Grouper. We use theMedianSmoother method

as the Smoother. In each figure of a noisy stream, we truncate the

negative counts to zero. Clearly, PeGaSus produces private streams

that are more accurate when visualized.

We also quantitively evaluate the error of answering the unit

counting query by using a couple of measures related to L1 error. For
any input data stream Ct = {c1, c2, . . . , ct } and the output private

stream Ĉt = {ĉ1, ĉ2, . . . , ĉt }, the scaled total L1 error is defined to

be

∑t
i=1 |ci−ĉi |∑t

i=1 ci
. We also use average L1 error, which is defined as∑t

i=1 |ci−ĉi |
t .

Figure 3 reports the evaluation results on the data streams with

the single target state fromTable 1. In each figure, LMmeans Laplace
Mechanism, and PGS is PeGaSuswith theMedianSmoother as Smoother.
In addition, as a simple comparison method, we use BS_t to mean a

method where we do backward smoothing of results from Laplace
Mechanism. Given a backward smoothing time k , for any t ≥ k ,

ĉk is updated as

∑t
i=t−k ĉ

LM
i

k+1 , where ĉLMi is the output from Laplace
Mechanism. Each bar in the figures reports the scaled total L1 error
in terms of the unit counting query at all timesteps. The value is

the average of 20 random trials. PeGaSus consistently performs the

best on all the data streams and under both ϵ settings.

Next, we compare the impact of the three different smoothing

strategies – JSSmoother, MedianSmoother, and AverageSmoother –
in terms of answering the unit counting query. The results are

shown in Figure 4. Each bar reports the log
10

value of the average

L1 error under 20 trials in terms of each smoothing strategy. We can

see that all JSSmoother, MedianSmoother and AverageSmoother are

good smoothing strategies, butMedianSmoother is consistently bet-
ter than AverageSmoother and JSSmoother for all data streams and

ϵ settings.

6.2 Sliding window query on a single target
state

Next we evaluate the sliding window query with window size w .

Figure 5 presents the results. Each point shows the average L1 error
for answering the sliding window query with size w = 2

x
at all

timesteps and the value is the average of 20 trials. In each sub-figure,

LM represents using LaplaceMechanism to answer the unit counting

query first, then computing the sliding window query based on

the noisy unit counting query answers. SW_w is the state-of-the-

art data independent algorithm for computing the sliding window

query in terms of a fixed window sizew [4]. SW_w generates binary

trees on every consecutive window ofw counts and perturbs each

node query of each binary tree. Then, any sliding window query

with sizew can be derived as the sum of the prefix and suffix of any

two neighboring binary trees. PGS_MS is a variant of PeGaSus with

MedianSmoother as Smoother; PGS_WWS is a variant of PeGaSus

with Window Sum Smoother (Algorithm 3) as Smoother.
As shown in the figure, LM introduces excessive error. PGS_WWS

performs slightly but consistently better than PGS_MS, demonstrat-

ing the benefit of using a different Smoother for this workload.
PGS_WWS computes more accurate sliding window queries when

w is not greater than 256 compared with the state of the art al-

gorithm SW_w. When the window size becomes larger, SW_w

becomes better because SW_w is designed specifically for the slid-

ing window query with window size w while our PeGaSus may

introduce a large bias into a large sliding window query. We empha-

size that PeGaSus can simultaneously support all sliding window

queries instead of having to split the privacy budget and design

algorithms for each sliding window workload with a fixed window

size.

6.3 Event monitoring on a single target state
In this experiment we consider event monitoring queries on the

"High_5" data stream. Figure 6 displays the ROC curves for detect-

ing jumping and dropping points on streams with a single target

state. In each sub-figure, LM represents using Laplace Mechanism to

generate a noisy stream and doing event monitoring on the noisy

stream. PGS is our PeGaSus with MedianSmoother. We use a fixed

window size w and threshold δ to compute the ground truth in

terms of the real stream. We vary the threshold from 0 to 1000 to do

the private event monitoring and compute the corresponding "True

Positive Rate" and "False Positive Rate". As shown in the figures, for

all differentw and δ settings, when ϵ is large (= 0.1), both LM and

PeGaSus perform very well and LM is slightly better than PeGaSus.

However, when ϵ becomes smaller (=0.01), PeGaSus performs much

better than LM.

Figure 7 shows the ROC curves for detecting low signal points.

Since determining the low signal points requires computing the

sliding window queries, we compare SW_w from [2] with our

proposed PeGaSus with Algorithm 3 as Smoother. We use fixed

window sizew and threshold δ to compute the ground truth in terms

of the real stream. We vary the threshold from -4000 to 4000 to do
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Figure 2: Visualizations of the "High_5" stream for 8000 timesteps. The real stream is shown on the left followed by two
privately generated versions: the Laplace Mechanism (LM) and PeGaSus. Above ϵ = 0.1, while below ϵ = 0.01.
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Figure 3: Error for the unit counting query on streams with a single target state. The y-axis reports loд10 of the scaled total L1
error.
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Figure 4: Smoothing strategy comparison for unit workload
on various streams. "MS" is MedianSmoother, "AS" is Aver-
ageSmoother and "JSS" is JSSmoother. Y-axis reports the loд10
of the average L1 error.

the private event monitoring and compute the corresponding "True

Positive Rate" and "False Positive Rate". As shown in the figures,

for all different ϵ ,w and δ settings, PeGaSus always outperforms

SW_w.

6.4 Unit counting query on hierarchical
aggregated streams; multiple target states

We evaluate our proposed algorithms in Section 5 for answering

unit counting query on a set of hierarchical aggregated streams

among multiple target states. We use the "Multi_5" stream from

Table 1 and consider a set of hierarchical aggregations AGG as a

binary tree on the total number of states (128 in our case). The total

levels of AGG is log
2
(128) + 1 = 8.

Figure 8 shows the results under two different ϵ settings. Each
bar reports the log

10
value of the average L1 error in terms of the

unit counting query on every aggregated stream at all timesteps.
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Figure 6: ROC curve for detecting jumping and dropping points on stream High_5. For (a), (b), (e) and (f), ϵ = 0.1; For (c), (d),
(g) and (h), ϵ = 0.01.

The value is also the average of 20 trials. In the figure, HS-LM rep-

resents using Laplace Mechanism on answering the unit query on

each aggregated stream with
ϵ
h privacy budget, where h is the num-

ber of levels of AGG. HS-PGS is using our proposed PeGaSus with

MedianSmoother as Smoother on each aggregated stream. PHS-PGS

is the proposed Hierarchical-Stream PeGaSus with pruning (Algo-

rithm 4). As shown in the figure, both HS-PGS and PHS-PGS reduce

the average L1 error of answering unit counting query by 1 to 2

orders of magnitude compared with the data-independent HS-LM.

In addition, by doing the pruning, the utility of the results are fur-

ther improved. The average L1 error of HS-LM is over 78x (445x)

times the error of PHS-PGS, and the error of HS-PGS is over 4x (9x)

times the error of PHS-PGS for ϵ = 0.1 (0.01).

7 RELATEDWORK
There is prior work focusing on continual real-time release of aggre-

gated statistics from streams [2, 4, 7, 15, 16]. Most of this literature

focuses on releasing a single continuous query with low error under
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Figure 7: ROC curve for detecting low signal points on stream High_5. For (a), (b), (e) and (f), ϵ = 0.1; For (c), (d), (g) and (h),
ϵ = 0.01.
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differential privacy. In contrast, PeGaSus is able to support multiple

analyses on the private stream.

Fan et al. proposed Fast [15], an adaptive system to release real-

time aggregate statistics under differential privacy by using sam-

pling and filtering. Their algorithm is based on a different privacy

model, user-level differential privacy, which is not comparable to

our chosen model of event level differential privacy. In [7], Chan

et al. use a privacy model that matches the one in the present

work. But they focus on a single task: releasing prefix sums of the

streaming data counts. For an input stream with known bounded

length T , it generates a binary tree defined on the stream and per-

turbs the node counts of the binary tree. Then each prefix range

query is computed based on a set of perturbed nodes. For streams

with unbounded length, it spends half of the privacy budget on

perturbing every range query between 2
i + 1 and 2

i+1
. Then it

generates a binary tree on every sub-stream between 2
t + 1 and

2
t+1

for each i = 1, 2, . . . , and perturbs the node counts with the

remaining half of the privacy budget. Any prefix sum at timestamp

k , where 2
i <= k < 2

i+1
, can be computed based on the range

queries between 2
i + 1 and 2

i+1
for all i ≤ t and the noisy nodes

from the binary tree between 2
t + 1 and 2

t+1
. The authors proved

that the error of each release at timestamp t isO (log(t )). We did not

compare with this method because we do not consider answering

prefix counting queries.

Bolot et al. [2] also used a comparable privacy model, proposing

an algorithm for answering sliding window queries on data streams

with a fixed window sizew . The basic idea is also to generate binary

trees on every consecutivew data points and perturb the nodes of

the binary trees. A sliding window query at each timestamp can

be derived as the sum of the suffix and prefix of two consecutive

binary trees. This is the state-of-the art algorithm for releasing

sliding window query answers. But the algorithm is designed for

any one fixed window size, which means we must split the budget

for answering multiple sliding window queries with different win-

dow sizes. We compare our proposed technique with this method

in Section 6 and our technique always has a better performance

on our real-world WIFI dataset when answering sliding window

queries with size not greater than 2
8
, even if we do not split the

privacy budget for different window size by using the previous

method from [2]. Cao et al. [4] study a different task: answering

a set of special prefix sum queries with timestamps of the form

j × s , where s is the step size chosen from some pre-defined step

size set. The proposed algorithms sample some step sizes from the

step size set and then only perturb the window queries in terms of

the chosen step sizes. Then the prefix range query from the work-

load can be computed by composition of these perturbed window

queries. We did not compare with this method since it only focuses

on answering a small fixed set of prefix range queries. Kellaris et

al. first proposed another privacy model calledw-event differential

privacy [16], which is a balance between user-level and event-level

differential privacy and designed algorithms for releasing private

data under w-event differential privacy.

Dwork adapted differential privacy to a continual observation

setting [9], which focused on a 0/1 stream and proposed a cascading

buffer counter for counting the number of 1s under event-level

differential privacy. Mir et al. studied pan-private algorithms for



estimating distinct count, moments and the heavy-hitter count on

data streams in [21], which preserves differential privacy even if

the internal memory of the algorithms is compromised. Chan et al.

studied the application of monitoring the heavy hitters across a set

of distributed streams [6].

Dwork et al. proposed a differentially private online partition

algorithm for counting under continual observations [12]. Like our

Grouper module, this algorithm also employs the Sparse Vector

Technique [13]. However, our Grouper differs from Dwork et al. in

the following important ways: (1) their algorithm is designed for

computing partitions such that total counts of each partition are

similar while ours is to find groups such that the elements in each

group share similar counts. (2) Using the deviation function helps

the Grouper to detect contiguous intervals in the stream that have a

stable value (even if the values are high). On the other hand, using

the total only lets us group together intervals that have counts close

to zero.

8 CONCLUSION
We presented PeGaSus, a new differentially private algorithm that

can simultaneously answer a variety of continuous queries at mul-

tiple resolutions on real time data streams. Our novel Perturber,
data-adaptive Grouper and query specific Smoother approach helps

release counting, sliding window and event monitoring queries

with low error on sparse or stable streams. Our empirical results

show that our approach outperforms state-of-the-art solutions spe-

cialized to individual queries.

There are some open questions for the future work. First, there

exist some parameters in our proposed algorithms required to be

set. Different setting of the parameters would affect the final out-

puts. Designing algorithms for data adaptive parameter tuning will

be useful. Second, It will be of great usefulness to design more

sophisticated Smoother that will go beyond recognizing only sparse
or stable sub-regions. It will be even better that the Smoother can
be adaptively adjusted in terms of the input streaming data.
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