
Self-interested Database Managers
Playing The View Maintenance Game

Hala Mostafa
Dept. of Computer Science
University of Massachusetts
Amherst, MA 01003-4610

hmostafa@cs.umass.edu

Victor Lesser
Dept. of Computer Science
University of Massachusetts
Amherst, MA 01003-4610
lesser@cs.umass.edu

Gerome Miklau
Dept. of Computer Science
University of Massachusetts
Amherst, MA 01003-4610

miklau@cs.umass.edu

ABSTRACT
A database view is a dynamic virtual table composed of the
result set of a query, often executed over different underlying
databases. The view maintenance problem concerns how a
view is refreshed when the data sources are updated. We
study the view maintenance problem when self-interested
database managers from different institutions are involved,
each concerned about the privacy of its database. We re-
gard view maintenance as an incremental, sequential pro-
cess where an action taken at a stage affects what happens at
later stages. The contribution of this paper is twofold. First,
we formulate the view maintenance problem as a sequential
game of incomplete information where at every stage, each
database manager decides what information to disclose, if
any, without knowledge of the number or nature of updates
at other managers. This allows us to adopt a satisficing
approach where the final view need not reflect 100% of the
databases updates. Second, we present an anytime algo-
rithm for calculating ε-Bayes-Nash equilibria that allows us
to solve the large games which our problem translates to.
Our algorithm is not restricted to games originating from the
view maintenance problem; it can be used to solve general
games of incomplete information. In addition, experimen-
tal results demonstrate our algorithm’s attractive anytime
behavior, which allows it to find good-enough solutions to
large games within reasonable amounts of time.

Categories and Subject Descriptors
I.2.8 [ARTIFICIAL INTELLIGENCE]: Problem Solv-
ing, Control Methods, and Search—Heuristic methods

General Terms
Algorithms, Economics

Keywords
Sequential decision-making, Games of Incomplete Informa-
tion, Approximate Bayes-Nash Equilibria, Database view
maintenance

1. INTRODUCTION
A database view is a dynamic, virtual table composed of

the result set of a query executed over one or more data

Cite as: Self-interested Database Managers Playing The View Mainte-
nance Game, Hala Mostafa, Victor Lesser and Gerome Miklau, Proc. of
7th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.),
May, 12-16., 2008, Estoril, Portugal, pp. XXX-XXX.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

sources. A view provides a temporary, selective representa-
tion of database fields from the underlying sources. The
view maintenance problem [1, 2, 4, 7, 11] concerns how
views are refreshed when the data sources are updated. This
problem has been extensively studied in settings where view
refreshing is expensive due to factors like the communica-
tion cost of transferring large amounts of data. We study
the view maintenance problem when self-interested database
managers from different institutions are involved, each con-
cerned about the privacy of its database. In this setting, a
database manager has to decide how much it contributes to
refreshing the view, and consequently how much privacy loss
it suffers, based on the cost of disclosing various pieces of in-
formation and the reward received by the set of managers
as a whole for maintaining the view. Because a manager’s
final payoff also depends on the actions of other managers,
each manager needs to reason about the nature and number
of updates at other databases, what they can reveal in the
future and the probability of their revealing it.

The contribution of this work is two-fold. First, we formu-
late the view maintenance problem as a sequential game of
incomplete information. Second, we propose a general any-
time algorithm for approximately solving games of incom-
plete information by searching the space of strategy pro-
files for an approximate equilibrium. Our algorithm has
three novel features: 1) it collapses the game tree as a pre-
processing step, resulting in more tractable trees; 2) it gen-
erates local measures that guide the search by indicating
which parts of a strategy profile are least stable (and there-
fore yield the most improvement if remedied); 3) it proposes
a global measure of the stability of a profile by calculating
upper bounds on players’ regrets when playing this profile.

Both of our contributions mark a departure form pre-
vious related work. Previous work on the view mainte-
nance problem considered a setting where there is a single
database manager who reveals all necessary clues in one go.
Our setting is different in having multiple managers who re-
veal information incrementally. Also, unlike the work in [2]
and [11], we reason about the tradeoff between the amount
of communicated information and how up-to-date the view
is in a game-theoretic way. Even when there are multiple
database managers, cooperation has so far been assumed.
As far as we know, we present the first work to consider
the view maintenance problem with multiple self-interested
database managers, a setting that is likely to increase in
prevalence with the popularity of web sites drawing informa-
tion from various competing sources. Some work (e.g. [10])
considers the problem of computing the result of a query de-

fined over private datasources, a special case of the Secure
Multi-party Computation (SMC) problem [19]. The differ-
ence between this kind of work and ours is that in SMC, the
parties follow a protocol to carry out a computation. In our
problem, each party is a decision maker whose contribution
to different parts of the computation depends on costs and
rewards; the involved parties do not follow a pre-set proto-
col, and thus the computation does not necessarily proceed
to completion. Our problem is a decision-making problem
rather than a protocol design one.

Our algorithm is different from work in the area of incom-
plete information games in the following respects: 1) it deals
with sequential rather than the 1-shot or repeated games
which have attracted the most attention so far; 2) it does
not make assumptions about the interaction graph [8, 15, 16,
18] of the players (i.e. no assumptions about how or which
players interact with each other); 3) unlike domain-specific
algorithms (e.g. [9, 5]), our algorithm is not restricted to
games originating from the view maintenance problem; it
can be used to solve general games of incomplete informa-
tion in an anytime fashion.

This paper is organized as follows. Section 2 presents the
context of our view maintenance problem. Section 3 gives
a brief background on games and equilibria, presenting the
problem of finding an equilibrium as a search process. Sec-
tion 4 shows how we formulate the view maintenance prob-
lem as a game. Our anytime search algorithm is presented
in Section 5. Section 6 shows experimental results. Related
work is discussed and compared in Section 7. We conclude
and discuss areas of future work in Section 8.

2. VIEW MAINTENANCE WITH SELF-
INTERESTED DATABASE MANAGERS

2.1 Setting
The view maintenance problem [1, 2, 4, 7, 11] concerns

how database views are refreshed when base relations (tables
in the source databases) are updated. We restrict our atten-
tion to views that are result sets of conjunctive queries [3]
with inequalities, a class including a large number of queries
used in practice. A conjunctive query is a conjunction of
atomic formulae, each defined over a relation and specifies
which tuples in that relation match the query. Conjunctive
queries can be used to represent queries involving selections,
projections and joins, a core set of relational algebra oper-
ators. In our setting, database managers (DBMs) maintain
a view kept by a View Holder (VH) by disclosing informa-
tion about updates made to their databases. In return, VH
rewards the DBM s based on how much information they
disclose. Reward is divided equally among the DBM s; VH
does not care about their individual contributions.

Updates are processed in batches; view maintenance hap-
pens at intervals rather than continuously as updates are
made. We assume view maintenance takes place over T time
steps. Each DBM therefore has T decision points where it
decides what action to take (i.e. which piece of information
to disclose, if any). Different sequences of actions incur dif-
ferent costs for different DBM s and result in different final
rewards. The question is which course of actions to pursue,
given that each DBM wants to maximize its net profit. We
investigate a DBM ’s tension between the self-interested be-
havior trying to minimize privacy and communication costs

involved in disclosing updates and the cooperative behavior
necessary for the DBM s to collect a reward.

2.2 Our Approach
Our approach has two distinguishing features. First, we

regard view maintenance as an incremental sequential pro-
cess where an action taken at a stage affects what happens
at later stages. A DBM therefore needs to reason about
the long-term as well as the immediate effects of its actions.
It must also consider its uncertainty about the nature and
number of updates at other DBM s. Second, we adopt a
satisficing approach where the view need not reflect 100%
of the databases updates. This creates a tradeoff between
the amount of privacy given up by different DBMs and the
quality of the view (and thus the DBMs’ reward). Our incre-
mental satisficing approach has the advantage of offering the
DBM s a continuum of options rather than a binary decision
of whether to fully update the view or not.

2.3 Assumptions
We make the following assumptions regarding the setting

of the View Maintenance problem:

• The view query is known to all DBM s and information
disclosed by a DBM is available to VH as well as all
other DBM s

• A DBM incurs its own privacy/communication costs

• Rewards are divided equally among all DBM s regard-
less of their individual contributions

• The cost and reward of information are not necessarily
related. The former depends on the privacy/communication
cost as incurred by the revealing DBM. The latter only
depends on the user preferences concerning the rela-
tion(s) and the type of change in question

• Tuples of the same type (e.g. inserted tuples) incur
the same cost for a DBM. In principle, we can handle
different costs, but this would result in larger trees

• The view maintenance process is invoked periodically
and takes place over T time steps

3. SEARCHING FOR EQUILIBRIA

3.1 Background: Games and Their Solutions
Non-cooperative game theory focuses on situations where

self-interested agents make decisions that affect their own
and each other’s rewards. A solution is a strategy profile that
prescribes, for each agent, what it should do under every pos-
sible contingency in the form of a probability distribution
over actions available at that contingency. An equilibrium
profile is one where no player stands to gain by unilaterally
deviating from the strategy prescribed to it by the profile.
In games of incomplete information, each player has private
information, his type, that affects his own payoffs but is un-
known to other players. The prior probability distribution
over agents’ types is, however, common knowledge. There
are two sources of uncertainty: 1) a player does not observe
the chance moves that assign other players’ types and 2) the
rules of the game may stipulate that certain actions by other
players are not observable to it. The player may therefore
be unable to distinguish among a set of nodes, an informa-
tion set, in the game tree which have the same observable
history from its prespective. Consequently, a strategy maps
information sets, rather than specific nodes, to actions.

In sequential games, players take moves after observing
moves of chance (e.g., a roll of a die) and moves of the other
players. Sequential games are also referred to as extensive
form games (EFGs). An EFG consist of multiple stages
where each stage is a game. Actions taken at a stage af-
fect the game that will be played at the next stage, thereby
making it necessary to think about long-term consequences
of actions. An EFG is a tuple < I,V, E, P,H, u, p > where:

• I is the set of players

• The pair(V, E) is a finite directed tree with nodes V
and edges E and Z is the set of terminal nodes

• Player : V \ Z → I determines which player moves
at each decision node. Player induces a partition over
V \Z and Playeri = {x ∈ V \Z|Player(x) = i} is the
set of nodes at which player i moves

• H = {H0, ...,Hn} is the set of information sets, one for
each player. Each Hi is a partition of Playeri. The
information set of a node x is denoted as h(x)

• Ai(h) is the set of actions available at information set
h ∈ Hi

• u : Z → R is the utility function defined over the set
of terminal nodes. For x ∈ Z, ui(x) is the payoff to
player i if the game ends at node x

• p is the transition probability of chance moves

In incomplete information games, the first n levels of the
tree represent chance nodes where at level i, Nature assigns
player i’s type with probability specified by the commonly
known probability distribution over i’s type space. A strat-
egy σ for player i is a complete plan covering all possible
contingencies for every possible type. For each information
set h ∈ Hi, a behavior strategy is σi(h) ∈ ∆(Ai(h)) where
∆(Ai(h)) is the set of all probability distributions over ac-
tions available at information set h. A strategy profile is a
set of strategies σ = (σ1, ..., σn), one per player. We write
σ−i to denote the set of strategies of all players except i.

In a perfect information game, a strategy profile σ is a
Nash equilibrium if ui(σi, σ−i) ≥ ui(σ

′
i, σ−i) for all i ∈ I

and all σ′
i. A Bayes-Nash equilibrium (BNE) of a game of

incomplete information Γ corresponds to the Nash equilib-
rium of the normal form game derived from Γ.

3.2 Searching the space of strategy profiles

3.2.1 A strategy as a point in multi-dimensional space
As mentioned earlier, at each h ∈ Hi, σ specifies a proba-

bility distribution over actions available at information set h.
It is therefore straightforward to think of a strategy profile
as a point in multi-dimensional space. The dimensionality of
the space is

∑n
i=1

∑
h∈Hi

(|Ai(h)|−1) where each dimension
extends from 0 to 1. For each player i, for each of his infor-
mation sets h, there is a dimension for each action available
to i at h, except the last action which is assigned the proba-
bility left over from the other actions. Because probabilities
of actions at an information set must add up to 1, not all
points in the space correspond to valid strategy profiles. The
search for a BNE is a search in this multi-dimensional space
for a point that satisfies the equilibrium condition: given the
other player’s part of the profile represented by the point,
no player would like to deviate from its strategy.

3.2.2 Constraints on a BNE

A point in the above multi-dimensional space is a BNE if
it satisfies certain constraints which guarantee that at each
information set of each player, the player’s strategy is ratio-
nal. In other words, if there is a single action with maximum
expected value, that action is played with probability 1. If
there are several such actions, the probability mass is di-
vided among them such that the same rationality holds for
the other player. Thus no player is tempted to deviate from
the prescribed strategy. Stated more formally, the following
condition should hold at each information set h:∑

a∈A(h)

σi(h, a) ∗ E(Payoffi(a)) = maxa(E(Payoffi(a)))

where σi(h, a) is the probability that strategy σ assigns to
taking action a at h and E(Payoffi(a)) is player i’s expected
value of taking action a. This expected value is calculated
from the payoffs of leaf nodes reachable after doing a and
the probabilities of actions along the branches from the root
to these leaves passing through a.

3.2.3 Approximate BNEs
What if the above constraint is violated at one or more

information sets? For example, at information set h the
right-hand side is greater than the left-hand side by 0.5.
This means that, holding the other player’s strategy fixed,
this player can gain 0.5 by deviating from σ at h. We refer
to the amount by which a constraint c is violated as δc, also
known in the literature as regret.

As will be seen in Section 7, a search for an exact equi-
librium corresponds to a Constraint Satisfaction Problem.
The search for an approximate equilibrium where some δs
are non-zero can be thought of as a Constraint Optimiza-
tion Problem (COP). In both cases, the variables are the
probabilities assigned to actions by strategies and the con-
straints are as described above. In this work, we try to find
an approximate equilibrium by solving a COP.

4. VIEW MAINTENANCE AS A GAME

4.1 Problem Abstraction
Consider 2 base relations; Authors and Books with DBMs

DBMA and DBMB. Consider a view whose query is "SE-

LECT Title, Author FROM Books, Authors WHERE Pages >
600 AND Authors.City = Manhattan" displaying the titles
of all books with more than 600 pages whose authors live
in Manhattan. Denoting insertion by i and deletion by d,
the elements of the vector vj

all =< ijall, d
j
all > represent the

number of i and d updates made to relation Rj since the
last maintenance process. While vj

all shows the counts of
all the changes made, vj

pr =< ijpr , dj
pr > shows counts for

only those tuples that are judged by DBMj to be potentially
relevant (PR) to the view, i.e. tuples that meet the selec-
tion filter specified by the view query for Rj . Depending
on whether the tuple(s) from other relation(s) that a tuple
joins with (which we henceforth refer to as complementary
tuples) meet their respective filters, the update may or may
not actually be relevant to the view.

The decision problem is therefore as follows. At each
of time step in the view maintenance process, each DBM
decides which information to reveal; a potentially relevant
changed tuple, the complement of an already relvealed tu-
ple, or nothing. At the end of T time steps, V H rewards
the DBM s based on the information revealed.

4.2 The View Maintenance Game
Our view maintenance problem can be formulated as a

sequential game of incomplete information. Let n be the
number of relations and assume each DBM is responsible
for exactly 1 relation. Let c ∈ {i, d} denote a change made to
a relation, which can be insertion or deletion. Let pk

c be the
probability that a relation has k changes of type c ∈ {i, d}.
For simplicity, we assume this probability is independent of
the particular relation in question. The view maintenance
game therefore has the following components 1:

• I = {DBM1, ...,DBMn}
• Aj(h) is the set of pieces of information that player j

possesses but has not revealed on the path from the
root to members of the information set h

• The type space of player j is Tj = {vj
pr | 0 ≤ vj

pr[c] ≤
vj

all[c] ∀c ∈ {i, d}}; each type corresponds to a pair of
possible counts of PR tuples for the 2 kinds of change.
If there are m tuples as a whole affected by a given
kind of change, the number of PR tuples is anywhere
in [0,m]. The size of the type space is therefore |T | =
Πc∈{i,d}(v

j
all[c] + 1)

• The transition probability of the chance move assign-
ing player j’s type is p ∈ ∆(Tj) where ∆(Tj) is the
set of all probability distributions over Tj . Assuming
the numbers of i and d changes are independent, the

probability of a type is p(vj
pr) = Πc∈{i,d}p

vj
pr [c]

c

• The payoff u(z) at a terminal node z is determined by
the sequence of actions taken on the path from the root
to z. We need to specify, for each action, the cost to
the player disclosing the information and the common
reward that all players get when this information is
revealed

• T specifies the number of stages in the game

Type Probabilities and Payoff Function
We assume that initially, each DBMj discloses its vj

all.
Alternatively, this information can be obtained from statis-
tics about how many changes of each type are made to the
database, on average. Specifying a probability distribution
over the types of a player DBMj (i.e. values of vj

pr) can be
done by estimating the selectivity of a given query, i.e. the
number of tuples that match it [12].

Disclosed information has an associated cost incurred by
the player who reveals it and a reward that is given to all
players. We base reward on 3 factors: 1) the type of change
(i or d); 2) the base relation affected by the change and 3)
whether the information represents a main tuple or the com-
plement of an already disclosed tuple. The rationale is that
user preferences can be such that one type of change is more
important than the other and some relations need to be more
up-to-date than others. The third factor allows the VH to
express different preferences for knowing different kinds of
information. As in the case of rewards, disclosing different
information incurs different amounts of privacy, communi-
cation and other kinds of costs. The incurred cost can also
depend on what has been revealed so far (e.g. privacy costs
can be sub- or super-additive).

1We assume that moves are sequential rather than simul-
taneous; a player taking an action can observe all earlier
actions.

5. ANYTIME ALGORITHM FOR
COMPUTING APPROXIMATE BNE

We propose a simple algorithm that first collapses the
game tree by making“obvious” decisions and backing up val-
ues wherever possible. The algorithm then tries to satisfy
constraints derived from the collapsed game tree as much
as possible by generating a random initial point (a specific
strategy profile) and iteratively improving it either reaches
some user-defined stability measure or no further improve-
ment is possible. In the latter case, the point is randomly
perturbed and the process repeats. The following subsec-
tions elaborate on these steps.

5.1 Collapsing the Game Tree
Our experiments in building game trees from instances of

the View Maintenance problem show that the size of the raw
game tree is quite large. Examining raw trees shows that
there are some nodes at which decision making is not com-
plicated by the incompleteness of information. These are
nodes where a player would choose to reveal the same piece
of information regardless of the type of the other player. We
therefore collapse the raw tree using the following simple al-
gorithm. Initially, all nodes are roots of collapsible subtrees.
We work from the leaves of the tree upward, determining
which nodes are indeed roots of collapsible subtrees. For
each such node, we collapse its subtree using simple back-
ups. The node becomes a terminal node whose payoffs reflect
backed up values. Algorithm 1 shows how this is done.

for all level such that 0 ≤ level ≤ 2T do
collapsible[level] = non-terminal nodes at depth level

end for
for all level such that 0 ≤ level ≤ 2T do

for all node in collapsible[level] do
turnPlayer = Player(node)
if ((|h(node)| == 1) ∨

(|AturnPlayer(h(node))|==1) ∨
(best action is the same across h(node))) then
node.payoff =
(argmaxc∈Childrenc.payoff.turnPlayer).payoff
delete all children of node

end if
remove all ancestors of node from their respective
collapsible[level] arrays

end for
end for

Algorithm 1: Simple algorithm for collapsing trees

Figure 1 shows examples of collapsing. Action nodes are in
circles enclosing the number of the acting player. Terminal
nodes are shown in black circles with a pair of numbers spec-
ifying the associated payoff for each player. A dotted box
encloses nodes in the same information set. The three situ-
ations where a node can be collapsed are shown; 1) incom-
pleteness of information does not affect the player’s decision
(the best action is the same regardless of which particular
node the player is at), 2) node in a singleton information set
and 3) node with a single available action. Because we work
from the leaves upward, a node eligible for collapsing always
has terminal children. As will be detailed in Section 6, this
simple collapsing algorithm is very effective for game trees
derived from the view maintenance problem.

Figure 1: Collapsible subtrees: (1) action b is the
best across the information set (2) a singleton infor-
mation set (3) a single available action

5.2 Iteratively improving a point
To iteratively improve a point (strategy profile), the fol-

lowing 3 issues need to be addressed:

1. Which component(s) of the point should we improve?
Should we focus on improving individual constraints
or the profile as a whole?

2. How should we explore the space? How do we generate
neighboring points to which we can move?

3. How do we assess a point? What measure of a point
indicates the algorithm is moving in the right direction
in the multi-dimensional space?

5.2.1 What should we improve?
As mentioned in Section 3.2.2, an equilibrium point/profile

must satisfy certain constraints. Improving individual con-
straints or the profile as a whole amounts to making local
or global changes to a profile, respectively. A local change
tries to improve a constraint associated with some informa-
tion set h ∈ Hi to reduce the regret of player i at h. A global
change completely overhauls one or both players’ strategies
to get to a more “stable” point; one at which the players’
motivations to deviate is lower. Owing to the complexity
of overhauling a profile, we improve individual constraints
with the hope of effecting a global improvement through lo-
cal changes. Because it is not easy to determine which local
changes produce the largest global improvement, we use the
local regret, δ, as a heuristic to decide which parts of a strat-
egy profile are more important to improve. Constraints with
high δs are associated with information sets with high re-
grets. Therefore our algorithm greedily attempts to improve
the constraint with the highest δ first. Empirical observa-
tions indicate that this heuristic is indeed useful; improving
constraints with high δs results in more stable points. We
quantify the notion of stability later in the text.

5.2.2 Generating potential next points

For each variable (action probability) v involved in the
constraint c with the maximum δc, we calculate the required
change in v to bring δc down to 0, assuming all other vari-
ables are unchanged. We assess the impact of each potential
change on the δs of other constraints by evaluating the par-
tial derivatives of affected constraints w.r.t. v. A change
that results in a point with greater than or equal stability
than the current point is admitted, and the resulting point
is added to the list of Potential Next Points (PNPs).

The approach described above is one of two ways of de-
creasing a given δc. Instead of changing the probabilities
of actions involved in c as done above, we can switch the
player’s preference for two actions a and b by switching their
probabilities. We generate points from such reversals and as
with the first approach, we assess the broader impact of the
change and decide whether to admit the points to PNP.

5.2.3 Assessing a point
Now that we have a set of PNPs, we need to move to

the most stable PNP. Even though δs determine which part
of the profile to improve first, these local measures do not
provide good basis for comparing the stability of different
points. The problem is that each δ specifies the additional
reward a player gets if it deviates at a single information set.
This does not say anything about the player’s potential gains
if it deviates at multiple information sets. We therefore need
a global measure that specifies a player’s overall motivation
to deviate from (or completely overhaul) its strategy.

Following the notion of ε-BNE, we consider a profile sta-
ble if no player stands to make more than ε% more reward
by deviating from (or completely overhauling) its prescribed
strategy. We define a global measure called Maximum Over-
all Motivation(MOM) to deviate. MOM(σ) is the maxi-
mum, over all players, upper bound on motivation to devi-
ate from σ assuming strategies of other players are held con-
stant. MOM is therefore an upper bound on ε. The lower
the MOM, the more stable σ is. Approximating an equilib-
rium this way makes sense because practically, a player will
not want to take on the difficult task of calculating its best
response strategy if it knows that it stands to increase its
payoff by no more than ε%.

We propose a simple way of calculating MOM. To cal-
culate the upper bound on the motivation of player i at
point σ, we build a modified game Γrevealed from the origi-
nal game Γ. Γrevealed is a single-player perfect information
game where i plays with Nature which we construct as fol-
lows. Each node n ∈ h where h ∈ Hj and j 6= i is changed
to a chance node where the probability of Nature playing
action a is σ(h, a). In addition, the information sets in the
original game tree are revealed, i.e. i is granted full access
to the history of play including the moves of Nature that
determined players’ types, thereby removing i’s uncertainty
about where it is within a given information set. Γrevealed,
being a perfect information game, can be solved by doing
simple backups. i’s payoff in Γrevealed is an upper bound on
the payoff of its best response strategy in Γ, since i can do
no better than having perfect information. Because of the
simplicity of doing backups, we can quickly evaluate MOMs
for a large number of PNPs.

To summarize, we use a local measure (δ) to generate
PNPs and a global measure (MOM) to assess and compare
points. MOM indicates how stable a point is, but does not
give indication of how it should be improved. The δs indicate

Table 1: Calculating MOM With Different Amounts
of Information

Quantity Player 1 Player 2

Payoff(σ) 8.97 7.88
Payoff of B.R.(PBR) 10.39 8.48

Payoff in Γrevealed (PPI) 12 9.09
Payoff in ΓLI (PLI) 11 9
Overall Motivation 25.25% 15.26%

(PPI-Payoff(σ))/PPI * 100%
MOM 25.25%

Overall Motivation LessInfo 18.45% 12.4%
(PLI-Payoff(σ))/PLI * 100%

MOM-LI 18.45%

where it may be effective to try to improve.
A range of approximations

Examining the MOM landscape showed that sometimes
the upper bound provided by MOM is very loose; e.g., MOM
is everywhere higher than 20%. The reason is that Γrevealed

is too easy compared to Γ. We can get a tighter upper bound
if we calculate payoffs in a game that is harder than Γrevealed

but still easier than Γ. In fact, there is a whole spectrum
of such games with varying levels of difficulty. One extreme
is Γrevealed where all information sets are disclosed. These
games are very easy to solve but provide very loose upper
bounds. The other extreme is Γ where no information sets
are revealed.

To illustrate the kind of bound we get from a slightly
harder game than Γrevealed, consider the game ΓLI which
differs from Γrevealed only in that all information sets ex-
cept the highest-level information sets for each player are
revealed. Clearly, the payoff in this game is at least as high
as that obtained in Γ but no higher than in Γrevealed. Solv-
ing this game is still easy; do regular backups from the
bottom of the game tree upwards, and, on reaching the
highest-level information sets, choose the action that max-
imizes reward in expectation over the turn player’s beliefs
about where it is within this information set. We call the
maximum motivation to deviate from σ in this game MOM-
LessInformation(MOM-LI).

To illustrate the different possible payoffs with an exam-
ple, Table 1 shows the payoffs achieved by player i’s different
strategies when its opponent plays its part of the strategy
profile σ in different variants of an example game. Payoff(σ)
is i’s payoff from playing σi in the original game Γ. PBR is
i’s payoff from its best response to σj in Γ. It is obtained by
calculating i’s payoff in a transformed game where j’s nodes
are changed to chance nodes with action probabilities as dic-
tated by σj. PLI is i’s payoff from its best response to σj

in the slightly harder game ΓLI with less-than-perfect infor-
mation. PPI is i’s payoff from its best response to σj in the
perfect information game Γrevealed. Since this relationship
holds: Payoff(σ) ≤ PBR ≤ PLI ≤ PPI, the overall mo-
tivation to deviate calculated using either of these measures
is an upper bound on a player’s actual regret. MOM and
MOM-LI are the maximum, over all players, percentage re-
grets calculated using PPI and PLI, respectively. Note that
in the case of Table 1, we get a much tighter bound on re-
gret when using PLI rather than PPI (18.45% vs 25.25%)
at the cost of a slightly more involved computation.

Table 2: Collapsing VM trees
T vall Raw Avg %

Size Reduction

2

< 1, 1 > 716 84.3
< 1, 2 > 2253 89.5
< 2, 1 > 2253 88.8
< 2, 2 > 6847 84.7

3
< 1, 1 > 3608 91.2
< 2, 1 > 15423 88.9

< 3, 1 >(5) 36232 92.9

Table 3: Collapsing general trees with 2(top) and
3(bottom) types per player

#Actions=2 #Actions=3
T Raw Avg % Raw Avg %

Size Reduction Size Reduction

1 34 23.5 58 15.5
2 130 25.5 490 21.9
3 514 27.3 4378 22.3
4 2050 24.9 N/A N/A

1 70 11.1 124 4.4
2 286 11.7 1096 7.5
3 1150 13.5 9844 7.9
4 4606 12.6 N/A N/A

6. EXPERIMENTAL RESULTS

6.1 The Effect of Collapsing
The first set of experiments we conducted investigates the

efficacy of our collapsing algorithm for trees from random in-
stances of the view maintenance problem (henceforth called
VM trees) as well as general trees. Table 2 shows the re-
sult of collapsing VM trees. Both players have the same
type space (vall). Unless indicated otherwise in brackets, we
generated 10 random instances per configuration for a total
of 65 instances. As can be seen, the size of the collapsed
tree is roughly an order of magnitude smaller than the raw
tree. This pre-processing step is therefore very useful for
providing our anytime algorithm with tractable input.

To see how much general game trees collapse, we gener-
ated trees where both players have the same number of types
and the same number of actions is available at each infor-
mation set. We generated 10 random trees for each config-
uration < T, numTypes, numActions > where 1 ≤ T ≤ 4,
2 ≤ numTypes ≤ 3 and 2 ≤ numActions ≤ 3 (N/A entries
were too large to generate). Payoffs were generated ran-
domly in the range [0,15]. Table 3 shows the raw tree size
and average percentage reduction for these configurations.

Clearly, trees derived from the view maintenance problem
are much more susceptible to collapsing. To understand
why this is the case, we need to remember the source of
uncertainty faced by a player in a VM tree. With imperfe-
cet information about player j’s type, player i is uncertain
about the number and nature of tuples yet undisclosed by
j. However, there is no uncertainty regarding the payoffs of
actions. This results in the lowest level of the tree always
collapsing, making it more likely that levels higher up in the
tree collapse as well (a node is eligible for collapsing only if
its children are terminals).

Table 4: Performance of our algorithm(top) vs.
QRE(bottom) on VM trees

Tree ≤ 20 21-100 101-500 501-1000 > 1000
Size sec sec sec sec sec

0-200
100
88.9 11.1

200-400
96.1 3.9
94.1 5.9

400-1000
66.7 20.8 8.3 4.2
50 25 12.5 12.5

1000-2000
28.5 47.6 14.3 4.8 4.8

14.3 28.6 57.1

2000-3600
44.4 48.1 3.7 3.7

22.2 77.8

6.2 Performance of the Search Algorithm
We compared our anytime algorithm to the Quantal Re-

sponse Equilibria (QRE) algorithm [17] as implemented in
Gambit [13]. We ran the two algorithms (anytime search
and QRE), on 2 tree types (VM and general trees) using
MOM and MOM-LI for a total of 8 sets of experiments. In
all our results, we are interested in the average time, in sec-
onds, needed to reduce regret (MOM or MOM-LI) to 5%.
We bin results by tree size and show the percentage of trees
in each size bin for which the algorithm could reach the de-
sired regret within the indicated time range. Note that the
reported tree size is the size of the collapsed, rather than
the original, tree. We omit from our tables time or size bins
that were found to be empty. For lack of space, and because
results using MOM-LI are always better than using MOM,
we only present the former.

For VM trees, randomly generated costs and rewards some-
times result in a tree which collapses to an empty game.
This happens if, for example, it is always lucrative to dis-
close all information regardless of any uncertainty. Out of
the 65 VM trees reported in Table 2, 52 collapse to non-
empty games. For each of these 52 trees, we ran our search
algorithm 3 times starting from different random points. For
general trees, we generated 73 random trees, none of which
collapsed to an empty tree (35 have less than 200 nodes,
25 in the range 201-400, 3 in 401-600 and 10 in 800-1100).
Again, on each tree we ran our search algorithm 3 times
starting from different random points.

Table 4 compares the performance of our algorithm and
QRE on VM trees when MOM-LI is used. For most of the
trees in any given tree size bin, our algorithm reaches the
required level of regret within 100 seconds. Our anytime
search algorithm performs better than QRE on smaller trees
and much better than it on larger trees. QRE fails to finish
within the allocated time on a much higher fraction of larger
trees than our algorithm.

General trees proved to be more challenging than VM
trees. Table 5 compares the result of our search algorithm
and QRE on general trees using MOM-LI. Our algorithm
performs better than QRE on smaller trees and is compara-
ble to it on larger ones. We plan to investigate what charac-
teristics of trees derived from the view maintenance problem
make them more amenable to an algorithm like ours.

In trying to understand why our algorithm performs poorly
on certain trees, we found out that we get to points with low
MOM-LI fairly rapidly (we reach a MOM-LI of 6.7% on all

Table 5: Performance of our algorithm(top) vs.
QRE(bottom) on general trees

Tree ≤ 20 21-100 101-500 501-1000 > 1400
Size sec sec sec sec sec

0-200
96.2 2.9 0.9
97.1 2.9

200-400
85.3 12 2.7
40 56 4

400-600
44.4 55.6

100

800-1100
20 40 20 20

80 10 10

trees in the last row of Table 5 within 860 seconds). The
main difficulty is in getting out of local minima. This sug-
gests that the MOM-LI landscape may have a high elevation
everwhere, in which case there is nothing the search proce-
dure can do, and the only way to guarantee regret below the
threshold is to further refine the stability measure.

Some remarks about our results are in order. First, there
are many possibilities for fine-tuning the search algorithm
(e.g. changing the magnitudes of random perturbations as
the search proceeds), but we leave this for future work.
Second, it is important to remember that a strategy pro-
file provides players with a plan of action for every type
with non-zero probability in the game definition. Therefore
we only need to run the search algorithm when the play-
ers’ type spaces, or the probability distributions over them,
change. In the view maintenance problem, database man-
agers can continue using a strategy as long as the number of
potentially relevant tuples and the probability distributions
over them are unchanged. So the time taken to calculate a
strategy profile is amortized over all the view maintenance
episodes for which the profile is valid.

7. RELATED WORK
One of the few works concerned with large sequential

games of incomplete information is that by Gilpin and Sand-
holm [6]. They automatically abstract games in such a way
that any equilibrium in the smaller (abstracted) game cor-
responds directly to an equilibrium in the original game.
However, the original game must satisfy the condition of
having an ordered signal space.

The idea of finding an exact (resp. approximate) equilib-
rium as a constraint satisfaction (resp. optimization) prob-
lem was explored in previous work, but only for 1-stage
games, by Kearns et al for games of perfect information
where the interaction graph depicting which players affect
each other is a tree [8]. The idea was extended to games with
incomplete information [15], perfect information games with
arbitrary interaction graphs [18] and games with incomplete
information and arbitrary interaction graphs [16]. These al-
gorithms are decentralized, which allows scaling w.r.t. the
number of players. However, they are all limited to 1-stage
games. In the CSPs and COPs derived from these games, a
variable represents a player’s strategy, i.e. a probability dis-
tribution over its actions. In sequential games, however, a
player’s strategy is a probability distribution over a sequence
of actions. The space of strategies is therefore enormous,
even if discretized as suggested in [8].

The work of Vickery and Koller [18] is the closest to ours.

Their hill-climbing algorithm tries to minimize the sum of re-
grets over all players. They iterate over the steps of choosing
a strategy to change, calculating the new strategy and up-
dating affected regrets in a way that is close to ours. Another
work addressing 1-stage games with complete information is
that of La Mura and Pearson [14]. Instead of proposing
an algorithm for general games, some work uses knowledge
about the problem domain for more efficiency (e.g. [5, 9]).
However, this work is usually limited in applicability.

8. CONLUSION AND FUTURE WORK
We study the view maintenance problem when self-interested

database managers are involved, each concerned about the
privacy of its database. We regard view maintenance as an
incremental, sequential process and adopt a satisficing ap-
proach where the final view need not reflect 100% of the
databases updates. We formulate the problem as a sequen-
tial game of incomplete information and present an anytime
algorithm for calculating ε-Bayes-Nash equilibria. Experi-
mental results demonstrate our algorithm’s attractive any-
time behavior which allows it to find good-enough solutions
to large games within reasonable amounts of time.

Our main conclusion is that simple techniques proved to
be effective in dealing with sequential games of incomplete
information, a class of games notorious for its intractability.
A simple pre-processing step significantly reduced the size of
games, especially those derived from the view maintenance
problem. A fairly simple search algorithm could navigate
the huge space of strategy profiles and reach a reasonably
low regret within hundreds of seconds in most cases.

In future work, we will try to find out why general trees are
more challenging than view maintenance trees and whether
the latter have special characteristics that we can leverage.

9. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-

tional Science Foundation Award No. IIS-0414711. Any
opinions, findings, conclusions or recommendations expressed
in this publication are those of the author(s) and do not nec-
essarily reflect the views of National Science Foundation.

10. REFERENCES
[1] J. A. Blakeley, P. A. Larson, and B. W. Tompa.

Efficiently updating materialized views. In Proceedings
of the 1986 ACM SIGMOD International Conference
on Management of Data, Washington, D.C., USA,
1986.

[2] K. Candan, D. Agrawal, O. P. W. Li, and W. Hsiung.
View invalidation for dynamic content caching in
multitiered architectures. In Proceedings of the 28th

Very Large Data Bases Conference, Hongkong, China,
August 2002.

[3] A. K. Chandra and P. M. Merlin. Optimal
implementation of conjunctive queries in relational
data bases. In Proceedings of the Ninth Annual ACM
Symposium on Theory of Computing, Colorado, USA,
1977.

[4] C. Y. Choi and Q. Luo. Template-based runtime
invalidation for database-generated web contents. In
Proceedings of Advanced Web Technologies and
Applications, 6th Asia-Pacific Web Conference,
APWeb 2004, Hangzhou, China, 2004.

[5] S. Fatima, M. Wooldridge, and N. Jennings.
Approximate and online multi-issue negotiation. In
Proceedings of the 6th International Joint Conference
on Autonomous Agents and Multi-agent Systems,
Hawaii, USA, 2007.

[6] A. Gilpin and T. Sandholm. Finding equilibria in large
sequential games of imperfect information. In
Proceedings of the ACM Conference on Electronic
Commerce, MI, USA, 2006.

[7] A. Gupta, I. S. Mumick, and V. S. Subrahmanian.
Maintaining views incrementally. In Proceedings of
ACM SIGMOD Conference on Management of Data,
Washington D.C., USA, 1993.

[8] M. Kearns, M. Littman, and S. Singh. Graphical
models for game theory. In Proceedings of the 17th
Annual Conference on Uncertainty in Artificial
Intelligence (UAI-01), CA, USA, 2001.

[9] M. Kearns and L. E. Ortiz. Maintaining views
incrementally. In Proceedings of Advances in Neural
Information Processing Systems, MA, USA, 2004.

[10] G. Liang and S. S. Chawathe. Privacy-preserving
inter-database operations. In Proceedings of the
Second Symposium on Intelligence and Security
Informatics, Arizona, USA, 2004.

[11] A. Manjhi, P. B. Gibbons, A. Ailamaki, C. Garrod,
B. M. Maggs, T. C. Mowry, C. Olston, A. Tomasic,
and H. Yu. Invalidation clues for database scalability
services. In Proceedings of the 23rd International
Conference on Data Engineering, Istanbul, Turkey,
April 2007.

[12] Y. Matias, J. Vitter, and M. Wang. Wavelet-based
histograms for selectivity estimation. In Proceedings of
ACM SIGMOD International Conference on
Management of Data, WA, USA, 1998.

[13] R. D. McKelvey, A. M. McLennan, , and T. L. Turocy.
Gambit: Software tools for game theory.
http://gambit.sourceforge.net/, 2007.

[14] M. Pearson and P. La Mura. Simulated annealing of
game equilibria: A simple adaptive procedure leading
to nash equilibrium. In Proceedings of the
International Workshop on The Logic and Strategy of
Distributed Agents, Trento, Italy, 2000.

[15] S. Singh, V. Soni, and M. Wellman. Computing
approximate bayes nash equilibria in tree-games of
incomplete information. In Proceedings of the ACM
Conference on Electronic Commerce, 2004.

[16] V. Soni, S. Singh, and M. Wellman. Constraint
satisfaction algorithms for graphical games. In
Proceedings of the 6th International Joint Conference
on Autonomous Agents and Multiagent Systems,
Hawaii, USA, May 2007.

[17] T. Turocy. A dynamic homotopy interpretation of the
logistic quantal response equilibrium correspondence.
Games and Economic Behavior, 51:243–263, 2006.

[18] D. Vickrey and D. Koller. Multi-agent algorithms for
solving graphical games. In Proceedings of the
Eighteenth National Conference on Artificial
Intelligence, 2002.

[19] A. Yao. How to generate and exchange secrets. In
Proceedings of the Twenty-Seventh Symposium on
Foundations of Computer Science, 1986.

