CMPSCI 611: Advanced Algorithms

Course information: Fall 2002

Lecture: Tuesday and Thursday, 1:00-2:15 in CMPS 142.

Lecturer: Professor Micah Adler
- Email: micah@cs.umass.edu
- Office: CMPS 334
- Phone: 577-0233
- Office hours: Tuesday 3:00 - 4:00, Wednesday 2:30 - 3:30, or by appointment.

Teaching Assistant: Qunfeng Dong
- Email: qfdong@cs.umass.edu
- Office hours: TBD

Description: This course provides a graduate-level introduction to the principles underlying the design and analysis of efficient algorithms for some of the most frequently encountered combinatorial problems. The algorithms and techniques to be covered in the course have been chosen for their generality, elegance, and practical relevance. The emphasis will be on obtaining a broad introduction to as many topics as possible, but references will also be provided for those who want to obtain a more in-depth understanding of the topics covered.


Additional reading:

Prerequisites: The equivalent of an undergraduate algorithms course, as well as general mathematical maturity will be assumed, but no specific prior knowledge is necessary.


Syllabus: The following list is tentative. Items may be added and/or removed, depending on interest and available time.
- Divide-and-conquer algorithms: matrix multiplication; closest pair of points; fast Fourier transforms.
- Graph algorithms: review of basic algorithms; network flow; bipartite matchings.
- Matroids and greedy algorithms: minimum spanning trees; matroids and generalized greedy algorithms; union-find data structures; intersection of matroids.
• Dynamic Programming.
• Randomized algorithms: Quicksort and median finding; min-cut algorithm; polynomial zero testing; perfect matchings; primality testing; Markov, Chebyshev and Chernoff inequalities.
• Linear programming: simplex algorithm; duality; reducing problems to linear programming.
• NP-completeness: theory; Cook's Theorem; reductions.
• Approximation algorithms: classical examples; hardness results; PCP techniques; linear programming relaxation; heuristics.

Assessment:

• **Homeworks.** There will be approximately 5 assignments that contribute 40% to your overall grade. You will have 1 week for each assignment.

• **Exams.** There will be two exams for this course. They will both be evening exams: the first one on October 24, and the second on December 12. The second exam will cover only the second half of the course. Each of these exams counts for 25% of your grade.

• **Scribe Notes.** The presentation of the material will in many cases differ from that in the textbook, and some of the material does not appear at all in the textbook. Thus, an important component of the course will be a set of scribe notes. Each (on campus) participant is required to contribute to the preparation of scribe notes for one lecture in the course. Scribe notes for a Tuesday lecture are due the following Monday at 12:00 Noon. Scribe notes for a Thursday lecture are due the following Tuesday at 12:00 Noon. These notes should be written in Latex (a template will be provided), and should convey the technical ideas covered in the lecture clearly, concisely, and correctly.

To aid the preparation of these scribe notes, the scribe notes from previous years will be made available to students.

These notes contribute 10% to your grade. If a version that only needs very minor editing is submitted, then each contributor to the notes will receive full credit. However, credit will drop very quickly with any additional time that is required for editing. Particular attention will be paid to the correctness of the submitted notes. Students who are enrolled in the course remotely (i.e., VIP or NTU students) are not required to contribute to the scribe notes. Their grades will be based 55% on exams, and 45% on homework.