
An Analysis of Iterative and Recursive Problem Performance
Madeline Endres

endremad@umich.edu
University of Michigan, CSE

Westley Weimer
weimerw@umich.edu

University of Michigan, CSE

Amir Kamil
akamil@umich.edu

University of Michigan, CSE

ABSTRACT
Iteration and recursion are fundamental programming constructs
in introductory computer science. Understanding the relationship
between contextual factors, such as problem formulation or student
background, that relate to performance on iteration and recursion
problems can help inform pedagogy. We present the results of a
study of 162 undergraduate participants tasked with comprehend-
ing iterative, recursive, and tail-recursive versions of CS1 functions.
First, we carry out a task-specific analysis, finding that students
perform significantly better on the iterative framings of two prob-
lems with non-branching numerical computation and significantly
better on the recursive framing of another that involves array clas-
sification (𝑝 ≤ 0.036). Second, we investigate differences in the
most common student mistakes by program framing. We find that
students were more likely to produce wrong answers with incorrect
types or structures for recursive and tail-recursive program ver-
sions. Finally, we investigated correlations between programming
performance and background factors including experience, gender,
ethnicity, affluence, and spatial ability. We find that the factors rele-
vant to explaining performance are similar for both iterative and
recursive problems. While programming experience is the most
significant factor, we find that spatial ability, gender, and ethnicity
were more relevant for explaining performance than affluence.

CCS CONCEPTS
• Social and professional topics→ Computer science edu-

cation; CS1; Student assessment.
KEYWORDS

iteration, recursion, undergraduate CS, CS1
ACM Reference Format:
Madeline Endres, Westley Weimer, and Amir Kamil. 2021. An Analysis of
Iterative and Recursive Problem Performance. In Proceedings of the 52nd
ACM Technical Symposium on Computer Science Education (SIGCSE ’21),
March 13–20, 2021, Virtual Event, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3408877.3432391

1 INTRODUCTION
Iteration and recursion are fundamental concepts in computer sci-
ence and learning them is critical for students in introductory pro-
gramming courses. The comprehension of iteration and recursion

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’21, March 13–20, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8062-1/21/03. . . $15.00
https://doi.org/10.1145/3408877.3432391

has been studied extensively by the computer science education
research community [1, 6, 8, 19, 20, 30, 32, 39]. However, students
still struggle with both concepts [4] and instructors still struggle
to teach them effectively [6]. Indeed, surveyed CS1 instructors
identified recursion and loops as two of the most problematic ar-
eas to teach [6]. Furthermore, while many amelioratory teaching
techniques for iteration and recursion have been proposed, educa-
tional interventions typically benefit from the early identification of
struggling students [25]. There also remains debate in the computer
science community over which (if any) programming tasks students
find easier when represented recursively or iteratively [1, 20].

We present the results of a study with 162 CS undergraduates in
which equivalent programming problemswere presented iteratively
to some students and recursively to others. Our study expands on
previous work in several ways. First, our study is larger in scope;
related work studying student ability on recursive and iterative
problem framings regardless of student preference considers at
most two programming tasks while we consider six [1, 20, 30].
Second, we include an analysis of common student errors to give
insight into why students may struggle. Finally, we investigate
correlations between background features (e.g., experience, gender,
affluence, etc.) and student performance [22] on iterative and recur-
sive problems. While student mistakes may differ between iterative
and recursive framings, we find that the factors that predict success
remain the same between them. To the best of our knowledge, this
is the first work investigating correlations between background
features and performance on iteration and recursion.

We focus on three main research questions. First, we investigate
if the framing of specific CS1-level functions as recursive or iterative
significantly affects student performance. Next, we question if the
most common errors differ depending on program framing. Finally,
we ask which demographic and background features correlate with
student success. The main contributions of this paper are:

• A human study with 162 CS undergraduates investigating
performance on iterative and recursive function versions.

• An analysis of how high-level program features (e.g.,
whether or not a program contains a symmetric array) cor-
relate with student performance on iterative and recursive
versions.

• An analysis of differences in student mistakes between iter-
ative and recursive problem versions.

• An analysis of how certain background features (e.g., gender,
affluence) correlate with iterative and recursive performance.

2 BACKGROUND: ITERATION & RECURSION
To place this work in context, we summarize prior work on student
differences when learning iteration and recursion. In the computer
science education literature, there is extensive research into student
performance on iteration and recursion, both in tandem and indi-
vidually. For instance, there have been several studies investigating

https://doi.org/10.1145/3408877.3432391
https://doi.org/10.1145/3408877.3432391

methods for teaching and learning recursive programming (e.g.,
example-driven learning [39]) or exploring the effects of teaching
iteration or recursion first; see McCauley et al. for a survey [19].

Prior work has also investigated student preference for iterative
or recursive representations, both in general and for specific tasks.
For example, Sulov et al. found that students programming in C
generally choose iterative approaches for all six of their tasks [32].
However, they also found that, in most cases, the success rate of
those who chose recursion was higher than those who chose it-
eration. Similarly, Esteero et al. observed a student preference for
iteration. In contrast, however, they found that those students who
chose iteration generally performed better overall [8]. Such diver-
gent results suggest the presence of a confound (i.e., an overlooked
feature beyond preference or choice that explains or predicts vari-
ance in student performance) and thus underscore the need for
additional investigation into problem-specific preferences as well
as for the sort of formal modeling we propose.

Benander et al. specifically explored differences in performance
on iteration and recursion regardless of student preference [1].
They found that, for one list-based task, student comprehension
was significantly higher for a recursive representation. However,
for another non list-based task, there was no significant difference.
They also found that students who understood the problem were
significantly faster to come to their answers with the recursive rep-
resentation for both problems. However, a replication by McCauley
et al. found no difference in comprehension on the list-based task,
underscoring the need for further investigation [20].

Also investigating performance on iterative and recursive pro-
gram framings, Sinha et al. used the “cognitive fit framework” to
explore two tasks as a function of problem representation and pro-
gramming language (PASCAL or LISP) [30]. Their results varied
by programming language: for LISP, performance was higher on
recursive represented tasks, while for PASCAL, there was no sig-
nificant performance difference. To ease applicability to students
just starting CS1, we do not consider multiple languages. Instead,
we present all of our programming stimuli in C++, an imperative
object-oriented language commonly taught in CS1 or CS2 [7].

Finally, we note that all of these studies exploring student perfor-
mance on iterative and recursive tasks regardless of student prefer-
ence have included atmost two programming tasks. The small scope
of these experiments combined with apparently-contradictory re-
sults indicate that more investigation is needed. In general, prior
work has focused more closely on language design, understanding
comprehension, and student paradigm preference. To the best of
our knowledge, no previous study has investigated correlations
between non-programming or task-based features and a student’s
performance with iteration and recursion.

3 BACKGROUND: CORRELATIONS
In this paper, we also explore correlations between participants’ de-
mographic and background features and their programming success
on the recursive and iterative problems. In particular, we consider
past programming experience, gender, ethnicity, spatial reasoning
ability and socioeconomic status. All of these features are simple to
collect and largely institution agnostic. A deeper understanding of
the factors influencing success on recursive and iterative problems

could aid preemptive identification, and thus assistance, of students
likely to struggle with either concept. We briefly overview prior
work for each feature and its connection with programming.

Past Programming Experience: With the expansion of computer
science in high school curricula, students enter CS1 and CS2 with
a wide range of past programming experiences [15]. Unsurpris-
ingly, increased prior experience predicts better performance in
introductory CS courses, both empirically and as perceived by en-
rolled students [33]. The benefits of prior experience for students
in introductory computer science can be significant: Wilcox and Li-
onelle found that CS1 students with prior experience outperformed
students without experience by over 6% on exams and 10% on
programming quizzes [40]. However, they also found that the prior-
experience advantage diminished over time with no significant
observable difference at the end of CS2.

Gender: There is a persistent gender representation gap in
computer science at both the collegiate and professional lev-
els [5, 13, 21, 36]. For example, only 18% of computing bache-
lor’s degrees in the United States are awarded to women [5, 21],
and only 37% of Chinese collegiate computer science students are
women [10]. There is also some evidence of the existence of a
gender-based performance gap in computer science. For example,
a recent ITiCSE working-group survey noted that multiple stud-
ies have found that, when compared to male students, “females
have lower self-efficacy when enrolled in an introductory program-
ming course”, a fact that “can affect [CS] performance and per-
sistence” [18]. Several other studies, however, have failed to find
a significant gender-based performance gap after controlling for
year-level, academic ability, and other preparatory factors [16, 41].
Regardless of the existence of a computer science performance
gap, the relationship between gender and CS success is nuanced,
influenced by a multitude of societal and cultural factors [36]. For
example, multiple studies have found that males and females have
disparate computer experiences, attitudes, and usage patterns from
a young age [2, 29]. Furthermore, CS1 students with programming
experience are disproportionately male [27, 40]. This has a cumula-
tive effect, as many female students are not only at a disadvantage
in individual classes, but also often take key classes later, making it
harder to declare and complete a computer science major [27]. We
consider self-reported gender as a rough yet easy-to-collect proxy
for cultural, social, and environmental factors.

Ethnicity: Prior work has also found significant differences in
self-perception and performance in computer science depending
on ethnicity [36]. For example, while exploring success factors in
65 novice programmers, Katz et al. observed that the 18 African
American participants in their study had significantly lower per-
centages of error-free program compilations and executions [14].
Due to the African American participants’ “significantly lower SAT
scores”, the authors attribute their lower performance to inadequate
college preparation [14]. Furthermore, ethnicity and gender can
interact in nuanced and potentially predictive ways. For example,
in 2015, 32% of Asian Software Engineers in Silicon Valley were
female compared with just 12% of White Software Engineers [13].
We consider self-reported ethnicity as a rough yet easy-to-collect
proxy for a multitude of cultural, social, and environmental factors.

Affluence: There is also evidence that socioeconomic status may
impact computer science success [22] through many factors. For ex-
ample, researchers have observed socioeconomic-based differences
in computing access and usage patterns of college students [22] to
children as young as six months old [3]. Socioeconomic status is
also often related to disparities in students’ academic preparation
for college. For instance, Long et al. found that 48% of low-income
students were prepared for college-level math as compared to 64%
of all high school students [17]. Furthermore, Terenzini et al. found
that first-generation college students, who were disproportionately
from low-income families, had “weaker cognitive skills in read-
ing, math, and critical thinking” [34]. College students’ incoming
math and reading abilities have both been posited as predictors for
success in computer science [11, 26].

Spatial Ability: Spatial reasoning is a blanket term for the ca-
pacity to understand and reason about spatial relationships. It is
a major factor in performance in fields such as mathematics [38],
natural sciences [43], and engineering [31]. It also positively cor-
relates with programming performance [23]. Furthermore, Parker
et al. found spatial reasoning to be a better mediating variable for
socioeconomic gaps in computer science than access to comput-
ing [22]. On a neurological level, Huang et al. used medical imaging
techniques to find that similar parts of the brain are recruited to
solve spatial problems and data structure problems [12].

4 APPROACH
This section describes our data collection and analysis approaches.
We conducted an online study with 162 CS undergraduates. The
key aspect of the study is its controlled presentation of the same
conceptual problem to different students in different ways (e.g.,
some students are shown an iterative problem while others see a
recursive version of that same problem). We also collect simple
background and demographic features (see Section 3). We then
describe the structure of the experiment (Section 4.1), the program-
ming stimuli (Section 4.2) and participant recruitment (Section 4.3).
Finally, in Section 4.4 we describe our statistical methods.

4.1 Experimental Stimuli and Structure
Our online study consisted of three main parts: a free response
portion where participants wrote the output of functions, a multiple
choice test assessing spatial reasoning ability, and a demographics
questionnaire. The order of the spatial reasoning and programming
sections were randomized, while the demographics questionnaire
was always given last to avoid biasing participants. Both the spatial
reasoning ability and programming ability sections were timed, and
the survey was intended to take participants at most 35 minutes.

In the programming portion, participants were shown 6–7 C++
functions where half contained an iterative structure and half con-
tained a recursive structure. Participants were given a maximum
time limit of 3 minutes per programming question, and individual
participants were not shown the recursive version and the itera-
tive version of the same function. The programming stimuli are
described in greater detail in Section 4.2.

To assess spatial skills, participants took the Paper Folding Test, a
validated test of spatial ability [42]. This test consists of 20 multiple

Figure 1: Paper Folding Test example: Participants select the
choice on the right which corresponds to an unfolded hole-
punched paper on the left. Here, the correct answer is “C”.

Table 1: ProgramDescriptions. R, I, and T indicate if there is
a recursive (R), iterative (I), and/or tail-recursive (T) version.

Name Program Description R I T
Digit Returns sum of the input’s digits ✓ ✓ ✓

Exp Exponentiation by squaring ✓

Fiblike Variation on Fibonacci sequence ✓ ✓ ✓

Gcd Greatest common divisor ✓ ✓

Palindrome Evaluates if array is a palindrome ✓ ✓

Reverse Reverses an array ✓ ✓

Triangle Prints a triangle ✓ ✓

choice questions split into two parts of 10 questions. Each half has
a time limit of 3 minutes. An example problem is shown in Figure 1.

Finally, students were asked a series of demographics questions.
These questions included participant gender, ethnicity, and pro-
gramming experience (including both years programming and
institution-specific courses). To assess socioeconomic status, par-
ticipants also completed a version of the validated Family Affluence
Scale (FAS III) [35]. This assessment consists of a small number of
multiple choice questions about an individual’s material belong-
ings and living situation. These multiple choice questions included
“Does your family own a car or other motorized vehicle?”, “How
many computers (including laptops and tablets, not including game
consoles and smartphones) does your family own?”, and “How
many times did you or your family travel out of your home state
for holiday/vacation last year?”. 1

4.2 Programming Stimuli
Programming tasks were selected from a corpus of seven func-
tions modeled on common CS1 exam questions at the University
of Michigan. Students were shown either an iterative, recursive, or
tail-recursive C++ implementation of each function. Students were
then asked to type either the output or return value of the function
for a specified input. These inputs (and their corresponding out-
puts) were the same across function implementations. That is, the
iterative, recursive, and tail-recursive questions and answers were
entirely the same except for the iterative or recursive structure
shown in the source code. Students were limited to 3 minutes per
question. All functions had recursive implementations; six admitted
iterative versions and two admitted tail-recursive versions with the
addition of a helper function. Table 1 details each function and its
implementations. As an example of our stimuli structure, Figure 2

1Copies of the complete survey instrument used in this study are at https://github.
com/CelloCorgi/SIGCSE2021-IterativeAndRecursive

https://github.com/CelloCorgi/SIGCSE2021-IterativeAndRecursive
https://github.com/CelloCorgi/SIGCSE2021-IterativeAndRecursive

1 int func(int n) {
2 if (n <= 1) { return n; }
3 int a = 0;
4 int b = 1;
5 for (int i = 1; i < n; ++i) {
6 int c = b - 2 * a;
7 a = b;
8 b = c;
9 }
10 return b;
11 }

1 int func(int n) {
2 if (n <= 1) { return n; }
3 else {
4 return func(n - 1) - 2 * func(n - 2);
5 }
6 }

1 int func_helper(int n, int i, int a, int b) {
2 if (i == n) { return b; }
3 else {
4 return func_helper(n, i + 1, b, b - 2 * a);
5 }
6 }
7 int func(int n) {
8 if (n <= 1) { return n; }
9 else {
10 return func_helper(n, 1, 0, 1);
11 }
12 }

Figure 2: The iterative (top), recursive (middle), and tail-
recursive (bottom) versions of the Fiblike function. Partic-
ipants respond to a prompt such as “Please write the return
value of func(3) in the box below:”.

presents all three versions of Fiblike, a Fibonacci-esque function.
Responses were scored using regular expression matching.2

4.3 Participant Recruitment
Participants were recruited via email during November of 2019. All
participants were current undergraduates at a large public research
institution, and all had completed (or were close to completing)
at least one semester of CS coursework in C++. Compensation
included several options for an Amazon gift card of up to $100.

Out of 5,638 emails sent, 306 students clicked on the study link.
The study was completed by 175 students (57.2%). To ensure re-
sponse quality, responses were removed from the data if either their
overall study completion timewas less than two standard deviations
below the mean, or if they scored worse than, or equivalent to, ran-
dom on the spatial reasoning test. In the end, 162 responses passed
these quality filters. Of these responses, 44 were female, 114 were
male, 2 were non-binary / non-conforming, and 2 preferred not
to say. Regarding ethnicity, 62 were Asian, 3 were Black / African,
86 were Caucasian, 4 were Hispanic / Latinx, and 7 were other or
preferred not to say. Self-reported programming experience ranged
from 0 years to 10 years, with half of participants reporting 2 years
or less. Compared to the institution’s departmental demograph-
ics, our responses featured slightly more non-men participants and
slightly fewer members of underrepresented racial or ethnic groups.

2Scored data at https://github.com/CelloCorgi/SIGCSE2021-IterativeAndRecursive.

Table 2: Percent of student answers correct on individual
problems. p-values reported for differences with 𝑝 < 0.05.

Name R I T 𝑝-value
Digit 46.0% 59.7% 46.3% 0.027 (R vs I)

0.036 (T vs I)
Exp 28.1%
Fiblike 53.7% 48.5% 47.2%
Gcd 45.3% 57.3% 0.025
Palindrome 86.3% 66.3% <0.0001
Reverse 35.1% 34.4%
Triangle 74.6% 71.7%

4.4 Statistical Methods
We applied several statistical tests to the participant data: the paired
t-test for binary data, Spearman correlations, and analyses of vari-
ance (ANOVAs). We choose to use Spearman correlations instead of
the more common Pearson correlations because Spearman tests for
any monotonic correlation, not just linear correlations. We choose
to use the ANOVA to look at feature interactions as it is a general-
ization of the Student’s t-test for more than two populations. We
use the implementations of ANOVA and Spearman found in the
scikit-learn API [24] and SciPy [37].

5 EXPERIMENTAL RESULTS
In this section, we report the results of our experiment. We organize
our analysis of the data around three research questions:

• RQ1: Does the framing of specific functions as recursive or
iterative significantly affect student performance?

• RQ2: Do the most common student errors differ depending
on the framing of a function as recursive or iterative?

• RQ3: What demographics and background features correlate
with student success on iterative and/or recursive problems?

5.1 RQ1: Program Framing Effects: Correctness
We analyze the effects of problem framing (iterative, recursive, tail-
recursive) on performance. First we give an overview of significant
results, and then we explore differentiating program features.

Three out of six problems showed a statistically-significant dif-
ference (𝑝 < 0.05) for student performance between iterative and
recursive framings. For two of the programs, Digit and GCD, stu-
dents performed significantly better on the iterative version. For
Palindrome, students performed significantly better on the recur-
sive version. For the two additional tail-recursive implementations,
we did not find any significant differences between performance on
the tail-recursive and recursive implementations. For Digit, how-
ever, there was a statistically-significant difference between student
performance on the tail-recursive and iterative versions, with stu-
dents performing better on the iterative version. Table 2 presents a
detailed breakdown of significant results.

Qualitatively, we note several features relevant to the programs
with statistically-significant differences. First, Digit and Gcd, the
two programs with significantly better student performance on the
iterative version, are the only two programs with non-branching nu-
meric computations. By contrast, the other two numerical programs,

https://github.com/CelloCorgi/SIGCSE2021-IterativeAndRecursive

Exp and Fiblike, both involve branching computation. Second, Palin-
drome, the program with statistically better student performance
on recursion, is one of two programs involving arrays and the only
one involving a symmetric array. These results align with previous
work proposing that recursion might be more natural for students
completing list manipulation tasks [30].

Students performed significantly better on the iterative ver-
sion of 2/6 programs and better on the recursive version of 1/6.
Better performance on the iterative versions was associated
with non-branching numeric computation.

5.2 RQ2: Program Framing Effects: Errors
We analyze differences in participant mistakes depending on pro-
gram framing. The results of our analysis can be found in Table 3.
In general, however, we find that the program framing affects the
kinds of mistakes that students make; for all six problems with both
iterative and recursive framings, the most common student mistake
was different for each version. For example, for the Palindrome
program, for which the correct answer is the boolean “false”, the
most common wrong answer for the iterative version is the boolean
“true”, while the most common wrong answer for the recursive ver-
sion is ({6, 2, 4, 3, 10, 4, 2, 6}, 6). Identifying and correcting student
mistakes is very relevant in introductory classes [28]; beyond stu-
dent accuracy, the disparate patterns of common mistakes observed
in iterative vs. recursive vs. tail-recursive formulations are impor-
tant for informing alternate guidance or remedial explanations.

When solving recursive and tail-recursive versions, participants
generally struggled more with identifying the output’s structure
than when solving iterative versions. For instance, when solving
the recursive version of Gcd, a function that returns a single integer
representing the greatest common divisor of two input parameters,
the most common incorrect student answer was the tuple (70, [_]).
In fact, 19% of student answers for the recursive framing had this
structure. For the iterative version, however, none of the incorrect
answers exhibited that tuple structure. Instead, the most common
mistakes were plain integers, the same type as the correct answer.
We observe that for 4/9 recursive and tail-recursive problem ver-
sions, the most common incorrect answer differed structurally from
the correct answer compared to just 1/6 iterative versions. Further-
more, the incorrect structural results are often in list or tuple form.
Whilemore research is needed, thismay indicate that while students
are successfully mentally tracing through the recursive process,
they are struggling with collapsing the process into a single answer.

Common student mistakes differed by problem framing. Stu-
dents were much more likely to produce wrong answers with
incorrect types or structures (e.g., tuples vs. single integers)
for recursive and tail-recursive program versions.

5.3 RQ3: Significant Background Features
We investigate how demographic features correlate with both over-
all performance and also performance on iteration and recursion in-
dividually. We conduct an ANOVA for three models: scoring above

50% on iteration, scoring above 50% on recursion, and scoring above
50% on the programming test as a whole. We also present Spear-
man correlations (which do not assume data normality) between
each demographic feature and overall programming performance.
We consider the following features: experience, completion time,
spatial ability, affluence, gender and ethnicity. We break down the
categorical features gender and ethnicity using one-hot encoding,
and we only present results on sub-features with at least twenty
responses. The recursive model does not include scores on the addi-
tional tail-recursive versions. Our results are presented in Table 4.

For overall performance, self-reported experience was the only
moderate-to-strong positive correlate (𝜌 = 0.64). This correlation
is unsurprising; it is intuitive that students with more program-
ming experience will perform better on a programming test. While
we observed no other strong correlations, several features exhib-
ited weak correlation (𝜌 ≥ 0.20). In particular, spatial reasoning
scores, self-identification as male, and self-identification as Asian all
weakly correlated positively with overall performance. On the other
hand, self-identifying as female correlated negatively with perfor-
mance. Time to complete the test, affluence, and self-identifying as
Caucasian were not significantly correlated with performance.

With respect to our ANOVAs, we find that only five features or
sub-features were significantly important and distinct for any of
the three models: experience, spatial ability, self-identification as
female, self-identification as male, and self-identification as Asian.
These are the same features with Spearman correlations greater
than 0.20. In general, the same features are important for predict-
ing performance on iteration, recursion, and overall; for all three
models, the most important feature is experience followed by self-
identifying as female. We also note that spatial ability was only
a significant predictor for recursive performance. While spatial
ability appears to be important (spatial skills 𝑝-values approached,
but did not meet, our 0.05 threshold for all three models), a more in
depth analysis of spatial reasoning as a driving factor between iter-
ation and recursion differences is left for future work. Regardless,
we find that spatial reasoning ability is a more important feature
than socioeconomic status when predicting performance.

Experience, spatial skills, gender, and ethnicity (but not so-
cioeconomic status) were significant features for predicting
student performance. In general, the same features are predic-
tive of iterative, recursive, and overall programming.

6 LIMITATIONS
We now discuss generalizability, as well as threats to construct
validity. First, we acknowledge that our selected iterative and recur-
sive functions may not perfectly represent general recursive and
iterative constructs encountered by CS1 students. We mitigate this,
however, by testing with a larger number of programming stimuli
than previous work. We also deliberately use a variety of function
input formats and structures (e.g., array transformation, number
accumulation, and visual printing). Furthermore, while prior work
has considered recursion and iteration in multiple programming
languages (e.g., [30]), it is not clear how well our results translate
to other institutions using different languages or curricula.

Table 3: Three most common mistakes for each problem: “Total” contains the total number of responses. “Wrong Answer 𝑛”
is the 𝑛th most common wrong answer for that question. Each percent column measures the proportion of all answers that
were the corresponding wrong answer. All reported answers had at least 2 instances; blank answers are not reported.

Name Correct Answer Version Total Wrong Answer 1 % Wrong Answer 2 % Wrong Answer 3 %
Digit 9 I 67 131.4 ... † 6.0% 8 4.5% 0 4.5%

R 37 135 16.2% 131.4 ... 13.5% 8 5.4%
T 41 131.4 ... 9.8% 1 7.3% 0 4.9%

Exp 16 R 135 4 23.7% 2 9.7% 0 5.2%
Fiblike -1 I 68 -3 17.6% 1 7.4% 0 7.4%

R 41 0 13.0% -2 4.9% n/a n/a
T 36 3, 2, ... † 13.9% 1 11.1% 0 11.1%

Gcd 10 I 89 70 15.7% 30 10.1% 40 4.5%
R 53 (70, ...) † 18.9% 30 13.2% 0 5.7%

Palindrome false I 89 true 14.6% 0 5.6% n/a n/a
R 51 ({6,2,4,3,10,4,2,6}, 6) 5.9% true 4.0% n/a n/a

Reverse 9 6 7 3 2 1 4 I 96 2 1 7 3 9 6 4 4.2% 4 1 2 3 7 6 9 3.1% 9 7 2 3 1 6 4 3.1%
R 57 9 7 2 3 1 6 4 3.5% n/a † N/A n/a n/a

Triangle **** I 92 **** 3.3% * 2.2% n/a n/a
*** **** *
** ****
* ****

R 63 **** 6.4% n/a † N/A n/a n/a
† All incorrect answers reported are exact textual matches except for: (1) For all Digit types, “131.4 ...” represents a set of answers that all
start with that prefix; (2) In Fiblike T, five students wrote comma-separated lists starting with “3, 2”, a pattern not seen in Fiblike R and I; (3)
For Gcd R, the most common student error was a tuple with the first component “70”. We note that this tuple formation was not observed in
iterative responses; (4) and (5) For the Reverse and Triangle recursive versions, there was only one duplicate wrong answer.

Table 4: ANOVAs for three models: participants scoring over 50% for recursive problems, over 50% for iterative problems, and
over 50% overall. Each box contains a f-value / p-value pair. Significant results (𝑝 ≤ 0.05) are highlighted in blue.We also include
the Spearman correlations between each feature and performance on the programming test overall.

Model Experience Time Spatial Skills Affluence Female Male Asian Caucasian
> 50% Recursive 52.2 / <0.01 0.073 / 0.80 3.90 /0.05 1.30 / 0.25 8.44 / <0.01 3.83 / 0.05 3.60 / 0.07 1.66 / 0.19
> 50% Iterative 46.1 / <0.01 0.68 / 0.41 3.69 / 0.06 1.29 / 0.26 4.88 / 0.03 3.48 / 0.06 5.18 / 0.02 1.05 / 0.30
> 50% Overall 57.6 / <0.01 0.83 / 0.36 2.78 / 0.10 1.37 / 0.24 12.59 / <0.01 7.26 / <0.01 5.80 / 0.02 1.98 / 0.16
Spearman 0.64 0.11 0.20 0.10 -0.25 0.21 0.21 -0.14

We also consider two possible construct validity issues. First, as
the test was online, some students may have used a programming
environment or other external aid to solve the problems. While we
explicitly instructed students not to do this, we further mitigate
this threat by eliminating participants who completed the survey
significantly faster than the mean. Second, our results rely on self-
reported data. Previous studies have found that self-reporting can be
unreliable (e.g., [9, 12]). We mitigate this threat by using previously-
validated assessments, such as the Paper Folding Test, when possible.

7 CONCLUSION
We explore undergraduate students’ success rates and error pat-
terns on iterative and recursive programming tasks, two fundamen-
tal concepts in CS1 and CS2. We present the results of a human
study of 162 undergraduate participants comprehending iterative,
recursive and tail-recursive versions of a set of CS1 functions. We

found that, in a statistically-significant manner (𝑝 ≤ 0.05), stu-
dents perform better on iterative versions of two problems
with non-branching numerical computation and better on
the recursive version of another involving arrays. We further
find that common student errors vary as the problem fram-
ing changes. Students’ mistakes were more likely to be of the
wrong type or structure (e.g., a tuple vs. a plain integer) for recur-
sive or tail-recursive framings. We also investigated correlations
between programming performance and experience, gender, ethnic-
ity, socioeconomic status, and spatial reasoning ability. We find that
the factors correlated with aggregate performance are simi-
lar for both iterative and recursive program framings. While
experience remains the most significant factor, we find that spatial
reasoning ability, gender, and ethnicity were more correlated with
programming performance than was socioeconomic status.

ACKNOWLEDGEMENTS
We acknowledge the partial support of the NSF (CCF 1763674).

REFERENCES
[1] Alan C. Benander, Barbara A. Benander, and H. Pu. 1996. Recursion vs. Iteration:

An Empirical Study of Comprehension. Journal of Systems and Software 32, 1
(1996), 73–82.

[2] Zhihui Cai, Xitao Fan, and Jianxia Du. 2017. Gender and attitudes toward tech-
nology use: A meta-analysis. Computers & Education 105 (2017), 1–13.

[3] Sandra Calvert. 2005. Age, Ethnicity, and Socioeconomic Patterns in Early Com-
puter Use: A National Survey. American Behavioral Scientist 48 (01 2005), 590–607.
https://doi.org/10.1177/0002764204271508

[4] Jie Chao, David F. Feldon, and James P. Cohoon. 2018. Dynamic Mental Model
Construction: A Knowledge in Pieces-Based Explanation for Computing Students’
Erratic Performance on Recursion. Journal of the Learning Sciences 27, 3 (2018),
431–473. https://doi.org/10.1080/10508406.2017.1392309

[5] ComputerScience.org. 2020. Women in Computer Science: Getting Involved in
STEM. ComputerScience.org. Retrieved February 20, 2019 from https://www.
computerscience.org/resources/women-in-computer-science/

[6] Nell B. Dale. 2006. Most difficult topics in CS1: results of an online survey of
educators. SIGCSE Bulletin 38, 2 (2006), 49–53.

[7] Stephen Davies, Jennifer A. Polack-Wahl, and Karen Anewalt. 2011. A Snapshot
of Current Practices in Teaching the Introductory Programming Sequence. In
Proceedings of the 42nd ACM Technical Symposium on Computer Science Education.
Association for Computing Machinery, New York, NY, USA, 625–630. https:
//doi.org/10.1145/1953163.1953339

[8] Ramy Esteero, Mohammed Khan, Mohamed Mohamed, Larry Yueli Zhang, and
Daniel Zingaro. 2018. Recursion or Iteration: Does it Matter What Students
Choose?. In SIGCSE. ACM, 1011–1016.

[9] Zachary P. Fry, Bryan Landau, and Westley Weimer. 2012. A human study of
patch maintainability. In ISSTA. ACM, 177–187.

[10] Congbin Guo, Mun C Tsang, and Xiaohao Ding. 2010. Gender disparities in
science and engineering in Chinese universities. Economics of Education Review
29, 2 (2010), 225–235.

[11] Arto Hellas, Petri Ihantola, Andrew Petersen, Vangel V. Ajanovski, Mirela Gutica,
Timo Hynninen, Antti Knutas, Juho Leinonen, Chris Messom, and Soohyun Nam
Liao. 2018. Predicting Academic Performance: A Systematic Literature Review.
In Proceedings Companion of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education. Association for Computing Machinery,
New York, NY, USA, 175–199. https://doi.org/10.1145/3293881.3295783

[12] Yu Huang, Xinyu Liu, Ryan Krueger, Tyler Santander, Xiaosu Hu, Kevin Leach,
and Westley Weimer. 2019. Distilling neural representations of data structure
manipulation using fMRI and fNIRS. In International Conference on Software
Engineering. 396–407. https://doi.org/10.1109/ICSE.2019.00053

[13] June Park John and Martin Carnoy. 2019. The case of computer science education,
employment, gender, and race/ethnicity in Silicon Valley, 1980–2015. Journal of
Education and Work 32, 5 (2019), 421–435. https://doi.org/10.1080/13639080.2019.
1679728

[14] Sandra Katz, John Aronis, David Allbritton, Christine Wilson, and Mary Lou
Soffa. 2003. Gender and race in predicting achievement in computer science.
IEEE Technology and Society Magazine 22, 3 (2003), 20–27.

[15] Michael S. Kirkpatrick and Chris Mayfield. 2017. Evaluating an Alternative CS1
for Students with Prior Programming Experience. In SIGCSE. ACM, 333–338.

[16] Wilfred WF Lau and Allan HK Yuen. 2009. Exploring the effects of gender
and learning styles on computer programming performance: implications for
programming pedagogy. British Journal of Educational Technology 40, 4 (2009),
696–712.

[17] Mark C. Long, Patrice Iatarola, and Dylan Conger. 2009. Explaining Gaps in
Readiness for College-Level Math: The Role of High School Courses. Education
Finance and Policy 4, 1 (2009), 1–33. https://doi.org/10.1162/edfp.2009.4.1.1

[18] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Gian-
nakos, Amruth N. Kumar, Linda Ott, James Paterson, Michael James Scott, Judy
Sheard, and Claudia Szabo. 2018. Introductory Programming: A Systematic Litera-
ture Review. In Proceedings Companion of the 23rd Annual ACMConference on Inno-
vation and Technology in Computer Science Education. Association for Computing
Machinery, New York, NY, USA, 55–106. https://doi.org/10.1145/3293881.3295779

[19] Renée McCauley, Scott Grissom, Sue Fitzgerald, and Laurie Murphy. 2015. Teach-
ing and learning recursive programming: a review of the research literature.
Computer Science Education 25, 1 (2015), 37–66.

[20] Renée A. McCauley, Brian Hanks, Sue Fitzgerald, and Laurie Murphy. 2015.
Recursion vs. Iteration: An Empirical Study of Comprehension Revisited. In
SIGCSE. ACM, 350–355.

[21] Akira Miyake, Lauren E Kost-Smith, Noah D Finkelstein, Steven J Pollock, Geof-
frey L Cohen, and Tiffany A Ito. 2010. Reducing the gender achievement gap in
college science: A classroom study of values affirmation. Science 330, 6008 (2010),
1234–1237.

[22] Miranda Parker, Amber Solomon, Brianna Pritchett, David Illingworth, Lauren
Margulieux, and Mark Guzdial. 2018. Socioeconomic Status and Computer
Science Achievement: Spatial Ability as a Mediating Variable in a Novel Model
of Understanding. 97–105. https://doi.org/10.1145/3230977.3230987

[23] Jack Parkinson and Quintin I. Cutts. 2018. Investigating the Relationship Between
Spatial Skills and Computer Science. In Proceedings of the 2018 ACM Conference
on International Computing Education Research, ICER 2018, Espoo, Finland, August
13-15, 2018. ACM, 106–114. https://doi.org/10.1145/3230977.3230990

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[25] Lyndsay Pinkus. 2008. Using early-warning data to improve graduation rates:
Closing cracks in the education system. Washington, DC: Alliance for Excellent
Education (2008).

[26] Chantel S Prat, Tara M Madhyastha, Malayka J Mottarella, and Chu-Hsuan Kuo.
2020. Relating Natural Language Aptitude to Individual Differences in Learning
Programming Languages. Scientific Reports 10, 1 (2020), 1–10.

[27] Katie Redmond, Sarah Evans, and Mehran Sahami. 2013. A Large-Scale Quanti-
tative Study of Women in Computer Science at Stanford University. In Pro-
ceeding of the 44th ACM Technical Symposium on Computer Science Educa-
tion. Association for Computing Machinery, New York, NY, USA, 439–444.
https://doi.org/10.1145/2445196.2445326

[28] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and
teaching programming: A review and discussion. Computer science education 13,
2 (2003), 137–172.

[29] Lily Shashaani. 1994. Gender-differences in computer experience and its influence
on computer attitudes. Journal of Educational Computing Research 11, 4 (1994),
347–367.

[30] Atish P. Sinha and Iris Vessey. 1992. Cognitive Fit: An Empirical Study of Recur-
sion and Iteration. IEEE Trans. Software Eng. 18, 5 (1992), 368–379.

[31] Sheryl A. Sorby, EdmundNevin, Avril Behan, EileenMageean, and Sarah Sheridan.
2014. Spatial skills as predictors of success in first-year engineering. In IEEE
Frontiers in Education Conference. 1–7. https://doi.org/10.1109/FIE.2014.7044005

[32] Vladimir Sulov. 2016. Iteration vs Recursion in Introduction to Programming
Classes: An Empirical Study. Cybernetics and Information Technologies 16 (12
2016), 63–72. https://doi.org/10.1515/cait-2016-0068

[33] Anya Tafliovich, Jennifer Campbell, and Andrew Petersen. 2013. A student
perspective on prior experience in CS1. In SIGCSE. ACM, 239–244.

[34] Patrick T Terenzini, Leonard Springer, Patricia M Yaeger, Ernest T Pascarella,
and Amaury Nora. 1996. First-generation college students: Characteristics, expe-
riences, and cognitive development. Research in Higher education 37, 1 (1996),
1–22.

[35] Torbjørn Torsheim, Franco Cavallo, Kate Ann Levin, Christina Schnohr, Joanna
Mazur, Birgit Niclasen, Candace Currie, FAS Development Study Group, et al.
2016. Psychometric validation of the revised family affluence scale: a latent
variable approach. Child Indicators Research 9, 3 (2016), 771–784.

[36] Roli Varma. 2010. Why so few women enroll in computing? Gender and ethnic
differences in students’ perception. Computer Science Education 20, 4 (2010),
301–316. https://doi.org/10.1080/08993408.2010.527697

[37] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake Vand erPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1. 0 Contributors. 2020. SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python. Nature Methods 17 (2020), 261–272.
https://doi.org/10.1038/s41592-019-0686-2

[38] Jonathan Wai, David Lubinski, and Camilla P Benbow. 2009. Spatial ability for
STEM domains: Aligning over 50 years of cumulative psychological knowledge
solidifies its importance. Journal of Educational Psychology 101, 4 (2009), 817.

[39] Susan Wiedenbeck. 1989. Learning Iteration and Recursion from Examples.
International Journal of Man-Machine Studies 30, 1 (1989), 1–22.

[40] Chris Wilcox and Albert Lionelle. 2018. Quantifying the benefits of prior pro-
gramming experience in an introductory computer science course. In Proceedings
of the 49th ACM Technical Symposium on Computer Science Education. 80–85.

[41] Brenda CantwellWilson. 2002. A Study of Factors Promoting Success in Computer
Science Including Gender Differences. Computer Science Education 12, 1-2 (2002),
141–164. https://doi.org/10.1076/csed.12.1.141.8211

[42] John Winslow, Ruth B Ekstrom, and Leighton A Price. 1963. Kit of reference tests
for cognitive factors. Educational Testing Service.

[43] Eun-Mi Yang, Thomas Andre, Thomas J Greenbowe, and Lena Tibell. 2003. Spatial
ability and the impact of visualization/animation on learning electrochemistry.
International Journal of Science Education 25, 3 (2003), 329–349.

https://doi.org/10.1177/0002764204271508
https://doi.org/10.1080/10508406.2017.1392309
https://www.computerscience.org/resources/women-in-computer-science/
https://www.computerscience.org/resources/women-in-computer-science/
https://doi.org/10.1145/1953163.1953339
https://doi.org/10.1145/1953163.1953339
https://doi.org/10.1145/3293881.3295783
https://doi.org/10.1109/ICSE.2019.00053
https://doi.org/10.1080/13639080.2019.1679728
https://doi.org/10.1080/13639080.2019.1679728
https://doi.org/10.1162/edfp.2009.4.1.1
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/3230977.3230987
https://doi.org/10.1145/3230977.3230990
https://doi.org/10.1145/2445196.2445326
https://doi.org/10.1109/FIE.2014.7044005
https://doi.org/10.1515/cait-2016-0068
https://doi.org/10.1080/08993408.2010.527697
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1076/csed.12.1.141.8211

	Abstract
	1 Introduction
	2 Background: Iteration & Recursion
	3 Background: Correlations
	4 Approach
	4.1 Experimental Stimuli and Structure
	4.2 Programming Stimuli
	4.3 Participant Recruitment
	4.4 Statistical Methods

	5 Experimental Results
	5.1 RQ1: Program Framing Effects: Correctness
	5.2 RQ2: Program Framing Effects: Errors
	5.3 RQ3: Significant Background Features

	6 Limitations
	7 Conclusion
	References

