
InFix: Automatically Repairing Novice
Program Inputs

Madeline Endres
Computer Science and Engineering

University of Michigan
Ann Arbor, MI, USA

endremad@umich.edu

Georgios Sakkas
Computer Science and Engineering

UC San Diego
La Jolla, CA, USA

gsakkas@eng.ucsd.edu

Benjamin Cosman
Computer Science and Engineering

UC San Diego
La Jolla, CA, USA

blcosman@eng.ucsd.edu

Ranjit Jhala
Computer Science and Engineering

UC San Diego
La Jolla, CA, USA
jhala@cs.ucsd.edu

Westley Weimer
Computer Science and Engineering

University of Michigan
Ann Arbor, MI, USA
weimerw@umich.edu

Abstract—This paper presents InFix, a technique for automat-
ically fixing erroneous program inputs for novice programmers.
Unlike comparable existing approaches for automatic debugging
and maintenance tasks, InFix repairs input data rather than
source code, does not require test cases, and does not require
special annotations. Instead, we take advantage of patterns
commonly used by novice programmers to automatically create
helpful, high quality input repairs. InFix iteratively applies error-
message based templates and random mutations based on insights
about the debugging behavior of novices. This paper presents
an implementation of InFix for Python. We evaluate on 25,995
unique scenarios with input-related errors collected from four
years of data from Python Tutor, a free online programming
tutoring environment. Our results generalize and scale; compared
to previous work, we consider an order of magnitude more unique
programs. Overall, InFix is able to repair 94.5% of deterministic
input errors. We also present the results of a human study with
97 participants. Surprisingly, this simple approach produces high
quality repairs; humans judged the output of InFix to be equally
helpful and within 4% of the quality of human-generated repairs.

Index Terms—input repair, novice programs, human study

I. INTRODUCTION

Novice programmers are increasingly turning to online
resources beyond the traditional classroom to learn comput-
ing [32], [42]. But even as demand soars for such resources,
the educational support provided by online tools leaves much
room for improvement [8], especially for those students who
need the most help [13]. Free tutoring environments, such as
Python Tutor [18], seek to close this gap by providing educa-
tional support beyond structured course assignments. However,
such sites can still suffer from low retention (Section IV),
reducing their ability to help students in practice. We hypoth-
esize that one reason for this low retention is the frustration
novices face without instructional support; the time spent
debugging a single error has been shown to correlate with
student frustration [38]. Although student errors extend from
simple syntactic mistakes to more involved semantic errors,
we observe that a surprisingly-large portion are input-related

(e.g., entering 1,2 instead of 1.2). Therefore, we choose to
focus on providing novices with rapid debugging hints and
support for input-related errors to decrease debugging time.

Independently, there is limited research into using source-
level automatic program repair and fault localization tech-
niques for pedagogical purposes [1], [7], [19], [36], [40], [50].
From reviewing over six million Python Tutor submissions, we
observe that 35% of student interactions involve user input as
well as source code. We also find that Python Tutor users
fixed 6.6% of interpreter errors by only modifying input data.
Unfortunately, heavyweight expert-focused automatic program
repair tools and their derivatives, such as GenProg [27] and
Angelix [33], both focus on source-code transformations and
also are unhelpful and confusing for novices [50]. Therefore,
novices facing input-related errors are not well-served by
extant automatic program repair tools and must instead rely
on manual debugging, a time-consuming endeavor.

A technological solution to this problem should find repairs
quickly to fit in the student’s workflow (Section IV-A, cf. [48])
and be helpful for novices. We observe that novice repairs are
generally short, and thus propose to use algorithms that explore
the search space of nearby edits. We also note that learners’
errors are not uniformly distributed, and many student pro-
grams that show defects with the same error message can
be fixed using the same mutation. Therefore, a small number
of indicative templates can increase search speed. Finally, we
note that the structure of student inputs can be unexpectedly
complex; programs often contain interdependent input values,
making a randomized approach surprisingly effective.

Based on these insights, this paper presents InFix, a ran-
domized search algorithm for automatically repairing program
inputs for generic novice programs. InFix uses language-
specific error message templates combined with additional
randomized mutations to iteratively search for input repairs.
InFix does not require test cases or large amounts of training
data, instead using the implicit specification of eliminating in-

1

terpreter errors [20], [40], [49]. InFix also admits a pleasingly
parallelizable implementation, improving efficiency.

We evaluate a Python implementation1 of InFix. Our error
message and mutation templates are developed from our obser-
vational study characterizing novice Python input patterns and
errors. In total, we abstract five error message templates and
five additional simple mutations. Each error message template
corresponds to a single interpreter message. We evaluate our
implementation on 25,995 input-related scenarios arising from
22,282 unique programs from four years of Python Tutor data
(Section VI-B). Each scenario contains a program and input
that, when run, generate an input-related error. Overall, we find
that with just five error message templates and five mutations,
InFix repairs 94.5% of input-related scenarios.

As InFix is aimed toward helping novices debug, it is
essential that the repairs are helpful and of high quality.
Previous work has shown that student-generated source repairs
and expert human tutor input hints can be helpful for students
by decreasing debugging time and increasing learning [20],
[34]. Therefore, we compare InFix’s repairs to those developed
by the learners themselves. From a human study involving 97
participants, we find that InFix produces high quality repairs.
Specifically, participants find InFix’s repairs as helpful as
human repairs and within 4% of their quality in a statisti-
cally significant manner. We conduct this study with both
undergraduates and crowdsourced Amazon Mechanical Turk
workers.2 We also find that 80% of our participants often
experience input-related errors in their own programming.

In summary, the main contributions of this paper are:
• InFix, a novel template-based search algorithm for repair-

ing erroneous input data for novice programs
• A characterization of common novice input patterns and

input repairs for Python programs
• A Python implementation of InFix based on our charac-

terization that fixes 94.5% of 25,995 input-related errors,
in one second each on average

• The results of an IRB-approved human study with 97
participants indicating that InFix’s repairs are within 4%
the quality of, and equally helpful as, student repairs

II. MOTIVATING EXAMPLES

In this section, we present two novice Python scenarios
with input-related errors. We adapt both examples from actual
student programs submitted to Python Tutor. These examples
demonstrate the difference between syntactic and semantic
input-related errors, providing motivation for InFix’s hierar-
chical use of error message templates and random mutations.

The scenario in Figure 1 exemplifies a syntactic input-
related error explainable as a misunderstanding of Python
language behavior.3 The program in this example accepts a
float from the user and carries out a calculation based on
this input value. Python’s input() call accepts floats using

1http://web.eecs.umich.edu/∼weimerw/data/infix
2https://www.mturk.com/worker
3All code examples in this paper use Python 3. We note, however, that

input() has the same behavior as raw_input() in Python 2.

Program Code:
1 x = float(input())
2 print(x * math.e / 2)

Erroneous Input Student Repair InFix Repair
26,2 29.2 4.5

Python Error Message:
ValueError: could not convert string to

float: ’26,2’

Fig. 1: Example of a syntactic input-related error.

period-based decimal notation. However, the student entered
26,2 into the interpreter using a comma instead of a period.
Because of this, the Python interpreter is unable to cast the
input to a float and throws a ValueError. Notice that in this
simple case, the input that needs to be modified to fix this error
is included in the error message itself. Specifically, the error
message points out that the program accepts a float, but that
26,2 is not a float. While this error may appear trivial to fix
for expert programmers, novices can have surprising difficulty
debugging even simple errors [11]. In fact, novices may not
even read error messages in some cases [30, Sec. 3], using
their existence as a boolean indicator of success or failure.

When designing InFix, therefore, we choose to use error-
message templates to take advantage of the copious infor-
mation some messages include. In particular, we observe
that error messages associated with syntactic mistakes con-
tain the richest information for algorithmic repairs. Our im-
plementation includes a template that specifically addresses
ValueErrors like those in Figure 1. For this scenario, our
template is effective: participants find InFix’s repair equal in
quality and helpfulness to the human-generated repair.

Despite the applicability of error message templates to
simple errors, many input-related errors are semantic and
program-specific rather than syntactic. Figure 2 exemplifies
one such semantic error. The program uses the first two inputs
to build a dictionary that is then accessed using the characters
in the third input. Unfortunately, the novice includes incorrect
values in the third input line, resulting in a KeyError.
Specifically, the student flips the lines corresponding to the
keys and to the values, perhaps indicating a misunderstanding
of Python dictionaries. This error is time consuming, taking
the student almost three minutes to fix.

This error is significantly more complex than the error from
the first example: any repaired input for Figure 2 must satisfy
several program-specific constraints. First, input_b must
have at least as many characters as input_a. Second, all
characters in input_c must also be in input_a.

Furthermore, notice that unlike the example in Figure 1, the
error message in Figure 2 is not a rich source of debugging
hints. However, we observe that repairs similar to the student
generated-repair could be created by simple mutations of the

2

http://web.eecs.umich.edu/~weimerw/data/infix
https://www.mturk.com/worker

Program Code:
1 input_a = input()
2 input_b = input()
3 input_c = input()
4 c_array = []
5 dictionary = {}
6 for i in range(len(input_a)):
7 dictionary[input_a[i]] = input_b[i]
8 for j in range(len(input_c)):
9 c_array += dictionary[input_c[j]]

10 print(c_array)

Erroneous Input Student Repair InFix Repair
abcd

*d%#

#*%*d*%

abcd

badc

abcd

-Et

abcd

-Et

Python Error Message:
KeyError: ’#’

Fig. 2: Example of a semantic input-related error.

original error-generating input. As a result of these observa-
tions, we propose using simple mutations to repair erroneous
input data when there is not enough information in the error
message alone. For these mutations, we consider the input as
a whitespace-separated list of tokens. In our evaluation, InFix
finds a solution to the scenario in Figure 2 in under 2 seconds,
and in our human study, we find InFix’s repair to be equivalent
in quality and helpfulness to the student’s repair.

From our observations, these two examples are indicative
of the majority of input-related errors encountered by novices
in online tutoring environments. For syntactic errors, such as
the error in Figure 1, we observe that novices tend to repair
the same error in similar ways and that error messages are
rich sources of information. For semantic errors, like the one
in Figure 2, fixes are more varied and the error messages
are more opaque. These observations motivate our decision
to include both error message templates and mutations in
InFix; we use error message templates to quickly repair the
most common errors and random mutations to address more
complex semantic errors. Our observations also inspire our
decision to prioritize one category above the other: we only use
mutations when there is no applicable error message template.

III. INFIX ALGORITHM

InFix is a randomized search optimization algorithm that
iteratively modifies the original erroneous input until either
a correct input is found or the maximum number of probes
has been exhausted. The key insights behind InFix are that
input repairs are often composed from a small number of
common mutations and that these mutations are often heavily
correlated to specific error messages. Furthermore, for some
simple specific errors, student edits are highly predictable.

For the purposes of this paper, since we target generic
novice programs, we define a erroneous input as an input
that causes a program to raise an interpreter error. In contrast,

we define a correct input as one that causes the program to
terminate without error. A user-interaction scenario has an
input-related error if the programmer runs both erroneous and
correct inputs with the same program (not every error-avoiding
input need be helpful to novices; we formally investigate repair
quality via a human study in Section VI-G). Given two inputs
for one program such that the first is erroneous and the second
is correct, we refer to the latter as a fix or repair.

In Section III-A we describe the InFix algorithm, in Sec-
tion III-B we present information on template selection, and
in Section III-C we describe a parallel version of InFix.

A. InFix Algorithm Architecture

At a high level, InFix takes six arguments: the program P ,
the erroneous input I , the original error message M , a template
function T , a set of mutations R, and a maximum number
of probes N . The template function T ’s domain consists of
a finite set of error messages which uniquely determine a
corresponding input mutation. R is a set of additional input
mutations. InFix iteratively mutates I until it either finds a
repaired input or has tried N mutations. When successful,
InFix returns a correct input I ′, such that P (I ′) terminates
normally without raising any exception. The pseudocode for
InFix can be found in Algorithm 1.

Algorithm 1 Main InFix Algorithm

Type Definitions:
1: Type TokSeq : Sequence of Tokens
2: Type Mutation : TokSeq → TokSeq
3: Type Message : Error Message

Require:
4: Program P : Prog
5: Original erroneous input I : TokSeq
6: Error message M : Message
7: Error message template function T : Message→ Mutation
8: Set of mutations R : Mutation Set
9: Maximum number of probes N : N

10:
11: procedure INFIX (P, I, M, T, R, N)
12: V ← ∅ . V is a set of visited inputs
13: for n in [1...N] do
14: if (M ∈ domain(T)) ∧ (I /∈ V) then
15: mut← T (M)
16: else
17: mut← choose(R)

18: V ← V ∪ {I}
19: I ← mut(I)
20: M ← run(P, I)
21: if M is GOOD then break
22: return minimize(I) if M is GOOD else TIMEOUT

During each iteration, InFix mutates I using either the error
message template function T or a random mutation from
R. These two sources of modification are hierarchical: InFix
always applies an error message template if possible (line

3

15). However, if there is no transformer associated with the
error message (i.e., M is not in the domain of T : line 14)
or if the resulting mutation has already been considered, a
random mutation is applied instead. This mutation is chosen
unweighted from a set of mutation templates (line 17).

The program P is then invoked on the modified input (line
20). If the run is error free, than the input is minimized and the
process terminates. Otherwise, InFix continues iterating until
the probe budget has been exhausted. Any minimization ap-
proach that finds a correct fix is acceptable. Previous program
repair algorithms have used various minimization methods,
such as Delta Debugging [27], [51]. In Section VI-D, we
discuss the minimization method in our Python instantiation.

B. Template Selection
InFix relies on the selection of templates T and mutations

R. In practice, the domain of T is a small set of the most
common error messages. Note that in Algorithm 1 there is
a single transformation associated with each error message.
InFix thus works best when it is possible to identify a highly-
effective transformation for the most frequent messages.

However, there are instances where input-related errors that
yield the same error message cannot be fixed with the same
template (see Section V-B). Therefore, R should contain error-
independent transformations associated with common student
mutations. For our Python implementation of InFix, the trans-
formations in T and R were developed by characterizing
novice Python input-related errors, the results of which are
discussed in Section IV. The specific templates and mutations
of our implementation are described in Section V.

C. Parallelizing InFix
InFix’s structure is pleasingly-parallel. Running multiple

searches in parallel can both decrease the time to first repair
and also increase the likelihood of finding a repair. In InFix’s
parallel form, each thread runs the main InFix loop. However,
as with similar parallel repair algorithms, there is a tension be-
tween possibly repeating work on independent parallel threads
and incurring overtime caused by coordination [39].

We propose an approach without online coordination: in-
stead, each thread is seeded with a random mutation of
the original erroneous input. This increases the likelihood,
but does not guarantee, that threads explore different areas
of the search space. Our low-overhead approach is critical
to finding repairs online in the timescales associated with
novice interactions (see Section IV-A); we empirically evaluate
InFix’s sensitivity to the number of threads in Section VI-F.

If multiple threads find repairs in the same iteration, InFix
selects a repair with the highest statement coverage. We note
that parallelization is especially helpful for finding repairs that
rely on random mutations rather than on error templates.

IV. CHARACTERIZATION OF NOVICE
PYTHON INPUT ERRORS

In this section, we present the findings from our obser-
vational study to characterize the input structure and associ-
ated novice interactions of 6,949 scenarios with input-related

errors. Each input-related scenario consists of a program,
an erroneous input, and a student-generated input repair as
defined in Section III. These errors make up approximately
6.6% of all erroneous interactions on Python Tutor [18]
from Jan-1-2017 to Dec-31-2017. The results of this study
inform our Python adaptation of InFix (Section V). We restrict
our observational study to just one year, 2017, to mitigate
overfitting: specifically, we will show that the insights and
templates derived from 2017 yield an input repair strategy
that generalizes across all the years from 2015 to 2018.

In Subsection IV-A, we present a general analysis of all
6,949 scenarios to understand better the size of the programs,
the inputs, and the messages most commonly associated with
novice input-related errors. In Section IV-B, we present ob-
servations from a more in-depth manual examination of 100
randomly-selected scenarios to better understand the structure
of erroneous inputs as well as the repairs students made
to fix them. These analyses find that input-related errors
are varied and that novice input patterns can be, perhaps
surprisingly, complex. We also show that some error messages
are significantly more common than others and that similar
errors are often fixed in similar ways.

A. Erroneous Input-Related Scenarios: Quantitative Analysis

To characterize the 6,949 scenarios in our data set, we
consider the average input and program size, the number of
input calls per program, the time it takes users to generate
repairs, and the prevalence of specific error messages. In these
scenarios, there are 6,017 unique programs.

Generally, Python Tutor programs with input-related errors
are small; the average program length (excluding blank lines
and comments) is 17.1 lines. There is a large range, however:
some instances have up to 151 lines. The average input
size also varies, ranging from 1 to 5,238 characters with an
average of 14.2. These inputs can typically be interpreted as
white-space separated token lists, though some use custom
delimiters. On average, erroneous inputs have 3.1 tokens,
although we observe examples with up to 500.

On average, there are only 1.8 textual input calls per
program (although we observe programs with up to 20 calls).
This small number of calls, however, does not necessarily
lead to programs with simple input structures. Loops and type
constraints often complicate input calls (see Section IV-B).
Befitting their varying complexities, input-related errors take
a wide range of time for Python Tutor users to resolve.
The median time to solve input-related errors is 49 seconds,
however 34.6% take users over two minutes to solve and 5.5%
take over seven minutes.

The most common error message associated with input-
related errors is ValueError. Out of the 6,949 scenar-
ios, ValueErrors are generated in 3,785 (or 54.5%).
The next most common error messages are IndexError
(1290 scenarios) and NameError (778 scenarios). We also
note that ValueError has several variations, differentiated
by the trailing error message text. The most common of
these are invalid literal for int() with base

4

10 (2,392 scenarios), could not convert string to
float (599 scenarios), and not enough/too many
values to unpack (632 scenarios). Together, these
ValueError variations account for 3,623 scenarios (52.1%).

B. Erroneous Input-Related Scenarios: Qualitative Analysis

We now present qualitative analysis of 100 randomly-
sampled erroneous input-related scenarios. Generally, we find
that inputs consist almost exclusively of string, integer, and
float literals. We also note that integers and floats in erroneous
inputs are typically small and positive; of the 77 inputs in
this sample with numerical literals, only 12 (15%) of them
involve a number above 15 and only one contains a negative.
This pattern is similar in the student-generated fixes: only
25/97 number-containing fixes have a number over 15. We
also note that in our sample, more fixes (97/100) contain
numerical values than erroneous inputs do (77/100). Therefore,
we conclude that many errors are caused by omitting a
numerical literal required by the program’s input structure. We
further observe that such errors are typically resolved through
the insertion of a number into the erroneous input.

Subjectively, we note that many erroneous inputs likely
imply a misunderstanding of Python data formatting. These
syntactic errors fall into two main groups: erroneous string-
to-type conversions and mistakes involving library functions.
Altogether, these account for 33/100 errors in our sample.

The first group involves misunderstanding how literals are
represented as strings. For example, we observe novices who
use commas instead of periods for decimal notation or who
include quotes around numbers. Our data set contains one
extreme example where the student entered math.pi/6
to a program expecting an integer. These errors typically
result in a ValueError, and students typically fix them
by correcting the format. While students often preserve the
original numerical value in the repair, this is not always the
case (see Figure 1). This indicates that the fix’s exact numerical
value is not always as important as correcting the formatting.

The second group of syntactic errors involves misunder-
standing Python’s input and split behavior. By default,
input reads until the next newline, and split breaks strings
on whitespace. Some students, however, may be unclear on
both default behaviors. For example, we observe student
attempts to use comma-separated lists or to include the data
for multiple input calls on the same line.

The remaining errors in our sample are semantic. These
errors are diverse, ranging from simple swapped input order-
ings to complicated indirections. For example, one program
which accepts a list of integers raises an error if there is a
duplicate in the list. Student input fixes are similarly diverse.
However, we note that elements in the erroneous input are
often permuted in the fixed input. We also notice that other
elements are often slightly modified in the fix (for example,
abcb to abdb). We further observe student fixes that insert
strings occurring as literals in the program’s source code. For
example, one program contains a dictionary with the hard-

coded key "pollution". However, the student entered the
misspelled polution, inducing a KeyError.

Intriguingly, we find that, despite a small number of static
input calls in a given program, exhaustively specifying the
set of valid inputs can be challenging. While 42/100 scenario
programs only have one static input call, in 17 (40.5%), that
call is embedded in either a loop or a split, resulting in a
complex dynamic input structure.

We also observe that the length of one input portion is
often dependent on the value of a different input portion.
We consider two indicative cases: dependent list lengths and
sentinel values. Figure 3a shows a Python program where
the number of times the second input is triggered depends
on the value of the first input. We find a version of this
value-dependence in 21/100 scenarios. Figure 3b depicts a
sentinel loop pattern where exiting the loop requires a specific
input value. We observe instantiations of pattern b in 10% of
sampled programs. We further note that errors involving these
patterns often relate to value interdependencies. For example,
many IndexErrors were caused when one input was used
as an index into a structure created by another input. Students
typically resolve these errors by inserting or deleting tokens.

Finally, we observe that student fixes for input-related
Python errors are generative as well as corrective. As Python is
interpreted, no more input is accepted once an uncaught error
is thrown. Therefore, when a program with multiple input
calls aborts after the first call, a fix must both correct this first
error and also generate additional input data for any remaining
calls. Of the 100 scenarios we examine, 31 fixes generate
additional input. We sometimes see novices submit multiple
erroneous inputs before achieving an error-free program run,
indicating that debugging for novices is an iterative process.
An example of this pattern is shown in Figure 3c.

Overall, novice inputs and input-related errors are varied and
complex. Input-related errors range from simple syntactic mis-
takes to more insidious semantic errors that often expose tricky
interdependencies between input values and calls. Despite this
variety, we note that fixes often contain similar mutations of
the original erroneous input. We also find that, for simple
syntactic errors that result in a ValueError, the rich error
message is highly predictive of the eventual fix.

V. SPECIALIZING INFIX TO PYTHON

To create Python-specific error message templates and
mutations for InFix, we exploit patterns discovered in our
observational study. We design error message templates to
quickly target syntactic errors and select mutations inspired
by common debugging patterns for semantic errors. Sec-
tion V-A discusses the specific error message templates, and
Section V-B presents our mutation operators. In total, our InFix
implementation contains five error message based templates
and five mutations.

A. Error Message Templates

In our observational study (see Section IV-A), we discover
that just four subtypes of ValueError account for 52.1%

5

1 num = int(input())
2 val = [int(x) for x in

input().split()]
3 for y in len(num):
4 print(val[y])

(a) Example where the length of the
second input depends on the value
of the first: list val must be at least
as long as num. E.g., this program
accepts 2\n1 2 and not 2\n1.

1 while True:
2 value =

int(input("Number?"))
3 if value == 10:
4 print("Found Number")
5 break

(b) Example of a sentinel input pattern. To
terminate, the input must be exactly equal
to 10.

1 name = input("Name?")
2 age = float(input("Age?"))
3 num = int(input("Fave num?"))

Try Input Error
1 Bob 1,21 ValueError

2 Bob 9.5 3.4 ValueError

3 Bob 21 345 No Error

(c) Example of iterative debugging process. Note:
for space, input shown is whitespace-separated.

Fig. 3: Common Python input and debugging patterns for novice programmers.

of all input-related errors encountered by novices on Python
Tutor. We further find that many of these ValueErrors
correspond to syntactic errors such as incorrect Python type
formatting or misunderstood input and split behavior,
noting that students fix these errors in predictable ways. Addi-
tionally, we realize that novice fixes for input-related errors are
often necessarily generative. Based on these observations, we
implement five error message templates: four that address the
most common ValueError subtypes and one that addresses
EOFErrors generated when the program runs out of input.
Table I shows our error message templates.

B. Mutation Templates

While our error message templates directly address a signif-
icant portion of syntactic errors, they do not cover all errors.
In our observational study, we found that the student fixes
could often be generated by applying a small set of mutations.
From this finding, we propose four mutations: inserting a new
token, transforming a space-separated list into one separated
by newlines, reordering tokens, and deleting tokens. While
many fixes are similar to the original input, we also observed
instances where they were seemingly unrelated. As a result,
we create a fifth mutation that clears the given input. Table I
summarizes the mutations in our InFix implementation.

VI. EVALUATION

This section contains the experimental setup and results of
our InFix implementation evaluation. Section VI-A outlines
our research questions, Section VI-B describes the expanded
Python Tutor Data set we used for our evaluation, Sec-
tion VI-C describes our human study methodology, and the
remaining subsections present the results of our investigations
into each research question.

A. Research Questions

In our evaluation, we focus on five research questions:
• RQ1: How effective is InFix at repairing Python input-

related errors?
• RQ2: Are the assumptions behind InFix, such as the ben-

efits of the hierarchical ordering between error messages
and templates, valid?

• RQ3: How sensitive is InFix to available resources?

• RQ4: What are the quality and helpfulness of the repairs
produced by InFix, as judged by humans?

• RQ5: How do the perceived helpfulness and quality of
these repairs vary with programmer expertise?

B. Benchmark 1: Python Tutor Data Set

Our first evaluation benchmark consists of 25,995 erroneous
input-related scenarios collected from four years of Python Tu-
tor data (Jan-1-2015 to Dec-31-2018). Each scenario consists
of a Python program, an error-causing input, and a student-
generated repair. By year, there are 1,640 scenarios from 2015,
4,683 from 2016, 6,949 from 2017, and 12,723 from 2018.
This data is an expansion of the data used in our observational
study described in Section IV. To mitigate overfitting, we
only used a subset of the data earlier. Across these scenarios,
there are 22,282 submissions from 13,968 unique IP addresses.
We find that 69.8% of users are single-time users, only ever
submitting one input-related error to Python Tutor.

C. Benchmark 2: Repair Quality Human Study

Our second data source is an IRB-approved human study
with 97 participants. This data includes quality and help-
fulness ratings for InFix- and student-generated repairs for
60 scenarios randomly selected from the Python Tutor data
without adaptation. Of the 97 participants, 24 are undergrad-
uate or graduate students at the University of Michigan. The
remaining 73 are workers recruited from Amazon Mechanical
Turk (MTurk). These participants have varying levels of self-
reported Python programming experience.

Each participant was shown an online series of 16 novice
Python programs randomly selected from the 60 stimuli cor-
pus.4. Each stimulus consists of a Python program, erroneous
input, error message, repaired input, and repaired output. There
are two versions of each stimulus, one with the historical
student-generated repair and one where the repair is generated
by InFix. To avoid training effects, a single participant was
never shown both the machine and human repair for the same
error. For all 16 stimuli, participants were asked to provide
a textual description of the cause of the error and to assess
the quality and helpfulness of the repair on a Likert scale
of 1 to 7. To collect data that best reflected our participants’

4All stimuli are available at http://web.eecs.umich.edu/∼weimerw/data/infix

6

http://web.eecs.umich.edu/~weimerw/data/infix

Error Message Template Fix
ValueError: invalid literal for int() with base 10: ’X’ Replace last instance of X with random integer between -1 and 10.

Note: novices mostly use small numbers in their fixes.
ValueError: could not convert string to float: ’X’ Replace last instance of X with random float between -1.00 and 10.00.

Note: novices mostly use small numbers in their fixes.
ValueError: not enough values to unpack Append duplicate of last token. Deliminator is either whitespace or

extracted from code.
ValueError: too many values to unpack Remove last token from input. Deliminator is either whitespace or

extracted from code.
EOFError: EOF when reading a line Append a duplicate of a random token from the original input or

append a new random three-character string.

Mutation Description
Insert a token Inserts token at random location. New token is a short random string, token from original input, or string literal from source.
Split whitespace list Transforms a line separated by spaces (or other split deliminator from source code) and into content separated by newlines.
Swap a token Swaps a random token with either a short random string, a token from the original input, or a string literal from source code.
Remove a token Deletes a random token. A token may be an entire line, but we consider whitespace separation when applicable.
Empty the input Replaces the entire input with an empty sequences. Useful for unhelpful student-provided initial inputs.

TABLE I: Descriptions of error message templates and mutations in InFix’s Python implementation.

subjective human experiences we did not further define quality
or helpfulness. We also gathered self-reported estimates of
both programming experience and Python-specific experience
as well as qualitative data pertaining to what factors influence
a subjective judgment of repair quality. Study stimuli are very
similar to Figure 5, except that participants were only shown
one repair per scenario.

The study takes around 45 minutes to complete. A par-
ticipant’s response was only considered valid if it correctly
identified the cause of 6 / 16 errors. This high threshold is
relevant for trusting MTurk worker ratings. Previous work
shows that much of the data submitted on MTurk is of low
quality; some users even “collude” to take advantage of the
system [24]. MTurk workers were compensated with $4.50
upon successful completion while students could opt to be
entered to win one of two $50 Amazon gift cards.

D. RQ1: How Effective is InFix?

We evaluate InFix on 25,995 Python Tutor scenarios with
input-related errors. For our initial effectiveness assessment,
we set the maximum number of probes-per-thread N to
60 (Section III-A) and the number of threads to five (Sec-
tion III-C). We perform a sensitivity analysis on these input
parameters in Section VI-F. We use a simple brute-force
minimization technique (Section III-A): due to the typically-
short input length, we find more heavy-weight approaches
unnecessary. All experiments were conducted on an Ubuntu
18.04.2 LTS server with a 4.3 GHz Intel i7-7740X quad-core
CPU with 32 GB of RAM.

In general, our evaluation demonstrates that InFix is highly
effective, able to repair 94.5% of input-related errors. We also
find that InFix’s repair rate is consistent, achieving similar
accuracy for each separate year of data. As InFix’s templates
were developed from observations of the 2017 data, we believe
this consistency indicates our templates generalize. A detailed
breakdown of this analysis can be found in Table II.

We also find that InFix is efficient, able to repair the
majority of errors in under one second of wall clock time.

TABLE II: Overall InFix evaluation results. All reported
results are run with a 60 probe budget and 5 threads. Median
and average probe and time costs (wall clock) are shown.

Input-Error Scenarios Probes Time (sec)
Year Total Repaired % Med. Avg. Med. Avg.
2015 1,640 1,582 96.5% 1 2.98 0.87 1.12
2016 4,683 4,440 94.8% 2 3.23 0.88 1.16
2017 6,949 6,590 94.8% 2 3.47 0.90 1.23
2018 12,723 11,947 93.9% 2 3.70 0.88 1.28

Total 25,995 24,559 94.5% 2 3.50 0.88 1.23

This is important because InFix is intended to provide real-
time debugging hints and repairs to novices.

InFix is both highly effective and efficient, repairing 94.5%
of 25,995 input-related scenarios in a median of 0.88 wall
clock seconds (vs. 49 median seconds for novices).

E. RQ2: Validating InFix’s Design Assumptions

Beyond assessing the overall effectiveness of InFix, we also
perform an experiment to validate our design assumptions
that both error message templates and randomized mutations
are helpful and that error message templates should take
precedence. To do so, we implement three variants of InFix:
one with only error message templates, one with only mutation
templates, and one with both that uses random selection
instead of a hierarchical prioritization (see Section III-A).

We compare the performance of these variations on the
1,640 2015 Python Tutor scenarios using five parallel threads
and 60 maximum probes-per-thread. We find that InFix out-
performs all three variations in repair rate, average number of
probes, or both, indicating that the error message templates,
mutations, and their associated hierarchy all contribute to
InFix’s high performance. In particular, the error-message-
only and mutation-only implementations have markedly lower
repair rates than InFix. Interestingly, we observe that the
45.2% of scenarios that the error-message-only version repairs
is similar to the 52.1% of errors we templated (see Section
V), indicating that our abstracted error message templates are
highly effective. We also note that while the non-hierarchical

7

TABLE III: Experimental results for validation of InFix’s
design assumptions. Tested on the 1640 scenarios from 2015.

Algorithm Number of Percent Average Probes
Variation Inputs Fixed Fixed To Solve
Error Messages Only 741 45.2% 2.70
Mutations Only 1048 64.5% 10.50
Non-Hierarchical 1561 95.2% 4.10

InFix (complete) 1582 96.5% 2.98

TABLE IV: InFix’s sensitivity to the maximum number of
probes and the number of threads. Each box contains the
percentage of the programs solved when InFix is run with
the specified parameters.

M
ax

im
um

N
um

be
r

of
Pr

ob
es Number of Threads

1 2 3 4 5
1 30.8% 36.4% 39.9% 42.6% 44.6%
5 64.1% 72.7% 77.3% 80.3% 82.6%

10 73.6% 81.0% 84.5% 86.7% 88.4%
20 80.5% 86.1% 88.8% 90.6% 91.7%
30 83.1% 88.2% 90.5% 92.0% 93.0%
60 86.7% 91.0% 92.7% 93.8% 94.5%
500 92.5% 94.5% 95.3% 95.8% 96.1%

version’s performance is only slightly lower than InFix’s,
the average number of probes is 27% greater validating our
assumption that the hierarchy between error message templates
and mutations leads to increased efficiency. A detailed break-
down of our results is given in Table III.

Error message templates, mutations, and the hierarchical
mutation structure are critical for InFix’s high performance.

F. RQ3: InFix Parameter Sensitivity

To understand InFix’s parameter sensitivity, we evaluate
InFix with different probe budgets (1–500) and parallel threads
(1–5). We choose to focus on sensitivity with respect to more
constrained resources because, unlike traditional automatic
program repair, we target real-time repairs for low-budget
tutoring sites. We do, however, include a larger probe budget
to compare against previous work. For probe budgets N ≤ 60,
we evaluate on all 25,995 scenarios. For 500 probes, we
evaluate only 4,683 scenarios from the 2016 Python Tutor data.
We find that InFix’s repair rate is influenced by the values of
these two input parameters; as the probe budget and threads
increase, InFix’s repair rate also increases. Numerical results
from our sensitivity analysis are shown in Table IV.

We emphasize two of our findings. First, note that even with
a single probe, InFix repairs a large number of input scenarios.
We observe that most of these correspond to instances where
the initial error message is templated. This demonstrates that
InFix can still be effective even with highly constrained
resources. Second, even when the probe budget doubles from
30 to 60, the repair rate with a consistent number of threads
increases by at most 4.1%. Between 60 and 500 probes, an
8x resource increase, this pattern is even more pronounced,
with a maximum repair-rate increase of 6.3%. This indicates
that InFix is largely insensitive to resource constraints on the

TABLE V: Quality and Helpfulness from 1,544 human study
ratings (1–7 Likert scale). InFix’s patches are 4% lower quality
than human-written patches in a statistically-significant man-
ner (p = 0.047); helpfulness is not statistically distinguishable.

Rated Patch Quality Rated Patch Helpfulness
Raters Human InFix p-value Human InFix p-value
MTurk 4.7 4.5 0.042 4.7 4.6 0.086
University 4.6 4.5 0.360 4.5 4.8 0.110

All Raters 4.7 4.5 0.047 4.7 4.6 0.270

order of those bounds established by previous work (e.g., up to
307 probes reported for three algorithms on the similarly-sized
IntroClass student program repair benchmark [26, Fig. 5]).

InFix is insensitive to expected resource parameters and is
usable even for non-parallel architectures and tight resource
budgets. InFix also repairs a non-trivial amount of input-
related errors in a single iteration.

G. RQ4: What is the Quality of InFix’s Repairs?

As human-generated inputs and code repairs have been
shown to be useful hints for novices [20], [34], we objectively
and subjectively investigate how InFix’s repairs compare to
historical repairs made by the Python Tutor users themselves.

Our objective evaluation compares the statement coverage
of InFix’s repairs to the coverage of student repairs. We choose
coverage because it is a well-understood and commonly-used
metric for software engineering quality assurance [3], [31].

From analysis on the 2018 Python tutor data, we find that
the median coverage of InFix’ repairs (83.3%) is 90.2% the
median coverage of student repairs (90.3%). InFix’s cover-
age is high, comparable to that achieved by PEX [45], an
automated test generation tool evaluated in an educational
setting [46], and greater than that of tools such as KATCH
that focus on coverage for expert-written patches [31, Tab. 1].

In our second evaluation, we asked humans for subjective
assessments of repair quality (see Section VI-C). We collected
1,544 helpfulness and quality scores for machine and student
input repairs on a Likert scale between 1 (low) and 7 (high).
Details of our results are in Table V, including subgroup break-
downs for university students and MTurk workers. Overall,
InFix’s repairs were as helpful as student generated repairs:
we found no statistically-significant difference between the
helpfulness of student- and machine-generated repairs using
the two-tailed Mann-Whitney U test. We did, however, find
a statistically-significant difference for repair quality (p =
0.047): the quality of human repairs is 4% higher than InFix
repairs. This subjective 96% quality assessment is very high
compared to previous investigations of automated repairs.5

While we deliberately do not define quality and helpfulness
to avoid biasing responses, we did ask our participants “what
factors cause a repair to be of high quality”. Generally, subjects

5For example, while not directly comparable, humans found PAR’s patches
75.5% as acceptable as human patches and GenProg’s 51.4% as accept-
able [23, Tab. VII]. Similarly, Long and Rinard report 18 of Prophet’s 39
patches to be correct [29, Fig. 10] in a manual human assessment, with other
algorithms such as GenProg and Kali performing worse.

8

Program Code:
1 ticket_num = int(input("How many?: "))
2 cost = float(input("How much each?: "))
3 total = ticket_num * cost
4 print("Your cost is", total, ".")

Erroneous Input Student Repair InFix Repair

Input
3

$1.50

3

1.50

3

8.10

Output Error
Your cost is

4.5 .

Your cost is

24.2999997 .

Python Error Message:
ValueError: could not convert string to

float: ’$1.50’

Fig. 4: Example where the machine repair is of higher quality
than the student repair by 1.4 (p = 0.028).

indicate that high-quality repairs are those that help with fault
localization. For example, one participant stated a repair is of
higher quality “the quicker it helped [her] solve the bugged
input”. Similarly, a second participant wrote that high-quality
repairs “provide a valuable clue . . . [because] when you follow
the code and use [the] new input, the error is easier to spot”.
One participant articulated that high-quality repairs should
“exercise as much code as possible instead of giving values
that short-circuit checks or skip faulty code”, supporting our
use of code coverage as a proxy for repair quality.

To further tease apart this nuanced notion of repair quality,
we consider two case studies with statistically-significant
differences between human and machine repairs. Figure 4
shows an example where the machine repair is rated better
than the human repair (p = 0.028). This program asks the user
to enter a monetary amount. The erroneous input contains a
simple syntactic error: the novice includes a dollar sign with
the float. The human repair simply removes the dollar sign.
InFix, however, suggests a different float. Perhaps unexpect-
edly, participants find the machine repair of higher quality
than the human repair. We hypothesize this is because only
the machine repair’s output reveals floating point precision
formatting behavior undesirable for monetary notation.

In contrast, Figure 5 depicts an example where participants
thought the human repair was better than the machine repair
(p = 0.019). In this program, the input-related error is
primarily caused by a defect in the code: on line 9, the
programmer incorrectly calls leap(). The student input fix
includes a different year, avoiding the defect due to short-
circuit evaluation. InFix, however, generates 2 for the year.
We believe the fact that 2 makes no contextual sense as a
modern year to be the reason for its lower perceived quality.
In fact, one participant singled out this repair as particularly
poor, noting that “a valid date . . . would give a better example
than a wrong (logically) year value of 2”.

These two examples demonstrate that the stochastic el-
ements of InFix can benefit repair quality, revealing edge
cases that would otherwise be missed. However, they also

Program Code:
1 day = int(input("enter a day :"))
2 month = int(input("enter a month :"))
3 year = int(input("enter a year :"))
4

5 def leap(year):
6 pass # Removed for space considerations
7

8 def checkDay(day, month, year):
9 if day == 29 and month == 2 and leap():

10 return day
11 return False
12

13 print(checkDay(day, month, year))

Erroneous Input Student Repair InFix Repair
29

2

2016

12

2

2000

6

10

2

Python Error Message:
TypeError: leap() missing 1 required

positional argument: ’year’

Fig. 5: Example where the human repair is of higher quality
than the student repair (p = 0.019).

show a limitation of template-based repair: we deliberately
used small numerical values in our repairs based off our
observations in Section IV. However, this is unhelpful when
the student program involves numerical inputs with other
contextual constraints (Figure 5).

InFix’s repairs are of high quality, attaining 90.2% of the
statement coverage of student repairs. More importantly, 97
study participants found InFix’s repairs to be equally helpful
as, and to have 96% of the quality of, human repairs.

H. RQ5: The Effect of Programmer Expertise

As InFix is designed to help novices, we are interested
in the effect of programmer expertise on repair helpfulness.
We analyzed the helpfulness scores of experience-based sub-
populations. In our human study (see Section VI-C), par-
ticipants were asked to self-report their Python experience
as either minimal (less than a semester), moderate (1–2
semesters), or expert (3+ semesters). Of the 96 respondents,
31 are minimal, 49 are moderate, and 16 are experts. While
we note we use a coarse definition of programmer expertise
(see Siegmund et al. [43] for a detailed discussion), we
claim that students with three or more semesters programming
experience are relative experts compared to those who have
just started learning.

Initially, we observed that our relative experts rated InFix
repairs more helpful than novices (4.0 vs. 5.2 out of 7).
However, since the stimuli for our study were randomly
sampled from the Python Tutor data set, they vary in difficulty:
some programs contain Python language features that partici-
pants with minimal experience may not have encountered. We

9

Participant Experience Level
Minimal Moderate Expert

Easiest Stimuli 14 4.7 4.9 5.1
Hardest Stimuli 11 3.6 4.8 5.1

All Stimuli 60 4.0 4.8 5.2

TABLE VI: Helpfulness ratings of InFix’s repairs depending
on experience. Scores are on a scale from 1 to 7.

hypothesize that these hard programs are confusing for our
most novice participants, leading to lower helpfulness ratings.

We thus analyzed the helpfulness of InFix’s repairs for the
easiest 14 and hardest 11 programs as determined by three
expert annotators (Fleiss κ = 0.71). We find that participants
with the least experience give repairs for easy programs higher
helpfulness ratings than they give repairs for the hardest
programs (4.7 vs. 3.6). Participants with the most experience,
however, rate machine repairs for both easy and hard programs
as equally helpful. For the easiest programs, there is no
statistically-significant difference in the helpfulness scores
between novice and relative expert participants, indicating
that InFix is helpful for novice programmers with varying
experience levels. Our results are detailed in Table VI.

After controlling for program difficulty, InFix’s repairs are
rated equally helpful by developers with varying Python
experience, including novices (“less than a semester”).

I. Evaluation Summary

InFix is highly effective and efficient enough to help stu-
dents debug in real time. InFix is relatively insensitive to
resource-based parameters, indicating that input-related repair
can be cost effective to deploy under constraint. Beyond its
high 94.5% repair rate and sub-second efficiency, we find that
InFix produces very high quality repairs (96%) that are helpful
for novices and experts alike.

VII. THREATS TO VALIDITY

Although our experiments indicate that InFix is effective
and efficient, our results and subjective quality data may not
generalize. We also consider that novices may feel they rarely
encounter input-related errors, making repairs unnecessary.

We first recognize that while InFix is highly effective for
Python, our results may not generalize to other languages. We
find it likely that InFix’s success depends on the expressiveness
of the language’s error messages. We deliberately implement
InFix for a language widely used by novices. However, inves-
tigating cross-language effectiveness remains for future work.

To mitigate the possibility of fraudulent MTurk data, we
require workers to correctly identify the cause of at least 6 /
16 stimuli errors for payment. We only considered responses
meeting that threshold, as assessed through manual analysis,
in our evaluation. Filtering for data set inclusion based on
response quality is a best practice for studies involving crowd-
sourced participants [12]. While 186 workers requested pay-
ment on MTurk, only 73 (39%) met the validity threshold for
inclusion. This MTurk retention rate is similar to that reported
by other crowdsourced studies involving debugging [14].

Finally, to mitigate threats involving problem significance,
we asked our study participants how strongly they agree with
the phrase: “I often encounter bugs where the input data is part
of the problem”. Participants report commonly encountering
input-related errors: 75 / 94 responses (80%) agree or strongly
agree, while only three participants strongly disagree. This
result indicates that input-related errors are a common and
memorable challenge faced by novices.

VIII. RELATED WORK

A. Pedagogical Automatic Program Repair

Previous pedagogically-motivated automatic program repair
and fault localization work focuses on large course assign-
ments (e.g. MOOCS) [1], [7], [26], [36], [50] rather than
support for non-traditional students. For example, Ahmed et
al. build statistical models to help repair submissions for 14
different problem sets, using between 400 and 9,000 submis-
sions per problem for training [1]. However, as we focus on
input-related errors for generic student programs, InFix must
operate without a large corpus of fixes for the same program.

Yi et al. study if state-of-the-art program repair tools can
feasibly help students repair source-level errors [50]. They find
that expert-focused tools and their derivatives are unhelpful,
though they are potentially useful for course graders. However,
they did not investigate input-related repairs.

B. Automatic Input Rectification, Sanitization or Fuzzing

Limited work has been done on automatically repairing
input data [2], [28], [35]. Extant work focuses on improving
security for industrial programs. In the most related work,
Long et al. use provided tests to learn what non-malicious
inputs look like for a program [28]. They then automatically
correct “atypical” inputs to fit the learned pattern. For general
novice programs, however, the input format is rarely specified
and there are rarely test cases. To the best of our knowledge,
there is no prior work on automatically repairing novice input
errors or investigating their repair quality.

Given a model for functions such as input, split and
int, fuzz testing (e.g., [15], [16], [41]) could be applied to the
task of generating non-erroneous inputs. However, test input
generators often struggle with real-time answers to semantic
or dependent input paths, such as the dictionary key-value
scenario in Figure 2. While a few algorithms have efficient
web deployments, such as Pex [46], approaches that handle
complex input constraints, such as EXE, generally require
minutes [10] rather than seconds. In addition, while there are
some evaluations of fuzzing in pedagogical contexts (e.g., as
a game [47]), we are unaware of any work evaluating fuzzing
quality for novice input repairs. We view a more thorough
evaluation of fuzz testing in this context as future work.

C. Intelligent tutoring systems

There exists a large body of work investigating and evaluat-
ing intelligent tutoring systems for learning programming [4],
[9], [20], [21], [25], [37], [44]. These systems target a wide
range of programming languages and experience levels. Many

10

of these systems provide data-driven source code fixes to
serve as general hints for learning [20], [25], [37]. For ex-
ample, Hartmann et al. use crowdsourcing to provide selected
solutions to error messages [20]. Others, such as Singh et
al., take advantage of reference implementation to provide
more specific feedback [44]. Others also use static analysis
or constraint solving to provide state based hints [18], [21].

In approaches similar to our own, Lazar et al. provide hints
using common student edits [25] and Berges et al. characterize
common novice error messages [6]. Both, however, focus
solely on source-level errors while we focus on input-related
errors. To the best of our knowledge, we are the first paper to
either classify or repair common novice input-related errors.

D. Input Grammar Generation

While InFix uses randomization to generate input repairs, it
only generates a single fix. We hypothesize that automatically
synthesizing input grammars for student programs could result
in richer information for providing hints. Synthesizing generic
input grammars remains a challenging task. However, there has
been some recent work in this area [5], [17], [22]. For example,
Bastani et al. develop an algorithm for synthesizing context-
free input grammars [5]. Unfortunately, our characterization
of novice input structures in Section IV found that many are
actually context-sensitive. Automatically generating context-
sensitive input grammars remains an area for future work.

IX. CONCLUSION

This paper presents InFix, a randomized template-based
approach for automatically fixing erroneous program inputs
for novice programmers. InFix repairs input data rather than
source code, requires no test cases, and requires no special
annotations. We take advantage of novice inputs patterns that
we characterized in an observational study to automatically
create helpful, high quality input repairs. InFix iteratively ap-
plies prioritized error-based templates and random mutations.

We evaluate on 25,995 unique input-related scenarios from
over four years of data. Our results generalize and scale;
compared to previous work, we consider an order of magnitude
more unique programs. Overall, InFix repaired 94.5% of
input errors. The majority were repaired in under a second,
facilitating real-time repairs. We also present the results of a
human study with 97 participants. InFix produces high quality
repairs: humans judged the output of InFix to be equally
helpful and within 4% of the quality of human-generated
repairs. Insensitive to expected resource parameters, InFix is
usable even for environments with tight resource budgets.

ACKNOWLEDGMENTS

We acknowledge the partial support of the NSF (CCF
1908633, CCF 1763674) and the Air Force (FA8750-19-2-
0006, FA8750-19-1-0501). We also thank the other members
of the WRG Lab for their willingness to answer questions.
In particular, we thank Kevin Angstadt for sharing his code
from a previous human study website and Fee Christoph who
provided additional annotations for our evaluation. Finally, we

extend our gratitude to Philip Guo who was generous enough
to share the Python Tutor data.

REFERENCES

[1] U. Z. Ahmed, P. Kumar, A. Karkare, P. Kar, and S. Gulwani. Compila-
tion error repair: for the student programs, from the student programs. In
International Conference on Software Engineering, pages 78–87, 2018.

[2] M. Alkhalaf, A. Aydin, and T. Bultan. Semantic differential repair
for input validation and sanitization. In International Symposium on
Software Testing and Analysis, pages 225–236, 2014.

[3] P. Ammann and J. Offutt. Introduction to software testing. Cambridge
University Press, 2008.

[4] T. Barnes and J. C. Stamper. Toward automatic hint generation for
logic proof tutoring using historical student data. In Intelligent Tutoring
Systems, volume 5091, pages 373–382, 2008.

[5] O. Bastani, R. Sharma, A. Aiken, and P. Liang. Synthesizing program
input grammars. In Programming Language Design and Implementation,
pages 95–110, 2017.

[6] M. Berges, M. Striewe, P. Shah, M. Goedicke, and P. Hubwieser.
Towards deriving programming competencies from student errors. In
International Conference on Learning and Teaching in Computing,
pages 19–23, 2016.

[7] G. Birch, B. Fischer, and M. Poppleton. Using fast model-based
fault localisation to aid students in self-guided program repair and to
improve assessment. In Innovation and Technology in Computer Science
Education, pages 168–173, 2016.

[8] C. J. Bonk, M. M. Lee, X. Kou, S. Xu, and F. Sheu. Understanding
the self-directed online learning preferences, goals, achievements, and
challenges of MIT opencourseware subscribers. Educational Technology
& Society, 18(2):349–365, 2015.

[9] C. J. Butz, S. Hua, and R. B. Maguire. A web-based bayesian intelligent
tutoring system for computer programming. Web Intelligence and Agent
Systems, 4(1):77–97, 2006.

[10] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: automatically generating inputs of death. ACM Trans. Inf. Syst.
Secur., 12(2):10:1–10:38, 2008.

[11] P. Denny, A. Luxton-Reilly, and D. Carpenter. Enhancing syntax error
messages appears ineffectual. In Innovation and Technology in Computer
Science Education, pages 273–278, 2014.

[12] J. S. Downs, M. B. Holbrook, S. Sheng, and L. F. Cranor. Are your
participants gaming the system?: screening Mechanical Turk workers.
In Human Factors in Computing Systems, pages 2399–2402, 2010.

[13] S. Dynarski. Online courses are harming the students who need
the most help. In https://www.nytimes.com/2018/01/19/business/
online-courses-are-harming-the-students-who-need-the-most-help.
html, 2018.

[14] Z. P. Fry and W. Weimer. A human study of fault localization accuracy.
In International Conference on Software Maintenance, pages 1–10. IEEE
Computer Society, 2010.

[15] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated
random testing. In Programming Language Design and Implementation,
pages 213–223, 2005.

[16] P. Godefroid, M. Y. Levin, and D. A. Molnar. SAGE: whitebox fuzzing
for security testing. Commun. ACM, 55(3):40–44, 2012.

[17] R. Gopinath, B. Mathis, M. Höschele, A. Kampmann, and A. Zeller.
Sample-free learning of input grammars for comprehensive software
fuzzing. CoRR, abs/1810.08289, 2018.

[18] P. J. Guo. Online Python Tutor: embeddable web-based program
visualization for CS education. In Symposium on Computer Science
Education, pages 579–584, 2013.

[19] R. Gupta, S. Pal, A. Kanade, and S. K. Shevade. DeepFix: Fixing
common C language errors by deep learning. In Conference on Artificial
Intelligence, pages 1345–1351, 2017.

[20] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer. What
would other programmers do: suggesting solutions to error messages.
In Human Factors in Computing Systems, pages 1019–1028, 2010.

[21] J. Holland, A. Mitrovic, and B. Martin. J-LATTE: a constraint-based
tutor for Java. In International Conference on Computers in Education,
pages 1–5, 2009.

[22] M. Höschele and A. Zeller. Mining input grammars with AUTOGRAM.
In International Conference on Software Engineering, pages 31–34,
2017.

11

https://www.nytimes.com/2018/01/19/business/online-courses-are-harming-the-students-who-need-the-most-help.html
https://www.nytimes.com/2018/01/19/business/online-courses-are-harming-the-students-who-need-the-most-help.html
https://www.nytimes.com/2018/01/19/business/online-courses-are-harming-the-students-who-need-the-most-help.html

[23] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation
learned from human-written patches. In International Conference on
Software Engineering, pages 802–811, 2013.

[24] A. Kittur, J. V. Nickerson, M. S. Bernstein, E. Gerber, A. D. Shaw,
J. Zimmerman, M. Lease, and J. J. Horton. The future of crowd work.
In Computer Supported Cooperative Work, pages 1301–1318, 2013.

[25] T. Lazar and I. Bratko. Data-driven program synthesis for hint generation
in programming tutors. In Intelligent Tutoring Systems, volume 8474 of
Lecture Notes in Computer Science, pages 306–311, 2014.

[26] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. T. Devanbu,
S. Forrest, and W. Weimer. The ManyBugs and IntroClass benchmarks
for automated repair of C programs. IEEE Trans. Software Eng.,
41(12):1236–1256, 2015.

[27] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. GenProg: A
generic method for automatic software repair. IEEE Trans. Software
Eng., 38(1):54–72, 2012.

[28] F. Long, V. Ganesh, M. Carbin, S. Sidiroglou, and M. C. Rinard.
Automatic input rectification. In International Conference on Software
Engineering, pages 80–90, 2012.

[29] F. Long and M. Rinard. Automatic patch generation by learning correct
code. In Principles of Programming Languages, pages 298–312, 2016.

[30] G. Marceau, K. Fisler, and S. Krishnamurthi. Mind your language: on
novices’ interactions with error messages. In Symposium on New Ideas
in Programming and Reflections on Software, Onward!, pages 3–18,
2011.

[31] P. D. Marinescu and C. Cadar. KATCH: High-coverage testing of
software patches. In Foundations of Software Engineering, pages 235–
245, 2013.

[32] A. McCarthy. Most popular MITx MOOC reaches
1.2 million enrollments. In http://news.mit.edu/2018/
first-mitx-mooc-reaches-enrollment-milestone-0830, 2018.

[33] S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix: scalable multiline
program patch synthesis via symbolic analysis. In International Con-
ference on Software Engineering, pages 691–701, 2016.

[34] D. C. Merrill, B. J. Reiser, S. K. Merrill, and S. Landes. Tutoring:
Guided learning by doing. Cognition and Instruction, 13(3):315–372,
1995.

[35] M. Monperrus. Automatic software repair: A bibliography. ACM
Comput. Surv., 51(1):17:1–17:24, 2018.

[36] S. Parihar, Z. Dadachanji, P. K. Singh, R. Das, A. Karkare, and
A. Bhattacharya. Automatic grading and feedback using program repair
for introductory programming courses. In Innovation and Technology in
Computer Science Education, pages 92–97, 2017.

[37] K. Rivers and K. R. Koedinger. Data-driven hint generation in vast
solution spaces: a self-improving Python programming tutor. I. J.
Artificial Intelligence in Education, 27(1):37–64, 2017.

[38] M. M. T. Rodrigo and R. S. J. de Baker. Coarse-grained detection
of student frustration in an introductory programming course. In
International Workshop on Computing Education Research, pages 75–
80, 2009.

[39] E. M. Schulte, J. DiLorenzo, W. Weimer, and S. Forrest. Automated
repair of binary and assembly programs for cooperating embedded
devices. In Architectural Support for Programming Languages and
Operating Systems, pages 317–328, 2013.

[40] E. L. Seidel, H. Sibghat, K. Chaudhuri, W. Weimer, and R. Jhala. Learn-
ing to blame: localizing novice type errors with data-driven diagnosis.
Proc. ACM on Programming Languages, 1(OOPSLA):60:1–60:27, 2017.

[41] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine
for C. In Foundations of Software Engineering, pages 263–272, 2005.

[42] D. Shah. A product at every price: A review of MOOC
stats and trends in 2017. In https://www.edsurge.com/news/
2018-01-22-a-product-at-every-price-a-review-of-mooc-stats-and-trends-in-2017,
2018.

[43] J. Siegmund, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg. Mea-
suring and modeling programming experience. Empirical Software
Engineering, 19(5):1299–1334, 2014.

[44] R. Singh, S. Gulwani, and A. Solar-Lezama. Automated feedback
generation for introductory programming assignments. In Programming
Language Design and Implementation, pages 15–26, 2013.

[45] N. Tillmann and J. de Halleux. Pex — white box test generation for
.NET. In Tests and Proofs, volume 4966 of Lecture Notes in Computer
Science, pages 134–153, 2008.

[46] N. Tillmann, J. de Halleux, T. Xie, and J. Bishop. Pex4Fun: A web-based
environment for educational gaming via automated test generation. In
International Conference on Automated Software, pages 730–733, 2013.

[47] N. Tillmann, J. de Halleux, T. Xie, and J. Bishop. Constructing coding
duels in Pex4Fun and code hunt. In International Symposium on
Software Testing and Analysis, pages 445–448, 2014.

[48] M. Wall. How long will you wait for a shopping website to load. In
https://www.bbc.com/news/business-37100091, 2016.

[49] C. Watson, F. W. B. Li, and J. L. Godwin. BlueFix: Using crowd-
sourced feedback to support programming students in error diagnosis
and repair. In International Conference on Advances in Web-Based
Learning, volume 7558 of Lecture Notes in Computer Science, pages
228–239, 2012.

[50] J. Yi, U. Z. Ahmed, A. Karkare, S. H. Tan, and A. Roychoudhury.
A feasibility study of using automated program repair for introductory
programming assignments. In Foundations of Software Engineering,
pages 740–751, 2017.

[51] A. Zeller. Yesterday, my program worked. Today, it does not. Why? In
Foundations of Software Engineering, pages 253–267, 1999.

12

http://news.mit.edu/2018/first-mitx-mooc-reaches-enrollment-milestone-0830
http://news.mit.edu/2018/first-mitx-mooc-reaches-enrollment-milestone-0830
https://www.edsurge.com/news/2018-01-22-a-product-at-every-price-a-review-of-mooc-stats-and-trends-in-2017
https://www.edsurge.com/news/2018-01-22-a-product-at-every-price-a-review-of-mooc-stats-and-trends-in-2017
https://www.bbc.com/news/business-37100091

	Introduction
	Motivating Examples
	InFix Algorithm
	InFix Algorithm Architecture
	Template Selection
	Parallelizing InFix

	Characterization of Novice Python Input Errors
	Erroneous Input-Related Scenarios: Quantitative Analysis
	Erroneous Input-Related Scenarios: Qualitative Analysis

	Specializing InFix to Python
	Error Message Templates
	Mutation Templates

	Evaluation
	Research Questions
	Benchmark 1: Python Tutor Data Set
	Benchmark 2: Repair Quality Human Study
	RQ1: How Effective is InFix?
	RQ2: Validating InFix's Design Assumptions
	RQ3: InFix Parameter Sensitivity
	RQ4: What is the Quality of InFix's Repairs?
	RQ5: The Effect of Programmer Expertise
	Evaluation Summary

	Threats to Validity
	Related Work
	Pedagogical Automatic Program Repair
	Automatic Input Rectification, Sanitization or Fuzzing
	Intelligent tutoring systems
	Input Grammar Generation

	Conclusion
	References

