Minimum-Energy Cooperative Routing in Wireless Networks with Channel Variations

Mostafa Dehghan†, Majid Ghaderi‡ and Dennis L. Goeckel†

Abstract

This paper considers the problem of finding minimum-energy cooperative routes in a wireless network with variable wireless channels. We assume that each node in the network is equipped with a single omnidirectional antenna and, motivated by the large body of physical layer research indicating its potential utility, that multiple nodes are able to coordinate their transmissions at the physical layer in order to take advantage of spatial diversity. Such coordination, however, is intrinsically intertwined with routing decisions, thus motivating the work. We first formulate the energy cost of forming a cooperative link between two nodes based on a two-stage transmission strategy assuming that only statistical knowledge about channels is available. Utilizing the link cost formulation, we show that optimal static routes in a network can be computed by running Dijkstra’s algorithm over an extended network graph created by cooperative links. However, due to the variability of wireless channels, we argue that a many-to-one cooperation model in static routing is suboptimal. Hence, we develop an opportunistic routing algorithm based on many-to-many cooperation, and show that optimal routes in a network can be computed by a stochastic version of the Bellman-Ford algorithm. We use static and opportunistic optimal algorithms as baselines to develop heuristic link selection algorithms that are energy efficient while being computationally simpler than the optimal algorithms. We simulate our algorithms and show that while optimal cooperation and link selection can reduce energy consumption by almost an order of magnitude compared to non-cooperative approaches, our simple heuristics achieve similar energy savings while being computationally efficient as well.

Index Terms

Cooperative communication, minimum energy routing, variable wireless channels.

†Department of Electrical and Computer Engineering, University of Massachusetts Amherst,
Emails: {mdehghan, goeckel}@ece.umass.edu
‡Department of Computer Science, University of Calgary, Email: mghaderi@ucalgary.ca
I. Introduction

Energy efficient communication is a fundamental problem in wireless networks. First, in a wireless network, excessive transmission energy leads to increased interference in the network resulting in decreased network throughput. Second, in wireless ad hoc and sensor networks, which are typically battery powered, inefficient use of energy causes rapid depletion of batteries resulting in a disconnected network.

Over the past several years, this problem has been studied extensively at different layers of the protocol stack, notably at the network (e.g., [1]) and physical layer (e.g., [2]). At the physical layer, in particular, it has been shown that using multiple antennas at the transmitter or receiver achieves considerable transmission energy savings compared to a single antenna thanks to the spatial diversity inherent in wireless networks [3]. But, in some cases, the use of multiple antennas on a transmitter or receiver may be impractical (e.g., due to small size of sensors) or too costly (e.g., due to costly analog circuitry). In such situations, it has been recently shown that, by allowing cooperation among spatially distributed single-antenna nodes, the so-called cooperative communication [4] can achieve significant energy gains comparable to those achieved by multi-antenna systems [5].

However, although there has been extensive work at the physical layer demonstrating the utility of cooperative communications under metrics such as bit error probability or outage probability, there have been very few works that consider how to incorporate such links into practical networks [6]–[12]. This is a critical shortcoming, since cooperative communication inherently disrupts the normal separation of routing from the physical layer specification. In this work, we formulate energy optimal cooperative routing as a joint optimization of cooperative link formation at the physical layer and route selection at the network layer. Our objective is to characterize the energy gain of cooperative communication in a network with variable wireless channels. This obviously has direct application in practical wireless networks, but also provides a perspective for the research field on the utility of cooperative communication when measured with network-level metrics.

Wireless channels are inherently variable and fluctuate over time due to noise, shadowing, fading, etc. In cooperative communication, a critical issue is the availability of channel state information at the transmitters. If instantaneous channel information including channel phase
is available, then transmitters can cooperatively beamform to a receiver to minimize transmission energy [13]. Using such channel information, optimal link formation and selection can be formulated \textit{deterministically} to compute minimum-energy routes in a network as studied in [7], [9]–[12]. Whereas there have been recent examples of cooperative beamforming [14], the synchronization requirements for such are onerous in a mobile ad hoc network. Moreover, collecting instantaneous channel information at every transmission epoch is challenging when channels fluctuate rapidly, for example due to mobility. Hence, some recent work has instead explored cooperative communication assuming that no channel information is available [6]. When no channel information is available, cooperative links are formed by allocating equal transmission power to cooperative transmitters, effectively reducing the cooperative routing problem to finding the shortest path in a network. While being simpler from the implementation perspective, the cooperative routes computed using this approach are less energy efficient compared to the routes computed by optimal link formation when channel information is available.

Although instantaneous channel information is difficult to obtain in practice, some \textit{partial} information (e.g., probability distribution of the channel fading process) is usually available. Thus, in this work, rather than taking one of the above extreme approaches (\textit{i.e.}, instantaneous channel information or nothing), we assume that the \textit{distribution} of the channel variations is known. Throughout, we will assume that the channel variation is due to multipath fading, although this is not necessary for the algorithm specification. Given the distribution of the channel variation, optimal cooperative link formation is essentially a \textit{stochastic} optimization problem, the objective being minimization of the transmission power with respect to the known fading distribution. We solve this optimization problem for the case of Rayleigh fading (which is widely used in the literature [15] and serves as the worst-case over a broad class of fading distributions), although our analysis can be generalized to other classes of fading models as well.

In our previous work [8], we studied diversity-based cooperative routing with a quite different approach. In particular, in [8], the transmitting set is continuously grown (\textit{i.e.} nodes are added but never removed) until the receiver is able to obtain the message. However, such a cooperation model is considerably restrictive in multflow scenarios, because, as the routing progresses, almost the entire network will cooperate to transmit the same message to the same destination [16]. In the present work, we consider a general two-stage cooperation model (see Section II) that does not suffer from this problem while being more amenable to implementation. As we show,
however, the analysis of the optimal cooperative link formation and selection is significantly more challenging in this model.

We first develop an optimal static routing algorithm by applying Dijkstra’s algorithm to an extended graph of the network formed by cooperative links. However, due to the variability of wireless channels, we argue that the unicast-based many-to-one cooperation model in static routing is suboptimal. To address this issue, we then develop an opportunistic routing algorithm based on anycast many-to-many cooperation, and show that optimal routes in a network can be computed using a stochastic version of the Bellman-Ford algorithm. The optimal routing algorithms we develop are centralized and computationally expensive. Nevertheless, they provide useful upper bounds in characterizing the energy gain that can be obtained from cooperation in fading environments. Moreover, we use optimal algorithms as a baseline to evaluate the performance of (computationally simpler) heuristic algorithms developed in this work and elsewhere [6].

Our main contributions in this paper can be summarized as follows:

1) We formulate the energy cost of forming a cooperative link between two nodes in a fading environment subject to a constraint on link reliability.

2) Utilizing our link cost formulation, we develop static as well as opportunistic routing algorithms to find minimum-energy routes in a network.

3) We develop several heuristic routing algorithms in order to mitigate the complexity of the optimal algorithms, and evaluate their performance using simulations.

The rest of this paper is organized as follows. In Section II, we describe our system model. Section III presents our optimal power allocation and routing formulation. Opportunistic cooperative routing is presented in Section IV. Section V presents several heuristic algorithms. Simulation results are presented in Section VI, and Section VII concludes the paper.

II. SYSTEM MODEL

We consider a wireless network consisting of a set of nodes distributed randomly in an area, where each node has a single omnidirectional antenna. We assume that each node can adjust its transmission power and that multiple nodes can coordinate their transmissions at the physical layer to form a cooperative link. As no beamforming is performed, only rough packet
synchronization is required [17]. We denote the set of the nodes in the network by \mathcal{N}, and assume that there are $N = |\mathcal{N}|$ nodes in the network.

A. Channel Model

Consider a transmitting node t_i, and a receiving node r_j. Let x_i and y_j denote the transmitted and received signals at nodes t_i and r_j, respectively. Without loss of generality, we assume that x_i has unit power and that transmitter t_i is able to control its power p_i, in arbitrarily small steps, up to some limit P_{max}. Let η_j denote the noise and other interferences received at r_j, where η_j is assumed to be a zero mean complex Gaussian random variable with power second moment P_η. Suppressing the time index, the received signal at receiver r_j is then expressed as follows

$$y_j = \sqrt{\frac{P_i}{d_{ij}}} h_{ij} x_i + \eta_j,$$

where d_{ij} is the distance between the transmitting and the receiving nodes t_i and r_j, α is the path-loss exponent, h_{ij} is the complex channel gain between t_i and r_j modeled as $h_{ij} = |h_{ij}| e^{j\theta_{ij}}$, where $|h_{ij}|$ is the channel gain magnitude and θ_{ij} is the phase. We assume a non line-of-sight (LOS) environment, implying that $|h_{ij}|$ has a Rayleigh distribution with unit power, i.e., $\mathbb{E}[|h_{ij}|^2] = 1$.

Let γ_{ij} denote the signal-to-noise-ratio (SNR) at receiver r_j due to transmitter t_i transmitting with power p_i; then

$$\gamma_{ij} = \frac{1}{P_\eta} \frac{p_i}{d_{ij}} |h_{ij}|^2.$$

Since $|h_{ij}|$ is Rayleigh distributed with unit variance, $|h_{ij}|^2$ is exponentially distributed with mean 1. Consequently, γ_{ij} is exponentially distributed with decay rate $\mu_{ij} = P_\eta \frac{d_{ij}}{p_i}$.

B. Cooperation Model

Before we describe the cooperation model considered in this paper, we discuss some of the implementation challenges of cooperative communication in a realistic network. Exploiting the diversity gain of cooperative communication incurs some overhead at different layers of the protocol stack. The formation of the cooperative transmitting sets from individual nodes requires coordination among the nodes at the physical layer. Once the cooperating relays are identified and the coordination is established, the nodes need to be roughly synchronized in
time so that the receiver is able to decode the signal received from multiple transmitters. Also, a mechanism is required to acknowledge the transmitter once the message is received successfully. The traditional RTS-CTS mechanism can be modified and enhanced to address some of these challenges [6]. Addressing these issues complicates the design of cooperative protocols. For a comprehensive discussion about the implementation challenges of cooperative communication and potential solutions we refer the reader to [18] and [19] and the references therein.

In this work, we consider a two-stage cooperation model to send a message from a transmitter \(t_k \) to a receiver \(r_k \) as follows:

- **Stage 1:** \(t_k \) broadcasts the message to its neighborhood with some transmission power \(P_b \).
- **Stage 2:** Every node \(t_i \) \((i \neq k) \) that has successfully decoded the message will join \(t_k \) to form a cooperative transmitting set \(T_k = \{t_1, \ldots, t_m\} \). Transmitting set \(T_k \) cooperatively transmits the message to \(r_k \) using some power allocation vector \(p = (p_1, \ldots, p_m) \).

We use the notation \(\langle T_k, r_k \rangle \) to denote the cooperative link between transmitting set \(T_k \) and receiver \(r_k \). Using the channel model (1), the total received power at \(r_k \) is then given by

\[
\sum_{t_i \in T_k} \left(\frac{|h_{ij}|^2}{d_{ij}^\alpha} \right) p_i,
\]

where \(p_i \) is the transmission power of transmitter \(t_i \in T_k \).

Let \(\gamma_{\text{sum}}^k \) denote the total SNR at receiver \(r_k \) due to \(m \) cooperative transmitters in \(T_k \). We have \(\gamma_{\text{sum}}^k = \sum_{i=1}^m \gamma_{ik} \), which is the summation of \(m \) independent and exponentially distributed random variables \(\gamma_{ik} \) (as derived in (2)). Let \(F_{\gamma_{\text{sum}}^k}(y) \) denote the cumulative distribution function of \(\gamma_{\text{sum}}^k \). The summation of independent and exponentially distributed random variables has a Hypoexponential distribution. Therefore, \(F_{\gamma_{\text{sum}}^k}(y) \) can be expressed as

\[
F_{\gamma_{\text{sum}}^k}(y) = 1 - \Lambda e^{y\Theta_k} \mathbf{1},
\]

where,

\[
\Theta_k = \begin{bmatrix}
-\mu_{1k} & \mu_{1k} & 0 & \ldots & 0 & 0 \\
0 & -\mu_{2k} & \mu_{2k} & \ldots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & \ldots & 0 & -\mu_{(m-1)k} & \mu_{(m-1)k} \\
0 & 0 & \ldots & 0 & 0 & -\mu_{mk}
\end{bmatrix},
\]

and \(\Lambda = [1, 0, \ldots, 0] \). Also, \(\mathbf{1} \) is a column vector of ones of size \(m \), and \(e^A \) denotes the matrix exponential of matrix \(A \).

Let \(\beta \) denote the minimum SNR required at receiver \(r_k \). Assuming optimal coding on a Gaussian channel between the transmitter and receiver, the transmission rate and the signal-to-
noise-ratio are related through the Gaussian channel capacity formula as $\lambda = \log(1 + \beta)$ or $\beta = 2^\lambda - 1$.

Due to fading, the cooperative link $\langle T_k, r_k \rangle$ may not be able to sustain the rate λ, resulting in outage. Let $S(T_k, p, r_k)$ denote the probability that link $\langle T_k, r_k \rangle$ is not in outage for power allocation vector p, i.e., the transmission is successful. We obtain that:

$$S(T_k, p, r_k) = P\{\gamma_k^{\text{sum}} \geq \beta\} = \Lambda e^{\beta \Theta_k}1.$$ (4)

C. Routing Model

A K-hop cooperative route ℓ is a sequence of K links $\{\ell_1, \ldots, \ell_K\}$, where each link $\ell_k = \langle t_k, r_k \rangle$ is formed between a transmitting node t_k and a receiving node r_k, using the two-stage cooperative transmission at the physical layer. The sequence of links ℓ_k connects a source ‘s’ to a destination ‘d’ in a loop-free path. Our objective is to find a path that minimizes end-to-end transmission power to reach the destination.

Definition 1 (Link Cost). The cost of link $\ell_k = \langle t_k, r_k \rangle$ denoted by $C(t_k, r_k)$ is defined as the minimum expected transmission power to deliver a message from t_k to r_k using the two-stage cooperative transmission subject to rate λ and outage probability p_c.

Then, the problem of energy efficient routing can be formulated as follows

$$\min_{\ell \in \mathcal{L}} \sum_{t_k \in \ell} C(t_k, r_k),$$ (5)

where \mathcal{L} denotes the set of all possible paths in the network (any loop-free sequence of nodes from the source to the destination is a potential path in this model).

III. OPTIMAL COOPERATIVE ROUTING

A. Link Cost Formulation

1) Unconstrained Link Cost: Consider link $\langle t_k, r_k \rangle$ formed between nodes t_k and r_k using the two-stage cooperative transmission. Let T_k denote the set of cooperative nodes in Stage 2 of the transmission strategy. Let p denote the power allocation vector to form the cooperative

\footnote{Notations $\langle T_k, r_k \rangle$ and $\langle t_k, r_k \rangle$ are used interchangeably to refer to a cooperative link formed between nodes t_k and r_k using the transmitting set T_k.}
link \(\langle T_k, r_k \rangle \). The unconstrained link cost (i.e., arbitrary \(p_e \) in Definition 1) of cooperative link \(\langle T_k, r_k \rangle \) denoted by \(C(T_k, r_k) \) is given by the following optimization problem:

\[
C(T_k, r_k) = \min_{p \in \mathcal{P}} \frac{\sum_{t_i \in T_k} p_i}{S(T_k, p, r_k)},
\]

(6)

where \(\mathcal{P} \) denotes the set of all feasible power allocation vectors \(p \), where \(p_i \leq P_{\text{max}} \) is the power allocated to transmitter \(t_i \in T_k \).

2) Link Cost under Outage Constraint: The main benefit of cooperative communication is in fading environments where diversity can be used to combat fading. The applications that benefit from cooperative communication typically have a stringent requirement in terms of link reliability (i.e., outage). The link cost formulation in (6), however, does not provide any specific target outage probability, and hence no limit on the number of retransmissions and consequently the link delay. To address this issue, we modify optimization problem (6) to include a constraint on target outage probability as follows. Let \(p_e \) denote the target per-link outage probability that can be tolerated. Then, as defined in Definition 1, the link cost \(C(T_k, r_k) \) under the outage constraint \(p_e \) is the solution to the following constrained optimization problem:

\[
C(T_k, r_k) = \min_{p \in \mathcal{P}} \sum_{t_i \in T_k} p_i \\
\text{s.t.} \quad S(T_k, p, r_k) \geq 1 - p_e.
\]

(7)

To this end, the total transmission cost to form link \(\langle t_k, r_k \rangle \) is the summation of transmission powers in Stage 1 and 2. That is

\[
\text{Total power in the two stages to form } \langle t_k, r_k \rangle = P_b + C(T_k, r_k),
\]

where \(T_k \) is the cooperative transmitting set formed in Stage 1.

Two comments are due regarding the above expression:

1) The total required power is highly dependent on the broadcasting power \(P_b \) used in Stage 1. By increasing \(P_b \), a larger cooperative set \(T_k \) is formed. It can be shown that as the cooperative set gets larger, the transmission power required to form a cooperative link (i.e., \(C(T_k, r_k) \)) decreases [8]. Our goal is to find the optimal value of \(P_b \) that minimizes the total expected transmission power.

2) If instantaneous fading coefficients are available (e.g., a non-fading environment) then for any given \(P_b \) the cooperative set \(T_k \) can be deterministically specified (i.e., with probability
1, it can be decided whether a node has received the message or not). Consequently, the minimum link cost corresponding to optimal P_b can be computed as presented in [10]. However, in a fading environment, where nodes might be in outage, a more complicated formulation is required to enumerate over all possible memberships for T_k.

Let T denote an arbitrary subset of $\mathcal{N} - \{t_k\}$. Let $\mathcal{B}(t_k, P_b, T)$ denote the probability that every node $t_i \in T$ successfully receives a message broadcast by t_k with broadcasting power P_b, and that every other node in the network (except t_k) is in outage. We obtain that

$$\mathcal{B}(t_k, P_b, T) = \prod_{t_i \in T} S(t_k, P_b, t_i) \prod_{t_j \not\in T} (1 - S(t_k, P_b, t_j)).$$ \hspace{1cm} (8)

where, for notational simplicity, $S(t_k, P_b, t_i)$ is used to denote $S(\{t_k\}, [P_b], t_i)$. Using this expression, the link cost $C(t_k, r_k)$ is given by the following optimization problem:

$$C(t_k, r_k) = \min_{P_b \leq P_{\text{max}}} \left\{ P_b + (1 - S(t_k, P_b, r_k)) \times \sum_{T \subseteq \mathcal{N} - \{t_k\}} \mathcal{B}(t_k, P_b, T) \cdot C(T \cup \{t_k\}, r_k) \right\},$$ \hspace{1cm} (9)

where $C(T \cup \{t_k\}, r_k)$ is calculated by (6) or (7).

Note that cooperative transmission is necessary only if receiver r_k fails to receive the message in Stage 1. This is reflected by the term $(1 - S(t_k, P_b, r_k))$ in (9).

B. Minimum Cost Route Selection

We can now model our network as a weighted graph $G = (\mathcal{N}, \mathcal{E}, C)$, where \mathcal{N} is the set of nodes in the network, \mathcal{E} is the set of all possible edges between the nodes, i.e., $\mathcal{E} = \{(t_k, r_k) | t_k, r_k \in \mathcal{N}\}$, and $C = \{C(t_k, r_k) | (t_k, r_k) \in \mathcal{E}\}$ is the set of link costs defined over the edges. The problem of energy efficient routing can now be formulated as the shortest path problem on graph G. Using Dijkstra’s algorithm, the minimum energy path between a source and a destination can be computed in $O(N \log N)$ if the link costs C are known. Although the link costs C are computed once (and can be computed off-line), computing the cost of a link involves enumerating exponential number of cooperative sets T (see (9)). To mitigate this problem, one approach is to reduce the search space for T as discussed in the next subsection.

C. Restricted Cooperation

Nodes that are far away from the transmitter have little chance to receive the message successfully. Hence, practically, they can be ignored when searching for the cooperative set
T as their inclusion only marginally improves the link cost. Specifically, for a given broadcast power P_b, we restrict the search space to those nodes for which the probability of successfully receiving the message is at least $1 - p_c$. Let \tilde{N} denote the set of such nodes. That is

$$\tilde{N} = \{ n_j \in \mathcal{N} | S(t_k, P_b, n_j) \geq 1 - p_c \},$$

which essentially defines a disk around the transmitter t_k with the radius $d(P_b)$ given by

$$d(P_b) = \left(-\frac{\beta}{P_b} \ln (1 - p_c) \right)^{1/\alpha}.$$

Although this restriction does not change the asymptotic order of the routing complexity, it is highly effective in finite networks that are of interest in this paper.

IV. OPPORTUNISTIC COOPERATIVE ROUTING

The analysis presented in Section III assumes that a static routing algorithm is employed in the network. That is, a route (which is essentially a set of intermediate relays) is computed a priori and all messages will be transmitted over the same route. At each intermediate relay, a unicast cooperative link is constructed between a set of transmitters and a specific receiver in a many-to-one manner. When channels are variable (which is typically the case in wireless networks), it has been shown that static routing may not be efficient as it unicasts a message to a pre-determined relay that may currently have a bad channel. To mitigate this problem, the broadcast nature of wireless channels can be explored to determine the best intermediate relay opportunistically after broadcasting a message. To implement this strategy, an opportunistic routing algorithm anycasts messages at intermediate nodes (in a many-to-many manner) and selects the next relay from the set of nodes that have received the message successfully. Similar to [20], our algorithm is essentially a stochastic version of the Bellman-Ford routing algorithm.

In our opportunistic routing, cooperative transmitters anycast a message to a set of potential receivers. Any node in this set that receives successfully may be used as the next relay. We refer to this set as the candidate relay set. Let $R(t_k)$ or simply R_k denote the candidate relay set for transmitter t_k.

Definition 2 (Opportunistic Route). Because of anycasting, messages reach the destination through potentially different routes. An opportunistic route is the union of all possible routes between a source and a destination created by a choice of candidate relays at each intermediate node.
A. Anycast Link Cost

Consider a transmitter t_k and its corresponding candidate relay set R_k (to be specified later). In Stage 1, t_k broadcasts a message with some power P_b. Nodes that successfully receive the message join t_k to form a cooperative transmitting set T_k. In Stage 2, T_k cooperatively anycast the message to the candidate relay set R_k.

Definition 3 (Anycast Link Cost). The anycast cost of link $\ell_k = \langle t_k, R_k \rangle$ denoted by $C(t_k, R_k)$ is defined as the minimum expected transmission power to deliver a message from t_k to any node in R_k using the two-stage cooperative transmission subject to rate λ and outage probability p_e.

Let $C(T_k, R_k)$ denote the minimum power required for cooperative anycast from T_k to R_k. Then, $C(T_k, R_k)$ is given by the following optimization problem:

$$C(T_k, R_k) = \min_{{\mathbf{p}} \in \mathcal{P}} \sum_{{t_i} \in T_k} p_i \quad \text{s.t.} \quad A(T_k, \mathbf{p}, R_k) \geq 1 - p_e,$$

(10)

where $A(T_k, \mathbf{p}, R_k)$ denotes the probability that at least one node in set R_k successfully receives the message and is expressed as

$$A(T_k, \mathbf{p}, R_k) = 1 - \prod_{r_j \in R_k} (1 - S(t_k, \mathbf{p}, r_j)).$$

(11)

Using (10), the anycast link cost $C(t_k, R_k)$ is given by the following optimization problem over broadcasting power P_b:

$$C(t_k, R_k) = \min_{P_b \leq P_{\text{max}}} \left\{ P_b + (1 - A(t_k, P_b, R_k)) \times \sum_{T \subseteq \mathcal{N} - \{t_k\}} B(t_k, P_b, T) \cdot C(T \cup \{t_k\}, R_k) \right\},$$

(12)

where $S(t_k, P_b, T)$ is given by (8), and $A(t_k, P_b, R_k)$ can be computed from (11) by substituting $T_k = \{t_k\}$.

B. Cost of a Trajectory

A trajectory ℓ in an opportunistic route Υ is a possible path that a message can traverse to reach the destination. Hence, a trajectory is a sequence of nodes $\ell = (s, t_1, t_2, \ldots, t_K, d)$ connecting a source node s to the destination d. Each of the nodes in the sequence anycasts to its candidate relay set defined in the opportunistic route Υ. Consequently, the cost of trajectory
\(\ell \) in the opportunistic route \(\Upsilon \) denoted by \(C(\ell|\Upsilon) \) is the sum of the anycast link costs of the nodes in \(\ell \), which is expressed as follows

\[
C(\ell|\Upsilon) = C(s, R_s) + C(t_1, R_1) + \cdots + C(t_K, R_K).
\] (13)

Assuming each trajectory \(\ell \) in \(\Upsilon \) is used with probability \(\mathbb{P}\{\ell\} \), the expected cost for the opportunistic route \(\Upsilon \) is given by

\[
C(\Upsilon) = \sum_{\ell \in \Upsilon} \mathbb{P}\{\ell\} C(\ell|\Upsilon).
\] (14)

C. Optimal Candidate Relay Set

In opportunistic routing, the candidate relay set that minimizes the expected cost to the destination is chosen as the anycast destination. Thus, we need to compute the expected cost of delivering a message to the destination from a given relay set in order to find the best relay set.

Definition 4 (Remaining Path Cost). The remaining path cost \(\mathcal{R}(t_k, R_k) \) with respect to opportunistic route \(\Upsilon \) is the expected remaining cost to reach the destination if the candidate relay set \(R_k \) is chosen by \(t_k \).

\(\mathcal{R}(t_k, R_k) \) is calculated as the weighted sum of costs from each node in \(R_k = \{r_1, \ldots, r_n\} \) to the destination. Let \(D_j \) denote the cost to reach the destination from node \(r_j \) in \(R_k \). In case \(D_j = D \) for every \(r_j \in R_k \), then the remaining cost is simply \(\mathcal{R}(t_k, R_k) = D \). Next, consider the case where \(D_j \)’s are not all equal. Without loss of generality, assume that \(D_1 < D_2 < \cdots < D_n \).

Assuming a cooperative transmitting set \(T_k \), the expected remaining path cost for candidate relay set \(R_k \) denoted by \(\mathcal{R}(T_k, R_k) \) is expressed as

\[
\mathcal{R}(T_k, R_k) = \frac{1}{A(T_k, p, R_k)} \left(S_1 D_1 + \sum_{j=2}^{n} S_j D_j \prod_{i=1}^{j-1} (1 - S_i) \right),
\]

where, \(S_j = S(T_k, p, r_j) \), and \(p \) is obtained by solving the optimization problem in (10). To find the expected remaining cost, we average over all possible cooperative sets \(T_k \) that can be formed by transmitter \(t_k \). Hence, the expected remaining cost from the candidate set \(R_k \) is given by

\[
\mathcal{R}(t_k, R_k) = \sum_{T \subseteq \mathcal{N} - \{t_k\}} B(t_k, P_b, T) \cdot \mathcal{R}(T \cup \{t_k\}, R_k),
\] (15)
where P_b is obtained by solving the optimization problem in (12). Consequently, the cost of the opportunistic routing from node t_k to the destination denoted by D_k is expressed as

$$D_k = \min_{R \subseteq N} [C(t_k, R) + R(t_k, R)],$$

and, the candidate relaying set that solves the above optimization problem is the optimal candidate relay set for the transmitter t_k.

The above equation gives an iterative representation of the minimum expected cost from a node to the destination similar to the familiar Bellman-Ford algorithm. At the h-th iteration, each node t_k updates D_k^h, its cost estimate to the destination. An estimate of the remaining path cost $R^h(t_k, R)$ is also computed using (15). In the next iteration the estimated cost is updated for each node (except the destination d) as follows

$$D_k^{h+1} = \min_{R \subseteq N} [C(t_k, R) + R^h(t_k, R)], \quad \text{for } t_k \neq d.$$

The initial conditions for the iterative algorithm are $D_k^0 = \infty$ for all $t_k \neq d$, and $D_d^h = 0$ for all h. The algorithm terminates when $D_k^h = D_k^{h-1}$ for all t_k.

In this section, we analyzed opportunistic cooperative routing algorithm to minimize the expected path cost by exploiting the broadcast nature of the wireless channel. To compute an opportunistic route between a source and a destination, as well as compute the optimal broadcasting power for the cooperative links, we need to find the optimal candidate relaying set for every transmitter. Moreover, since it is possible that more than one node in the candidate relaying set will receive successfully, it is important to have a metric for choosing a transmitting node to initiate the next cooperative link. While optimal candidate relaying sets are computed by solving the optimization problem in (16), the values of D_k’s are used to determine the next transmitter by selecting the one with minimum D_k.

V. Heuristic Cooperative Routing

As discussed earlier, the optimal routing algorithms developed in Sections III and IV are centralized and have exponential computational complexity. In this section, we use those optimal algorithms as a baseline and modify them using several heuristics in order to develop static routing algorithms that are computationally simpler yet achieve considerable energy efficiency (as shown in our simulations).
A. Probabilistic Cooperation (PC)

Consider a two-stage transmission from the transmitting node t_k to a receiving node r_k. When computing the optimal broadcasting power P_b, $O(2^N)$ potential cooperative transmitting sets are enumerated resulting in an exponential computational complexity. In probabilistic cooperation, instead of computing the optimal P_b, an approximate value is computed in polynomial time.

Let $w(t_i)$ denote the probability that node t_i successfully decodes the broadcast message in Stage 1 of the cooperation. For broadcasting power P_b, $w(t_i)$ is expressed as

$$w(t_i) = e^{-\frac{d_{tk}^2}{P_b \beta}}, \quad \text{for all } t_i \in \mathcal{N} \text{ and } t_i \neq t_k, r_k.$$ \hspace{1cm} (18)

To approximate P_b, PC assumes that node t_i will participate in Stage 2 of the cooperative transmission with probability $w(t_i)$. This results in a probabilistic transmitting set that includes all nodes in the network, each with a certain grade of membership, where $w(t_i)$ denotes the grade of membership of node t_i. In practice, node participation in the cooperative transmission is deterministic, each node either transmits or does not. In this sense, $w(t_i)$ can be considered as the average probability that node t_i participates in the transmitting set over a long time. Note that, in our model, the transmitting node t_k always participates in the cooperative transmission. Therefore, we have $w(t_k) = 1$. On the other hand, the cooperative transmission is performed only if the intended receiver fails to decode the broadcast message, implying that $w(r_k) = 0$.

In the Stage 2 of the cooperative transmission, the signal transmitted by node t_i is scaled by the membership grade of t_i, yielding the following expression for the received signal at r_k

$$y_k = \sum_{t_i \in T_k} w_i \sqrt{\frac{p_i}{d_{ik}^\alpha}} h_{ik} x_i + \eta_k,$$ \hspace{1cm} (19)

where $w_i = w(t_i)$. Thus, γ_{ik}, the SNR at the receiver due to transmitter t_i, is given by

$$\gamma_{ik} = \frac{1}{\eta} w_i^2 \frac{p_i}{d_{ik}^\alpha} |h_{ik}|^2.$$ \hspace{1cm} (20)

Similarly, the total SNR at r_k is expressed as $\gamma_{\sum_k} = \sum_{t_i \in T} \gamma_{ik}$, which is the summation of $N-1$ independent and exponentially distributed random variables with parameters $\lambda_{ik} = 1/\mathbb{E}[\gamma_{ik}]$.

The success probability and expected cost of the cooperative transmission denoted by $S(T_k, p, r_k)$ and $C(T_k, r_k)$, respectively, can now be calculated using (4) and (7). This leads to the following expression for the link cost between t_k and r_k

$$C(t_k, r_k) = \min_{P_b \leq P_{\max}} \left\{ P_b + (1 - S(t_k, P_b, r_k))C(T_k, r_k) \right\}.$$ \hspace{1cm} (21)

Clearly, this heuristic algorithm has polynomial computational complexity in the network size.
B. Equal Power Allocation (EP)

In our model, to form a cooperative link, optimal power allocation is performed as expressed in (7). A simpler, albeit suboptimal, approach is to allocate equal power to every node in the cooperative set [6]. In this subsection, we modify our model to incorporate equal power allocation in our routing algorithm.

1) Computing Success Probability: Consider a cooperative link between nodes \(t_k \) and \(r_k \). We assume that the cooperative transmitting set \(T \) consists of \(M \) nodes that are almost equally distant from the receiving node \(r_k \). To estimate the distance of the nodes in \(T \) from the receiver, we compute the average distance of the nodes to the receiver with respect to the membership grades \(w_i \)'s. This results in the following relation

\[
d_{T_k} = \frac{1}{\sum_{t_i \in T} w_i} \sum_{t_i \in T} w_i d_{ik}.
\] (22)

Following the discussion in Section II, the total SNR at receiver \(r_k \) due to all nodes in the cooperative transmitting set is now expressed as

\[
\gamma_{k}^{\text{sum}} = \frac{1}{\rho} \frac{p}{d_{T_k}^\alpha} \sum_{t_i \in T} |h_{ik}|^2,
\] (23)

which is the summation of \(M \) independent and exponentially distributed random variables with parameter \(\mu_k^{\text{sum}} = (\rho d_{T_k}^\alpha)/p \). Hence, \(\gamma_{k}^{\text{sum}} \) follows an Erlang distribution with parameters \(M \) and \(\mu_k^{\text{sum}} \). Consequently, we obtain the following expression for the success probability of the cooperative transmission under equal power allocation vector \(\mathbf{p} = (p, \ldots, p) \):

\[
S(T, \mathbf{p}, r_k) = e^{-\mu_k^{\text{sum}}} \beta \sum_{n=0}^{M-1} (\mu_k^{\text{sum}} \beta)^n / n!.
\] (24)

2) Cooperative Link Cost: Assuming that nodes are uniformly distributed over the plane with density \(\sigma \), the number of cooperative nodes \(M \) can be approximated as follows.

\[
M \approx 1 + 2\pi \sigma \int_0^{\infty} r e^{-\frac{\alpha}{\beta} r^\beta} dr,
\] (25)

where one is added because the broadcasting node also takes part in the cooperative transmission. For the special case of \(\alpha = 2 \), we obtain that

\[
M \approx 1 + \frac{\sigma \pi}{\beta} P_b.
\] (26)
Next, the minimum expected cost for cooperative transmission between T and r_k is obtained as follows

$$ C(T, r_k) = \min_{p \leq P_{\text{max}}} Mp $$

s.t. $S(T, p, r_k) \geq 1 - p_\epsilon$, \hspace{1cm} (27)

which results in the following optimization problem for the link cost between t_k and r_k:

$$ C(t_k, r_k) = \min_{P_b \leq P_{\text{max}}} \{P_b + C(T, r_k)\}. $$ \hspace{1cm} (28)

3) Cooperative Power Allocation: Using (28), a suitable broadcasting power P_b can be computed. Then, node t_k broadcasts its message using the computed P_b. After the broadcast, the cooperative set T is formed and equal power p is allocated to nodes in T for cooperative transmission. We consider two approaches for allocating power to cooperative transmitters.

- **EP-H1**: Once T is known, the optimal power p can be computed using a technique similar to that of Section III. Note that in this case, the power allocation vector is of the form $p = (p, \ldots, p)$.

- **EP-H2**: Alternatively, we can simply use the value of p that is pre-computed in the optimization problem (28). In this case, a completely distributed routing algorithm can be designed assuming a certain spatial distribution for node locations (e.g., uniform distribution over the plane).

Discussion: Recall that $\gamma_{k_{\text{sum}}}$ is an Erlang random variable with parameters $\mu_{k_{\text{sum}}}$ and M. For simplicity of notation, we drop the index k in the following derivation. We are interested in approximating the success probability (24) in order to derive approximate closed-form expressions for P_b and p for the equal power allocation heuristic. Our derivation is based on Chernoff bounds for a non-negative random variable expressed as follows

$$ \mathbb{P}\{X < a\} \leq \inf_{\theta < 0} e^{-\theta a} M_X(\theta), $$ \hspace{1cm} (29)

where, $M_X(\theta) = \mathbb{E}[e^{\theta X}]$ denotes the moment generating function of the random variable X. Applying the Chernoff bound for Erlang random variables [21], we obtain that

$$ \mathbb{P}\{\gamma < \beta\} \leq e^{-(\beta \mu - M)} \left(\frac{\beta \mu}{M}\right)^M \approx \left(\frac{\beta \mu}{M}\right)^M. $$ \hspace{1cm} (30)

To meet the outage probability p_ϵ, the following condition must be satisfied

$$ \mathbb{P}\{\gamma < \beta\} \approx \left(\frac{\beta \mu}{M}\right)^M \leq p_\epsilon, $$ \hspace{1cm} (31)
which yields the following result for optimal transmission power p:

$$p \geq \frac{P \eta \beta d^\alpha}{\sqrt{P_k}} \geq \frac{P \eta \beta d^\alpha}{M},$$

(32)

where we have simply used the distance between t_k and r_k denoted by d to approximate d_{Tk}. As can be seen, p is inversely proportional to the number of cooperative transmitters. That is, as the set of cooperative transmitters become larger, p becomes smaller. Next, for the case of $\alpha = 2$, we obtain that

$$p \approx \left(\frac{P \eta \beta^2 d^2}{\pi \sigma}\right) P_b^{-1},$$

(33)

which indicates that the optimal value of p decreases by increasing P_b. By substituting the above expression in (28), we obtain that

$$P_b = \min \left\{ \sqrt{\frac{P \eta}{\pi \sigma} \beta d}, P_{\text{max}} \right\}.$$

(34)

Using the above expressions for p and P_b, the broadcasting and relaying power of the transmitters and cooperative nodes can be determined a priori using the knowledge about network nodes location distribution, channel fading process and other network parameters. These transmission powers can be computed either by every node individually or by some designated node and then broadcast to the entire network. Once p and P_b are known in the network, the routing algorithm can be implemented in a fully distributed fashion as every node in the network knows exactly at what power it has to transmit.

Computing the link cost in the EP scheme is independent of the number of nodes in the network, and hence has time complexity $O(1)$ for any network size. Computing the link cost in the PC scheme, on the other hand, has polynomial time complexity in the network size. We will see in the next section that this lower complexity comes with higher energy cost compared to the probabilistic scheme.

VI. PERFORMANCE EVALUATION

In the following subsections, we present our simulation results and compare the performance of different algorithms in terms of energy consumption.

In addition to cooperative routing algorithms, we simulate the optimal non-cooperative routing (ONCR) algorithm as a benchmark to measure energy savings achieved by cooperative routing. ONCR is basically the least-cost non-cooperative route computed using Dijkstra’s algorithm.
In simulating the routing algorithms, if the cooperative transmission in Stage 2 fails to deliver the message (due to outage), we implement retransmissions until the message is successfully delivered to the next hop.

A. Simulation Parameters

We simulate a wireless network, in which nodes are deployed uniformly at random in a square area. We choose two nodes \(s \) and \(d \) located at the lower left and the upper right corners of the network, respectively, and find cooperative and non-cooperative routes from \(s \) to \(d \). We then compute the total amount of energy consumed on each route using different routing algorithms. For simulation purposes, we take path-loss exponent \(\alpha = 2 \), noise power \(P_\eta = 1 \) and SNR threshold \(\beta = 0.65 \), unless otherwise specified. The numbers reported are obtained by averaging over multiple simulation runs with different seeds. The max node power \(P_{\text{max}} \) is set in such a way that the network is connected without cooperation (the absolute value of \(P_{\text{max}} \) does not affect the results).

B. Effect of Broadcast Power on Link Cost

In general, the link cost is a non-monotonic function of \(P_b \). To demonstrate this in our simulations and find the optimal value of \(P_b \), we choose a pair of transmitting and receiving nodes that are far apart in a randomly generated network and compute link cost between them for various broadcasting powers. The network is a \(10 \times 10 \) square, node density is set to \(\sigma = 2 \) (total of 200 nodes in the network), and \(p_\epsilon = 0.2 \) in this experiment.

To show the full extend of the trade-off between \(P_b \) and link cost, in this experiment, we do not consider any limit on the transmission power \(i.e., P_{\text{max}} = \infty \), hence nodes are able to use arbitrary power levels. Fig. 1 illustrates the total transmission power \(i.e., \text{link cost} \) for different values of the broadcasting power. Clearly, there is an optimal \(P_b \) that minimizes the total transmission power. This optimal value can be computed by solving optimization problem (9).

C. Performance of Optimal and Heuristic Algorithms

In this subsection, we investigate the performance of our optimal and heuristic routing algorithms in terms of energy savings achieved compared to the optimal non-cooperative routing algorithm (ONCR) in a network with 50 nodes uniformly distributed on a square of size \(5 \times 5 \).
In the implementation of the routing algorithms, we consider two cases. In the first case, we assume that there is a requirement on link reliability (corresponding to some link delay) given in terms of the success probability. In this case, we use our constrained optimization relations (e.g., (7)) to calculate the link cost. In the second case, we assume that there is no hard requirement on link reliability (hence, no delay target) and use our unconstrained optimization relations (e.g., (6)) to compute the link cost. The link cost computed by constrained optimization relations is subject to a given outage probability p_c. If a transmission fails then retransmissions are required. Thus, the average cost of successfully delivering a message over link $\langle t_k, r_k \rangle$ denoted by $C_s(t_k, r_k)$ is given by $C_s(t_k, r_k) = C(t_k, r_k)/(1 - p_c)$, with the corresponding delay of $(1 - p_c)^{-1}$.

The simulation results for the case of unconstrained routing (i.e., no target link reliability) are summarized in Table I. The table shows the minimum achieved energy costs along with corresponding success probabilities that resulted in the minimum energy cost for different routing algorithms. As can be seen, without any constraint on link reliability, the optimal success probability that results in minimum energy cost might be considerably low. Hence, delivering a message may require multiple rounds of transmissions causing extensive end-to-end delay. Furthermore, the energy savings in this regime compared to ONCR are negligible (and even negative in case of heuristics). Recall that this was expected as cooperative diversity is most effective in networks where retransmissions are not effective (e.g., due to tight delay constraints and/or low mobility, where the fading does not change appreciably between transmissions). Thus, in the remainder of this section, we ignore unconstrained routing and focus instead on constrained routing algorithms.

1) Performance of Optimal Routing Algorithms: Due to the computational complexity of the optimal algorithms, it is challenging to simulate these algorithms in large networks. Instead, in this experiment, we simulated a fairly small network with 12 nodes distributed randomly on a square area of dimension 2×2. Energy cost of the two optimal algorithms is shown in Fig. 2. Interestingly, even on such a small network, the static cooperative algorithm performs about 30% better than the non-cooperative algorithm for larger values of success probability. The improvements in energy saving are even more significant with the opportunistic algorithm, consuming about 65% less transmission energy compared to the non-cooperative algorithm. As we show in Subsection VI-D, the energy savings will dramatically increase for higher success probabilities.
2) **Performance of Heuristic Routing Algorithms:** Fig. 3 illustrates the energy cost of the heuristic algorithms described in Section V. In this experiment, the network size is 5×5 and node density is set to $\sigma = 2$. As shown in the figure, the heuristic routing cooperative algorithms achieve considerable energy savings for higher values of success probability. In particular, PC achieves energy savings of about 10% and 300% for low and high success probabilities. Similarly, equal power allocation heuristics, namely EP-H1 and EP-H2, perform considerably better than the non-cooperative algorithm for higher success probabilities, which is the appropriate region of operation for cooperative communication.

Figure 4 compares the performance of the optimal and heuristic algorithms over the same network used for Figure 2.

To see the performance of the algorithms under distribution other than uniform, we have used the 2-D Gaussian distribution as an example, and the results of the energy costs of the heuristic algorithms are shown in Figure 5. We observe that a similar performance is seen as the uniform distribution.

D. Effect of Network Parameters

Here, we study the effect of various network parameters on the performance of the heuristic routing algorithms. In these experiments, 50 nodes are uniformly distributed on a square of size 5×5. For the basic case, we set path-loss exponent as $\alpha = 2$, and let SNR threshold and node density equal $\beta = 0.65$ and $\sigma = 2$, respectively. In each of the following subsections we change the value of the related parameter accordingly.

1) **Effect of Path-Loss:** The effect of path-loss exponent (α) on energy cost of the heuristic algorithms is presented in Fig. 6. As is expected, the energy cost is increased as the path-loss exponent is increased. Also, the energy gain of the cooperative schemes is observed to be higher for larger path-loss exponents.

2) **Effect of SNR Threshold:** We run the simulations with different values of β, corresponding to different link throughputs. Results from the simulations are shown in Fig. 7. We observe that the energy cost increases linearly with target SNR, but the cooperative schemes increase with a lower rate compared to the non-cooperative scheme.

3) **Effect of Node Density:** Fig. 8 shows the impact of node density on the performance of the routing algorithms. The energy cost in the all schemes decreases as the node density is
increased, and the energy gain of the cooperative algorithms is also decreasing as the node density is increased.

E. Effect of Cooperation on Path Length

In this experiment, we consider a large network with 200 nodes uniformly distributed on a square of size 10×10, and set $p_c = 0.2$. Fig. 9 compares the number of hops required to reach the destination from the source (which are located in opposite corners) using different routing algorithms. As shown in figure, not only our proposed algorithms achieve considerable energy savings compared to non-cooperative routing, but also they form longer-range links resulting in fewer hops to reach the destination. We note that the reduced hop count of cooperative routing algorithms has positive implications for the network throughput.

F. Effect of Cooperation on Network Throughput

In this experiment, we simulate multiple concurrent flows in a network and measure the network throughput achieved with and without cooperation. The network configuration in this experiment is the same as in the previous experiment in Subsection VI-E. For each flow, the source and destination nodes are chosen randomly among the 200 nodes in the network.

At each time-slot, the largest set of non-conflicting cooperative links is scheduled for transmission. A transmission is considered successful only if the Signal-to-Interference-plus-Noise Ratio (SINR) at the receiving node exceeds the threshold β. Since a fixed SINR is considered at every receiver, the rate at which a node receives data over an active link is fixed. We define the *throughput* of the network as the ratio between the average number of scheduled links per time-slot and the average path length (in terms of the number of hops). That is:

$$\text{Throughput} = \frac{\text{Average Number of Scheduled Links}}{\text{Average Path Length}}.$$ \hspace{1cm} (35)

Based on the experiments in Subsection VI-E, cooperation reduces path length which should improve the network throughput. However, as shown in Fig. 10, cooperation also reduces the average number of scheduled links per time-slot which negatively affects the throughput. To see the combined effect of path length and concurrently scheduled links on the throughput, in Fig. 11, we have plotted the average network throughput computed based on (35) for optimal non-cooperative (ONCR) and probabilistic cooperative (PC) routing algorithms. To compute the
throughput achieved under cooperative routing, it has been taken into consideration that each successful transmission requires *two time-slots* due to the two-stage cooperative transmission. It can be seen that the network throughput decreases as the number of concurrent flows increases in the network.

VII. Conclusion

Cooperation among single-antenna nodes in wireless networks has been widely studied as a promising method to improve physical layer metrics. Such cooperation obviates the standard model on which routing algorithms are built, yet there has been little attention paid to understanding how to perform routing when cooperation is employed, particularly in the most pertinent case where partial channel information is available to the network. Here we have formulated the minimum energy cooperative routing problem with partial channel information, and provided both optimal and heuristic algorithms. We have also simulated our algorithms in random wireless networks and studied their performance with respect to various network parameters. Our simulations show that while optimal cooperation and link selection can reduce energy consumption by almost an order of magnitude compared to non-cooperative approaches, our simple heuristics perform reasonably well achieving similar energy savings while being computationally efficient as well.

References

Fig. 1. Link cost as a function of broadcasting power P_b.
Fig. 2. Cost of optimal routing as a function of success probability.
Fig. 3. Cost of heuristic routing as a function of success probability.
Fig. 4. Comparison of optimal and heuristic algorithms.
Fig. 5. Cost of heuristic algorithms under Gaussian node distribution.
Fig. 6. Effect of path-loss exponent (α).
Fig. 7. Effect of target SNR (β).
Fig. 8. Effect of node density (σ).
Fig. 9. Path length (i.e., hop count) of different routing algorithms.
Fig. 10. Average number of concurrently scheduled links per time-slot.
Fig. 11. Average end-to-end throughput with and without cooperation.
Table I
Energy efficiency of unconstrained routing.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Min Cost</th>
<th>Success Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONCR</td>
<td>2.83</td>
<td>0.38</td>
</tr>
<tr>
<td>Static</td>
<td>2.74</td>
<td>0.43</td>
</tr>
<tr>
<td>Opportunistic</td>
<td>2.15</td>
<td>0.54</td>
</tr>
<tr>
<td>EP-H1</td>
<td>3.05</td>
<td>0.53</td>
</tr>
<tr>
<td>EP-H2</td>
<td>4.32</td>
<td>0.51</td>
</tr>
<tr>
<td>PC</td>
<td>2.75</td>
<td>0.48</td>
</tr>
</tbody>
</table>