
More on Reconstructing from Random
Traces: Insertions and Deletions

Sampath Kannan and Andrew McGregor, UPenn

Random Traces

• Transmit a length n binary string t

• Channel introduces errors:

• Delete a bit with probability q1

• Insert a bit with probability q2

• Flip a bit with probability p

• Transmit m times to generate m independent
received strings r1, r2, ..., rm

Previous Work

• Levenshtein ’01:

Combinatorial Channels - eg. how many distinct subsequences
are required to uniquely determine t?

Probabilistic Channels - only treatment of memoryless channels

• Dudik & Shulman ’03:

Combinatorial Channels - how large must k be such that
knowing all length k subsequences (and their multiplicities) is
sufficient to deduce k?

• Batu, Kannan, Khanna & McGregor ’04:

Deletions only...

Our Results

Defn:
A run: …1111111… or …00000000…
An alternating sequence: …01010101010…
A substring is long if its length is greater than nε

p q1 q2 m Comments

Previous
Work

0 0 O(log -1 n) O(log n) Almost all strings

0 0 O(n -1/2-ε) O(1/ε) Long runs approximated

This Work
O(1) O(log -2 n) O(log -2 n) O(log n) Almost all strings

0 O(n -1/2-ε) O(n -1/2-ε) O(1/ε) No long runs and long alternating
sequences approximated

The “Bit-Wise
Majority”Algorithm

The “Bit-wise Alignment”Algorithm

1100000010110010110...
1100000001011010110...
1010000101110101110...
1101000010010101110...
1101001010110100101...
1110101110100101110...r1:

r2:
r3:
r4:
r5:
rm:

• Frugally insert blanks to align the strings

The “Bit-wise Alignment”Algorithm

1100000010110010110...
1100000001011010110...
1010000101110101110...
1101000010010101110...
1101001010110100101...
1110101110100101110...r1:

r2:
r3:
r4:
r5:
rm:

t:

• Frugally insert blanks to align the strings

1

The “Bit-wise Alignment”Algorithm

1100000010110010110...
1100000001011010110...
1*010000101110101110...
1101000010010101110...
1101001010110100101...
1110101110100101110...r1:

r2:
r3:
r4:
r5:
rm:

t:

• Frugally insert blanks to align the strings

11

The “Bit-wise Alignment”Algorithm

1100000010110010110...
1100000001011010110...
1*010000101110101110...
1101000010010101110...
1101001010110100101...
11*10101110100101110...r1:

r2:
r3:
r4:
r5:
rm:

t:

• Frugally insert blanks to align the strings

110

The “Bit-wise Alignment”Algorithm

110*0000010110010110...
110*0000001011010110...
1*010000101110101110...
1101000010010101110...
1101001010110100101...
11*10101110100101110...r1:

r2:
r3:
r4:
r5:
rm:

t:

• Frugally insert blanks to align the strings

1101

The “Bit-wise Alignment”Algorithm

110*0000010110010110...
110*0000001011010110...
1*010000101110101110...
1101000010010101110...
1101001010110100101...
11*10101110100101110...r1:

r2:
r3:
r4:
r5:
rm:

t:

• Frugally insert blanks to align the strings

11010

The “Bit-wise Alignment”Algorithm

110*0000010110010110...
110*0000001011010110...
1*010000101110101110...
1101000010010101110...
1101001010110100101...
11*10*101110100101110...r1:

r2:
r3:
r4:
r5:
rm:

t:

• Frugally insert blanks to align the strings

110100

• Frugally insert blanks to align the strings

• Analysis for a randomly chosen t: alignment of ri with
t can be modeled using random walk

The “Bit-wise Alignment”Algorithm

110*0000010110010110...
110*0000001011010110...
1*010000101110101110...
1101000010010101110...
1101001010110100101...
11*10*101110100101110...r1:

r2:
r3:
r4:
r5:
rm:

t: 110100...

The “Velcro”Algorithm

• Consider the middle kl bits of r1: k possible length l anchors

The “Velcro”Algorithm

r1

l

a1 a2 akai

• Consider the middle kl bits of r1: k possible length l anchors

• For each ai, find the “best” match in other received strings

The “Velcro”Algorithm

r1

l

a1 a2 ak

r2

r3

rm

r3
...

ai

• Consider the middle kl bits of r1: k possible length l anchors

• For each ai, find the “best” match in other received strings

• If ai has a “good” match in all received strings, recurse on
the strings either side of each match

The “Velcro”Algorithm

r2

r3

rm

r3
...

• Consider the middle kl bits of r1: k possible length l anchors

• For each ai, find the “best” match in other received strings

• If ai has a “good” match in all received strings, recurse on
the strings either side of each match

The “Velcro”Algorithm

r2

r3

rm

r3
...

t

Average bit-wise Velco AlgorithmVelco Algorithm

• Defn: Match is good if Hamming distance is less than

• Lemma:

a) One of k anchors has a good match with all received strings
with probability at least

b) If ai has a good match with all received strings then “splitting-
off” at ai is legitimate with probability as least

Analysis
(p − p2 + 1/4)l

1 −

(

mql + m

[

eδ

(1 + δ)1+δ

](2p−2p2)l
)k

1 − kne
−l(1/2−2p+2p2)/4

• Defn: Match is good if Hamming distance is less than

• Lemma:

a) One of k anchors has a good match with all received strings
with probability at least

b) If ai has a good match with all received strings then “splitting-
off” at ai is legitimate with probability as least

Analysis
(p − p2 + 1/4)l

1 −

(

mql + m

[

eδ

(1 + δ)1+δ

](2p−2p2)l
)k

1 − kne
−l(1/2−2p+2p2)/4

Set m = O(log n), l = O(log n), k = O(log n) and q = O(1/log2 n)

> 1 − 1/n2

> 1 − 1/n2

The “Simple but
Incredibly Tedious to
Analyze”Algorithm

The “Simple but...”Algorithm
Promises, promises...

• Deletion and insertion probabilities are q = O(n-1/2-ε) and zero flip probability

• Lemma (Promises): With high probability, if m = O(1)

(P1): In each transmission, the first bit of t was transmitted without error

(P2): Among all transmissions, at most one error occurred in the transmission of any four
consecutive runs

(P3): For all alternating sequence of length l > √n, if an error occurs at the start of the
alternating sequence (in any transmission) then, in all transmissions, there are no errors
during the transmission of the final log n √l bits of the maximal alternating sequence and the
next two bits of the delimiting run

(P4): For all alternating sequence, if an error occurs at the start of the alternating sequence
(in any of the m transmissions) then in all the m transmissions, there are no errors during
the transmission of the final nε (or the rest of the alternating sequence if the length of the
alternating sequence is less than nε) bits of the maximal alternating sequence and the next
two bits of the delimiting run

(P5): For each length √n substring x of t, in the majority of transmissions, x is transmitted
without errors

(P6): For each substring x of t of length > nε, in each transmission, there are fewer than q |x|
log n errors in the transmission of x

• Given the promises we can usually locally correct the errors:

• a

The “Simple but...”Algorithm
Promises, promises...

11101100...r1:
r2:
r3:
r4:
r5:
rm:

11101100...
11111000...
11101100...
11101100...
11101100...

• Given the promises we can usually locally correct the errors:

• a

The “Simple but...”Algorithm
Promises, promises...

11101100...r1:
r2:
r3:
r4:
r5:
rm:

11101100...
111*11000...
11101100...
11101100...
11101100...

• Given the promises we can usually locally correct the errors:

• But not always:

• a

The “Simple but...”Algorithm
Promises, promises...

11101100...r1:
r2:
r3:
r4:
r5:
rm:

11101100...
111*11000...
11101100...
11101100...
11101100...

10101010101...r1:
r2:
r3:
r4:
r5:
rm:

10101010101...
11010101010...
10101010101...
10101010101...
10101010101...

• Given the promises we can usually locally correct the errors:

• But not always:

• a

The “Simple but...”Algorithm
Promises, promises...

11101100...r1:
r2:
r3:
r4:
r5:
rm:

11101100...
111*11000...
11101100...
11101100...
11101100...

10101010101...r1:
r2:
r3:
r4:
r5:
rm:

10101010101...
11010101010...
10101010101...
10101010101...
10101010101...

...101010101101

...101010101101

...110101010110

...101010110101

...101010101101

...101010101101

“Delimitating” Run

Conclusions & Further Work

• What about constant insert/delete probabilities?

p q1 q2 m Comments

Previous
Work

0 0 O(log -1 n) O(log n) Almost all strings

0 0 O(n -1/2-ε) O(1/ε) Long runs approximated

This Work
O(1) O(log -2 n) O(log -2 n) O(log n) Almost all strings

0 O(n -1/2-ε) O(n -1/2-ε) O(1/ε) No long runs and long alternating
sequences approximated

• Thanks.

The “Simple but...”Algorithm
Using the Promises

• Look at length of first run in each received string (wlog it’s a run of 1’s)

• Lemma (Tedious Case Analysis): Let y be the average length of this run and xi
be the length of the run in received string i

• xi = y: No errors have occurred in the i th transmission of this run

• xi = y + 1: Either one “1” was inserted in the ith transmission of this run or
that, on the condition that the next two runs are of length one, one “0” was
deleted from next .

• xi > y +1: One “0” was deleted in the ith transmission of the next run.

• xi = y - 1: Either one “1” was deleted in the ith transmission of this run or
that one “0” was inserted before the last bit of this run was transmitted.

• xi < y -1: One “0” was inserted into this run.

