
More on the Reliability Function of the BSC

Andrew McGregor
University of Pennsylvania

Alexander Barg
DIMACS, Rutgers University

ISIT 2003, Yokohama

Some Definitions

Some Definitions

 Communicating over a binary symmetric
channel with cross-over probability p.

Some Definitions

 Communicating over a binary symmetric
channel with cross-over probability p.

 We use a length n binary code C={x1, x2, …
x|C|} with rate ≥ R ie.

Some Definitions

 Communicating over a binary symmetric
channel with cross-over probability p.

 We use a length n binary code C={x1, x2, …
x|C|} with rate ≥ R ie.

|C|≥2nR

Some Definitions

 Communicating over a binary symmetric
channel with cross-over probability p.

 We use a length n binary code C={x1, x2, …
x|C|} with rate ≥ R ie.

|C|≥2nR

 No matter what code we use there is the
possibility of making errors - for a given rate
of transmission there is some degree of error
that is inherent to the channel itself.

Making Decoding Errors
 Maximum Likelihood Decoding: When we

receive a word y we’ll guess that the sent
codeword is the codeword that lies closest
to it.

 For each codeword x we define the Voronoi
region:

 Let Pe(x) be the probability that, when
codeword x is transmitted, this decoding
procedure leads to an error. Therefore we
have

Making Decoding Errors
 Maximum Likelihood Decoding: When we

receive a word y we’ll guess that the sent
codeword is the codeword that lies closest
to it.

 For each codeword x we define the Voronoi
region:

 Let Pe(x) be the probability that, when
codeword x is transmitted, this decoding
procedure leads to an error. Therefore we
have

€

D(x) = {y∈ {0,1}n : d(x,y) < d(x j ,y)∀x j ∈ C \ x}

Making Decoding Errors
 Maximum Likelihood Decoding: When we

receive a word y we’ll guess that the sent
codeword is the codeword that lies closest
to it.

 For each codeword x we define the Voronoi
region:

 Let Pe(x) be the probability that, when
codeword x is transmitted, this decoding
procedure leads to an error. Therefore we
have

€

D(x) = {y ∈ {0,1}n : d(x, y) < d(x j ,y)∀x j ∈ C \ x}

€

Pe(x) = Px ({0,1}
n \ D(x))

The Reliability Function

 The average error probability of decoding is

 We’re interested in

 We present a new lower bound for this
quantity, or equivalently, an upper bound on
the reliability function or error exponent of the
channel:

The Reliability Function

 The average error probability of decoding is

 We’re interested in

 We present a new lower bound for this
quantity, or equivalently, an upper bound on
the reliability function or error exponent of the
channel:

€

Pe(C) =
1
|C |

Pe (x)
x∈C
∑

The Reliability Function

 The average error probability of decoding is

 We’re interested in

 We present a new lower bound for this
quantity, or equivalently, an upper bound on
the reliability function or error exponent of the
channel:

€

Pe(C) =
1
|C |

Pe (x)
x∈C
∑

!

Pe(R) = min
C:Rate(C)>R

Pe(C)

The Reliability Function

 The average error probability of decoding is

 We’re interested in

 We present a new lower bound for this
quantity, or equivalently, an upper bound on
the reliability function or error exponent of the
channel:

€

Pe(C) =
1
|C |

Pe (x)
x∈C
∑

€

E(R, p) = −lim
n→∞

1
n
log min

C :R (C)>R
Pe (C)[]

!

Pe(R) = min
C :Rate(C)>R

Pe (C)

Bounds on the Error Exponent:
• Combination of Best Lower Bounds:
[Gallager, 63] & [Elias, ‘56]
• Combination of Best Upper Bounds
prior to 1999: [Elias, ‘56] & [McEliece
et al, ‘77]
• Litsyn’s Bound: [Litsyn ‘99]
• Our New Bound

E(R,p)

R

p=0.01

Bounds on the Error Exponent:
• Combination of Best Lower Bounds:
[Gallager, 63] & [Elias, ‘56]
• Combination of Best Upper Bounds
prior to 1999: [Elias, ‘56], [Shannon
et al, ‘67] & [McEliece et al, ‘77]
• Litsyn’s Bound: [Litsyn ‘99]
• Our New Bound

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

E(R,p)

R

p=0.01

Bounds on the Error Exponent:
• Combination of Best Lower Bounds:
[Gallager, 63] & [Elias, ‘56]
• Combination of Best Upper Bounds
prior to 1999: [Elias, ‘56], [Shannon
et al, ‘67] & [McEliece et al, ‘77]
• Litsyn’s Bound: [Litsyn ‘99]
• Our New Bound

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

E(R,p)

R

p=0.01

Bounds on the Error Exponent:
• Combination of Best Lower Bounds:
[Gallager, 63] & [Elias, ‘56]
• Combination of Best Upper Bounds
prior to 1999: [Elias, ‘56], [Shannon
et al, ‘67] & [McEliece et al, ‘77]
• Litsyn’s Bound: [Litsyn ‘99]
• Our New Bound

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

E(R,p)

R

p=0.01

Litsyn’s Distance Distribution Bound

 Define

 Litsyn’s Distance Distribution Bound:
For any code C of rate R there exists a
w such that

Litsyn’s Distance Distribution Bound

 Define

 Litsyn’s Distance Distribution Bound:
For any code C of rate R there exists a
w such that

€

Bw(x) =|{x j : d(x ,x j) = w} |

Litsyn’s Distance Distribution Bound

 Define

 Litsyn’s Distance Distribution Bound:
For any code C of rate R there exists a
w such that

€

Bw(x) =|{ x j : d(x ,x j) = w} |

€

Bw(x) ≥ µ(R,w)

Estimating Pe(x)

x

!

Pe(x) = Px ({0,1} n \ D(x))

Estimating Pe(x)
The Voronoi Region

€

Pe(x) = pd (y,x)(1− p)n−d (y,x)

y∈C : d (y,x j)≤d (y,x) for some x j ∈C
∑

x

Estimating Pe(x)
Use the distance distribution result…

x

w

€

Pe(x) = pd (y,x)(1− p)n−d (y,x)

y∈C : d (y,x j)≤d (y,x) for some x j ∈C
∑

Estimating Pe(x)
Approximating the Voronoi Region…

x

€

Pe(x) ≥ pd (y,x)(1− p)n−d (y,x)

y∈C : d (y,x j)≤d (y,x) for some x j ∈C where d (x,x j)=w
∑

Estimating Pe(x)
Introducing the Xj…

x

€

Pe(x) ≥ Px (X j
j:d (x,x j)=w

U)

For each neighbour
xj define a set Xj
such that

€

y ∈ X j ⇒

d(y, x j) ≤ d(y, x)

Estimating Pe(x)
“Pruning” the Xj…

€

Pe(x) ≥ Px (Yj)
j:d (x,x j)=w
∑

For each neighbour
xj assign a priority nj
at random. Let

€

Yj = X j \ Xk
k:nk >n j

Ux

Estimating Pe(x)
Applying the Reverse Union Bound…

The Reverse Union Bound:

Giving us our final shape of our bound:

Estimating Pe(x)
Applying the Reverse Union Bound…

The Reverse Union Bound:

Giving us our final shape of our bound:

€

Px(Yj) = Px (X j \ Xk)
k:nk >n j

U

≥ Px (X j)(1− Px(Xk | X j)
k:nk >n j

∑)

Estimating Pe(x)
Applying the Reverse Union Bound…

The Reverse Union Bound:

Giving us our final shape of our bound:

!

Pe(x) " Px (X j)(1#
j:d (x,x j)=w

$ Px (Xk | X j)
k:nk >n j

$)

€

Px(Yj) = Px (X j \ Xk)
k:nk >n j

U

≥ Px (X j)(1− Px(Xk | X j)
k:nk >n j

∑)

 Now look across the entire code. Let Xij
and Yij be the sets for the neighbourhood of
codeword xi.

 Therefore we have:

and

where, the amount of “pruning” is

 What we do now depends on the values of
the Kij…

 Now look across the entire code. Let Xij
and Yij be the sets for the neighbourhood of
codeword xi.

 Therefore we have:

and

where, the amount of “pruning” is

 What we do now depends on the values of
the Kij…

!

Pe(xi) " Pi(Yij)
j:d (xi ,x j)=w

#

 Now look across the entire code. Let Xij
and Yij be the sets for the neighbourhood of
codeword xi.

 Therefore we have:

and

where, the amount of “pruning” is

 What we do now depends on the values of
the Kij…

€

P(Yij) ≥ Pi(Xij)(1−Kij)

€

Pe(xi) ≥ Pi(Yij)
j:d (xi ,x j)=w
∑

 Now look across the entire code. Let Xij
and Yij be the sets for the neighbourhood of
codeword xi.

 Therefore we have:

and

where, the amount of “pruning” is

 What we do now depends on the values of
the Kij…

€

P(Yij) ≥ Pi(Xij)(1−Kij)

€

Pe(xi) ≥ Pi(Yij)
j:d (xi ,x j)=w
∑

!

Kij = Pi(Xik | Xij)
k:nik > nij

"

 Consider the set of codewords

 Consider the set of codewords
S={xj : Kij > 1/2 for some i}

 Consider the set of codewords
S={xj : Kij > 1/2 for some i}

 Either this is a “substantially” sized
subcode or it isn’t.

 Consider the set of codewords
S={xj : Kij > 1/2 for some i}

 Either this is a “substantially” sized
subcode or it isn’t.

 Ie, either we had to do a lot of pruning
or we didn’t have to do a lot of pruning.

If S was not substantially sized…

 Just remove codewords in S from the code!
 Then in the remaining code we have for all Yij

Pi(Yij) ≥ Pi(Xij)/2
 Hence, modulo constant factors, the average

error probability satisfies
Pe(C,p) ≥ A(w)µ(w)

 where A(w)= Pi(Xij)

If S was substantially sized…
 Consider

where

 Consider a codeword xj such that Kij>1/2. Then there
exists an l’ such that

Bl’(xj)> 1/(2nB(w,l’))
 The upshot of S being substantial is that we discover a

nuisance level l1, such that
Pe(xj) ≥ A(w)/B(w,l1)

and a substantial number of codewords have the
Bl1

(xj)> 1/B(w,l1)

If S was substantially sized…
 Consider

where

 Consider a codeword xj such that Kij>1/2. Then there
exists an l’ such that

Bl’(xj)> 1/(2nB(w,l’))
 The upshot of S being substantial is that we discover a

nuisance level l1, such that
Pe(xj) ≥ A(w)/B(w,l1)

and a substantial number of codewords have the
Bl1

(xj)> 1/B(w,l1)

€

Kij = Pi(Xik |Xij)
k:nik >nij

∑ = B(w,l)
k:nik >nij ,d (x j ,xk)= l

∑

l= 0

n

∑

If S was substantially sized…
 Consider

where

 Consider a codeword xj such that Kij>1/2. Then there
exists an l’ such that

Bl’(xj)> 1/(2nB(w,l’))
 The upshot of S being substantial is that we discover a

nuisance level l1, such that
Pe(xj) ≥ A(w)/B(w,l1)

and a substantial number of codewords have the
Bl1

(xj)> 1/B(w,l1)

€

Kij = Pi (Xik | Xij)
k:nik >nij

∑ = B(w, l)
k:nik >nij ,d(x j ,xk)= l

∑

l = 0

n

∑

€

B(w,l) = Pi(Xik | Xij) where d(xi,x j) = d(xi,xk) = w, d(x j ,xk) = l

 A priori we don’t know whether we required a
lot or a little pruning. We therefore take the
weaker of the two bounds:

 But if there existed a nuisance level l1 then
we know that for a substantial number
codewords such that

 Hence we can repeat the process with this
new bound on the distribution.

 A priori we don’t know whether we required a
lot or a little pruning. We therefore take the
weaker of the two bounds:

 But if there existed a nuisance level l1 then
we know that for a substantial number
codewords such that

 Hence we can repeat the process with this
new bound on the distribution.

€

Pe(C,p) ≥min A(w)µ(w), A (w)
B(w,l1)[]

 A priori we don’t know whether we required a
lot or a little pruning. We therefore take the
weaker of the two bounds:

 But if there existed a nuisance level l1 then
we know that for a substantial number
codewords such that

 Hence we can repeat the process with this
new bound on the distribution.

€

Pe(C,p) ≥min A(w)µ(w), A(w)
B(w,l1)[]

!

Bl1
(x) "

1
B(w,l1)

Our Bound

 Continuing in this way we eventually get

 Minimizing over l and w gives us our
final bound.

€

Pe(C, p) ≥min A(w)µ(w), A(l)
B(w,l)[]

where 0 ≤ l ≤ w ≤ δLPn

Random Linear Codes

 It can be shown that, with high probability, the
weight distribution of a random linear code
converges to

Bw=exp[n(R+h(w)-1)]
 Using this instead of Litsyn’s expression µ

leads us to believe that the expurgation
bound

E(R,p)≥-δGV(p)/2 log 2p(1-p)
is tight for a random linear code for very low
rates.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

The EndThe End

