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Some Definitions

 Communicating over a binary symmetric
channel with cross-over probability p.

 We use a length n binary code C={x1, x2, …
x|C|} with rate ≥ R ie.

|C|≥2nR

 No matter what code we use there is the
possibility of making errors - for a given rate
of transmission there is some degree of error
that is inherent to the channel itself.
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receive a word y we’ll guess that the sent
codeword is the codeword that lies closest
to it.

 For each codeword x we define the Voronoi
region:

 Let Pe(x) be the probability that, when
codeword x is transmitted, this decoding
procedure leads to an error. Therefore we
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€ 

Pe(x) = Px ({0,1}
n \ D(x))
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The Reliability Function

 The average error probability of decoding is

 We’re interested in

 We present a new lower bound for this
quantity, or equivalently, an upper bound on
the reliability function or error exponent of the
channel:

€ 

Pe(C) =
1
|C |

Pe (x)
x∈C
∑

€ 

E(R, p) = −lim
n→∞

1
n
log min

C :R (C )>R
Pe (C)[ ]

! 

Pe(R) = min
C :Rate(C )>R

Pe (C)



Bounds on the Error Exponent:
• Combination of Best Lower Bounds:
[Gallager, 63] & [Elias, ‘56]
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• Litsyn’s Bound: [Litsyn ‘99]
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 Define

 Litsyn’s Distance Distribution Bound:
For any code C of rate R there exists a
w such that

€ 

Bw(x) =|{ x j : d(x ,x j ) = w} |

€ 

Bw(x) ≥ µ(R,w)
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Estimating Pe(x)
Approximating the Voronoi Region…

x

€ 

Pe(x) ≥ pd (y,x)(1− p)n−d (y,x )

y∈C : d (y,x j )≤d (y,x ) for some x j ∈C where d (x,x j )=w
∑



Estimating Pe(x)
Introducing the Xj…

x

  

€ 

Pe(x) ≥ Px ( X j
j:d (x,x j )=w

U )

For each neighbour
xj define a set Xj
such that

€ 

y ∈ X j ⇒

d(y, x j ) ≤ d(y, x)



Estimating Pe(x)
“Pruning” the Xj…

€ 

Pe(x) ≥ Px (Yj )
j:d (x,x j )=w
∑

For each neighbour
xj assign a priority nj
at random. Let

  

€ 

Yj = X j \ Xk
k:nk >n j

Ux
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 Now look across the entire code. Let Xij
and Yij be the sets for the neighbourhood of
codeword xi.

 Therefore we have:

and

where, the amount of “pruning” is

 What we do now depends on the values of
the Kij…

€ 

P(Yij ) ≥ Pi(Xij )(1−Kij )

€ 

Pe(xi) ≥ Pi(Yij )
j:d (xi ,x j )=w
∑

! 

Kij = Pi(Xik | Xij )
k:nik > nij
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S={xj : Kij > 1/2 for some i}

 Either this is a “substantially” sized
subcode or it isn’t.

 Ie, either we had to do a lot of pruning
or we didn’t have to do a lot of pruning.



If S was not substantially sized…

 Just remove codewords in S from the code!
 Then in the remaining code we have for all Yij

Pi(Yij ) ≥ Pi(Xij )/2
 Hence, modulo constant factors, the average

error probability satisfies
Pe(C,p ) ≥ A(w)µ(w)

 where A(w)= Pi(Xij )
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exists an l’ such that

Bl’(xj)> 1/(2nB(w,l’))
 The upshot of S being substantial is that we discover a

nuisance level l1, such that
Pe(xj) ≥ A(w)/B(w,l1 )

and a substantial number of codewords have the
Bl1
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€ 

B(w,l) = Pi(Xik | Xij ) where d(xi,x j ) = d(xi,xk ) = w,  d(x j ,xk ) = l



 A priori we don’t know whether we required a
lot or a little pruning. We therefore take the
weaker of the two bounds:

 But if there existed a nuisance level l1 then
we know that for a substantial number
codewords such that

 Hence we can repeat the process with this
new bound on the distribution.
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 Hence we can repeat the process with this
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Bl1
(x) "

1
B(w,l1)



Our Bound

 Continuing in this way we eventually get

 Minimizing over l and w gives us our
final bound.

€ 

Pe(C, p) ≥min A(w)µ(w), A( l )
B(w,l )[ ]

where 0 ≤ l ≤ w ≤ δLPn



Random Linear Codes

 It can be shown that, with high probability, the
weight distribution of a random linear code
converges to

Bw=exp[n(R+h(w)-1)]
 Using this instead of Litsyn’s expression µ

leads us to believe that the expurgation
bound

E(R,p)≥-δGV(p)/2 log 2p(1-p)
is tight for a random linear code for very low
rates.
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