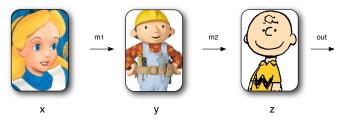
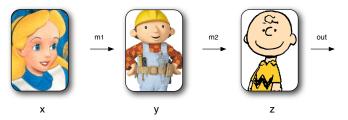
Data Streams & Communication Complexity Lecture 3: Communication Complexity and Lower Bounds

Andrew McGregor, UMass Amherst

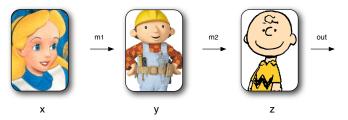
► Three friends Alice, Bob, and Charlie each have some information x, y, z and Charlie wants to compute some function P(x, y, z).



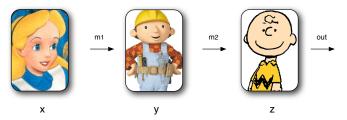
▶ To help Charlie, Alice sends a message *m*₁ to Bob, and then Bob sends a message *m*₂ to Charlie.



- ► To help Charlie, Alice sends a message m₁ to Bob, and then Bob sends a message m₂ to Charlie.
- ► Question: How large must the total length of the messages be for Charlie to evaluate P(x, y, z) correctly?

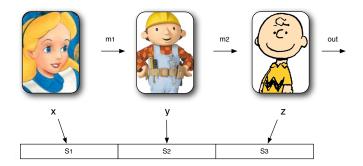


- ► To help Charlie, Alice sends a message m₁ to Bob, and then Bob sends a message m₂ to Charlie.
- *Question:* How large must the total length of the messages be for Charlie to evaluate P(x, y, z) correctly?
 - Deterministic: $m_1(x)$, $m_2(m_1, y)$, $out(m_2, z) = P(x, y, z)$

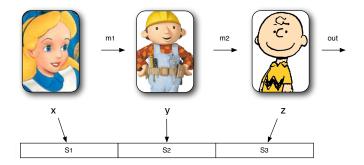


- ► To help Charlie, Alice sends a message m₁ to Bob, and then Bob sends a message m₂ to Charlie.
- Question: How large must the total length of the messages be for Charlie to evaluate P(x, y, z) correctly?
 - Deterministic: $m_1(x)$, $m_2(m_1, y)$, $out(m_2, z) = P(x, y, z)$
 - ▶ Random: $m_1(x, r)$, $m_2(m_1, y, r)$, $out(m_2, z, r)$ where r is public random string. Require $\mathbb{P}_r[out(m_2, z, r) = P(x, y, z)] \ge 9/10$.

▶ Let Q be some stream problem. Suppose there's a reduction $x \to S_1$, $y \to S_2$, $z \to S_3$ such that knowing $Q(S_1 \circ S_2 \circ S_3)$ solves P(x, y, z).

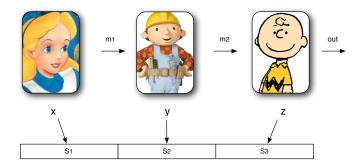


▶ Let Q be some stream problem. Suppose there's a reduction $x \to S_1$, $y \to S_2$, $z \to S_3$ such that knowing $Q(S_1 \circ S_2 \circ S_3)$ solves P(x, y, z).



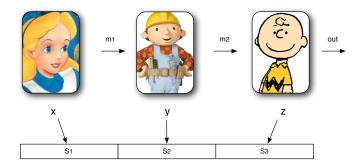
• An s-bit stream algorithm \mathcal{A} for Q yields 2s-bit protocol for P:

▶ Let Q be some stream problem. Suppose there's a reduction $x \to S_1$, $y \to S_2$, $z \to S_3$ such that knowing $Q(S_1 \circ S_2 \circ S_3)$ solves P(x, y, z).



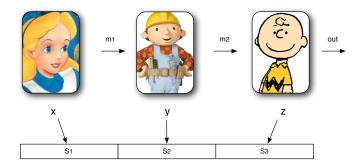
An s-bit stream algorithm A for Q yields 2s-bit protocol for P: Alice runs A of S₁;

▶ Let Q be some stream problem. Suppose there's a reduction $x \to S_1$, $y \to S_2$, $z \to S_3$ such that knowing $Q(S_1 \circ S_2 \circ S_3)$ solves P(x, y, z).



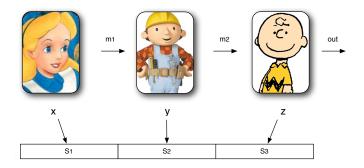
An s-bit stream algorithm A for Q yields 2s-bit protocol for P: Alice runs A of S₁; sends memory state to Bob;

Let Q be some stream problem. Suppose there's a reduction x → S₁, y → S₂, z → S₃ such that knowing Q(S₁ ∘ S₂ ∘ S₃) solves P(x, y, z).



► An s-bit stream algorithm A for Q yields 2s-bit protocol for P: Alice runs A of S₁; sends memory state to Bob; Bob instantiates A with state and runs it on S₂;

Let Q be some stream problem. Suppose there's a reduction x → S₁, y → S₂, z → S₃ such that knowing Q(S₁ ∘ S₂ ∘ S₃) solves P(x, y, z).



An s-bit stream algorithm A for Q yields 2s-bit protocol for P: Alice runs A of S₁; sends memory state to Bob; Bob instantiates A with state and runs it on S₂; sends state to Charlie who finishes running A on S₃ and infers P(x, y, z) from Q(S₁ ∘ S₂ ∘ S₃).

Communication Lower Bounds imply Stream Lower Bounds

► Had there been t players, the s-bit stream algorithm for Q would have lead to a (t - 1)s bit protocol P.

Communication Lower Bounds imply Stream Lower Bounds

- ► Had there been t players, the s-bit stream algorithm for Q would have lead to a (t - 1)s bit protocol P.
- ► Hence, a lower bound of L on the communication required for P implies s ≥ L/(t − 1) bits of space are required to solve Q.

Outline of Lecture

Classic Problems and Reductions

Information Statistics Approach

Hamming Approximation

Outline

Classic Problems and Reductions

Information Statistics Approach

Hamming Approximation

• Consider a binary string $x \in \{0,1\}^n$ and $j \in [n]$, e.g.,

$$x = (\begin{array}{ccccccc} 0 & 1 & 0 & 1 & 1 & 0 \end{array})$$
 and $j = 3$

and define $INDEX(x, j) = x_j$

• Consider a binary string $x \in \{0,1\}^n$ and $j \in [n]$, e.g.,

$$x = (0 \ 1 \ 0 \ 1 \ 1 \ 0)$$
 and $j = 3$

and define $INDEX(x, j) = x_j$

Suppose Alice knows x and Bob knows j.

• Consider a binary string $x \in \{0,1\}^n$ and $j \in [n]$, e.g.,

$$x = (0 \ 1 \ 0 \ 1 \ 1 \ 0)$$
 and $j = 3$

and define $INDEX(x, j) = x_j$

- Suppose Alice knows x and Bob knows j.
- ► How many bits need to be sent by Alice for Bob to determine INDEX(x, j) with probability 9/10?

• Consider a binary string $x \in \{0,1\}^n$ and $j \in [n]$, e.g.,

$$x = (0 \ 1 \ 0 \ 1 \ 1 \ 0)$$
 and $j = 3$

and define $INDEX(x, j) = x_j$

- Suppose Alice knows x and Bob knows j.
- How many bits need to be sent by Alice for Bob to determine INDEX(x, j) with probability 9/10? Ω(n)

• Thm: Any algorithm that returns the exact median of length 2n - 1 stream requires $\Omega(n)$ memory.

- Thm: Any algorithm that returns the exact median of length 2n 1 stream requires $\Omega(n)$ memory.
- ▶ Reduction from Index: On input $x \in \{0,1\}^n$, Alice generates $S_1 = \{2i + x_i : i \in [n]\}$. On input $j \in [n]$, Bob generates $S_2 = \{n j \text{ copies of } 0 \text{ and } j 1 \text{ copies of } 2n + 2\}$. E.g.,

- Thm: Any algorithm that returns the exact median of length 2n 1 stream requires $\Omega(n)$ memory.
- ▶ Reduction from Index: On input $x \in \{0,1\}^n$, Alice generates $S_1 = \{2i + x_i : i \in [n]\}$. On input $j \in [n]$, Bob generates $S_2 = \{n j \text{ copies of } 0 \text{ and } j 1 \text{ copies of } 2n + 2\}$. E.g.,

$$x = \left(egin{array}{cccccccc} 0 & 1 & 0 & 1 & 1 & 0 \end{array}
ight) \
ightarrow \ \{2,5,6,9,11,12\} \ j = 3 \
ightarrow \ \{0,0,0,14,14\}$$

▶ Then median $(S_1 \cup S_2) = 2j + x_j$ and this determines INDEX(x, j).

- ► Thm: Any algorithm that returns the exact median of length 2n 1 stream requires $\Omega(n)$ memory.
- ▶ *Reduction from Index:* On input $x \in \{0, 1\}^n$, Alice generates $S_1 = \{2i + x_i : i \in [n]\}$. On input $j \in [n]$, Bob generates $S_2 = \{n j \text{ copies of } 0 \text{ and } j 1 \text{ copies of } 2n + 2\}$. E.g.,

$$x = \left(egin{array}{cccccccc} 0 & 1 & 0 & 1 & 1 & 0 \end{array}
ight) \
ightarrow \ \{2,5,6,9,11,12\} \ j = 3 \
ightarrow \ \{0,0,0,14,14\}$$

- Then median $(S_1 \cup S_2) = 2j + x_j$ and this determines INDEX(x, j).
- ► An *s*-space algorithm implies an *s*-bit protocol so

$$s = \Omega(n)$$

by the communication complexity of indexing.

• Consider a $t \times n$ matrix where column has weight 0, 1, or t, e.g.,

and let $DISJ_t(C) = 1$ if there is an all 1's column and 0 otherwise.

• Consider a $t \times n$ matrix where column has weight 0, 1, or t, e.g.,

and let DISJ_t(C) = 1 if there is an all 1's column and 0 otherwise.
Consider t players where P_i knows *i*-th row of C.

• Consider a $t \times n$ matrix where column has weight 0, 1, or t, e.g.,

and let $Disj_t(C) = 1$ if there is an all 1's column and 0 otherwise.

- Consider t players where P_i knows i-th row of C.
- How many bits need to be communicated between the players to determine DISJ_t(C)?

• Consider a $t \times n$ matrix where column has weight 0, 1, or t, e.g.,

and let $Disj_t(C) = 1$ if there is an all 1's column and 0 otherwise.

- Consider t players where P_i knows i-th row of C.
- How many bits need to be communicated between the players to determine DISJ_t(C)? Ω(n/t)

• Thm: A 2-approximation algorithm for F_k needs $\Omega(n^{1-2/k})$ space.

- Thm: A 2-approximation algorithm for F_k needs $\Omega(n^{1-2/k})$ space.
- Reduction from Set Disjointness:

- Thm: A 2-approximation algorithm for F_k needs $\Omega(n^{1-2/k})$ space.
- ► Reduction from Set Disjointness: The *i*-th player generates set S_i = {j : C_{ij} = 1}, e.g.,

$$\left(\begin{array}{cccccc} 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{array}\right) \longrightarrow \{4, 1, 4, 5, 2, 4, 4\}$$

- Thm: A 2-approximation algorithm for F_k needs $\Omega(n^{1-2/k})$ space.
- ▶ Reduction from Set Disjointness: The *i*-th player generates set S_i = {j : C_{ij} = 1}, e.g.,

• If all columns have weight 0 or 1: $F_k(S) \le n$

- Thm: A 2-approximation algorithm for F_k needs $\Omega(n^{1-2/k})$ space.
- ▶ Reduction from Set Disjointness: The *i*-th player generates set S_i = {j : C_{ij} = 1}, e.g.,

- If all columns have weight 0 or 1: $F_k(S) \le n$
- If there's column of weight t: $F_k(S) \ge t^k$

- Thm: A 2-approximation algorithm for F_k needs $\Omega(n^{1-2/k})$ space.
- ▶ Reduction from Set Disjointness: The *i*-th player generates set S_i = {j : C_{ij} = 1}, e.g.,

- If all columns have weight 0 or 1: $F_k(S) \le n$
- If there's column of weight t: $F_k(S) \ge t^k$
- If $t > 2^{1/k} n^{1/k}$ then a 2 approximation of $F_k(S)$ distinguishes cases.

- Thm: A 2-approximation algorithm for F_k needs $\Omega(n^{1-2/k})$ space.
- ▶ Reduction from Set Disjointness: The *i*-th player generates set S_i = {j : C_{ij} = 1}, e.g.,

- If all columns have weight 0 or 1: $F_k(S) \le n$
- If there's column of weight t: $F_k(S) \ge t^k$
- If $t > 2^{1/k} n^{1/k}$ then a 2 approximation of $F_k(S)$ distinguishes cases.
- An s-space 2-approximation implies an s(t-1) bit protocol so

$$s = \Omega(n/t^2) = \Omega(n^{1-2/k})$$

by the communication complexity of set-disjointness.

• Consider 2 binary vectors $x, y \in \{0, 1\}^n$, e.g.,

$$x = (0 \ 1 \ 0 \ 1 \ 1 \ 0)$$
$$y = (1 \ 1 \ 0 \ 0 \ 1 \ 1)$$

and define the Hamming distance $\Delta(x, y) = |\{i : x_i \neq y_i\}|.$

• Consider 2 binary vectors $x, y \in \{0, 1\}^n$, e.g.,

$$x = (0 \ 1 \ 0 \ 1 \ 1 \ 0)$$
$$y = (1 \ 1 \ 0 \ 0 \ 1 \ 1)$$

and define the Hamming distance $\Delta(x, y) = |\{i : x_i \neq y_i\}|.$

Suppose Alice knows x and Bob knows y.

• Consider 2 binary vectors $x, y \in \{0, 1\}^n$, e.g.,

$$x = (0 \ 1 \ 0 \ 1 \ 1 \ 0)$$
$$y = (1 \ 1 \ 0 \ 0 \ 1 \ 1)$$

and define the Hamming distance $\Delta(x, y) = |\{i : x_i \neq y_i\}|.$

- Suppose Alice knows x and Bob knows y.
- How many bits need to be communicated to estimate Δ(x, y) up to an additive √n error?

• Consider 2 binary vectors $x, y \in \{0, 1\}^n$, e.g.,

$$x = (0 \ 1 \ 0 \ 1 \ 1 \ 0)$$
$$y = (1 \ 1 \ 0 \ 0 \ 1 \ 1)$$

and define the Hamming distance $\Delta(x, y) = |\{i : x_i \neq y_i\}|.$

- Suppose Alice knows x and Bob knows y.
- How many bits need to be communicated to estimate Δ(x, y) up to an additive √n error? Ω(n) bits.

• Thm: A $(1 + \epsilon)$ -approximation algorithm for F_0 needs $\Omega(\epsilon^{-2})$ space.

- Thm: A $(1 + \epsilon)$ -approximation algorithm for F_0 needs $\Omega(\epsilon^{-2})$ space.
- ▶ Reduction from Hamming Approximation: On input $x, y \in \{0, 1\}^n$, players form $S_1 = \{j : x_j = 1\}$ and $S_2 = \{j : y_j = 1\}$, e.g.,

- Thm: A $(1 + \epsilon)$ -approximation algorithm for F_0 needs $\Omega(\epsilon^{-2})$ space.
- ▶ Reduction from Hamming Approximation: On input $x, y \in \{0, 1\}^n$, players form $S_1 = \{j : x_j = 1\}$ and $S_2 = \{j : y_j = 1\}$, e.g.,

• Note that $2F_0(S) = |x| + |y| + \Delta(x, y)$.

- Thm: A $(1 + \epsilon)$ -approximation algorithm for F_0 needs $\Omega(\epsilon^{-2})$ space.
- ▶ Reduction from Hamming Approximation: On input $x, y \in \{0, 1\}^n$, players form $S_1 = \{j : x_j = 1\}$ and $S_2 = \{j : y_j = 1\}$, e.g.,

- Note that $2F_0(S) = |x| + |y| + \Delta(x, y)$.
- We may assume |x| and |y| are known Bob. Hence, a (1 + ϵ) approximation of F₀ yields an additive approximation to Δ(x, y) of

 $\epsilon(|x|+|y|+\Delta(x,y))/2 \le n\epsilon$

- Thm: A $(1 + \epsilon)$ -approximation algorithm for F_0 needs $\Omega(\epsilon^{-2})$ space.
- ▶ Reduction from Hamming Approximation: On input $x, y \in \{0, 1\}^n$, players form $S_1 = \{j : x_j = 1\}$ and $S_2 = \{j : y_j = 1\}$, e.g.,

- Note that $2F_0(S) = |x| + |y| + \Delta(x, y)$.
- We may assume |x| and |y| are known Bob. Hence, a (1 + ϵ) approximation of F₀ yields an additive approximation to Δ(x, y) of

$$\epsilon(|x|+|y|+\Delta(x,y))/2 \le n\epsilon$$

• This is less than \sqrt{n} if $\epsilon < 1/\sqrt{n}$

- Thm: A $(1 + \epsilon)$ -approximation algorithm for F_0 needs $\Omega(\epsilon^{-2})$ space.
- ▶ Reduction from Hamming Approximation: On input $x, y \in \{0, 1\}^n$, players form $S_1 = \{j : x_j = 1\}$ and $S_2 = \{j : y_j = 1\}$, e.g.,

- Note that $2F_0(S) = |x| + |y| + \Delta(x, y)$.
- We may assume |x| and |y| are known Bob. Hence, a (1 + ϵ) approximation of F₀ yields an additive approximation to Δ(x, y) of

$$\epsilon(|x|+|y|+\Delta(x,y))/2 \le n\epsilon$$

- \blacktriangleright This is less than \sqrt{n} if $\epsilon < 1/\sqrt{n}$
- An s-space $(1 + \epsilon)$ -approximation implies an s bit protocol so

$$s = \Omega(n) = \Omega(1/\epsilon^2)$$

by communication complexity of approximating Hamming distance.

Outline

Classic Problems and Reductions

Information Statistics Approach

Hamming Approximation

Information Statistics Approach

 Information statistics approach is based on analyzing the "information revealed" about the input from the messages.

Information Statistics Approach

- Information statistics approach is based on analyzing the "information revealed" about the input from the messages.
- Useful for proving bounds on complicated functions in terms of simpler problems, e.g., proving a bound on

$$\operatorname{DISJ}_t(M) = \bigvee_{j \in [n]} \operatorname{AND}_t(M_{1,j}, \dots, M_{t,j})$$

by first establishing a bound on AND_t .

Information Statistics Approach

- Information statistics approach is based on analyzing the "information revealed" about the input from the messages.
- Useful for proving bounds on complicated functions in terms of simpler problems, e.g., proving a bound on

$$\operatorname{DISJ}_t(M) = \bigvee_{j \in [n]} \operatorname{AND}_t(M_{1,j}, \dots, M_{t,j})$$

by first establishing a bound on AND_t .

▶ We'll first give some definitions and then run through an example.

• Let X and Y be random variables.

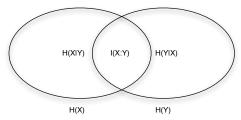
- Let X and Y be random variables.
- Entropy: $H(X) := \sum_{i} -\mathbb{P}[X = i] \log \mathbb{P}[X = i]$

- Let X and Y be random variables.
- Entropy: $H(X) := \sum_{i} -\mathbb{P}[X = i] \lg \mathbb{P}[X = i]$
- Conditional Entropy: $H(X|Y) := \mathbb{E}_{y \sim Y}[H(X|Y = y)]$

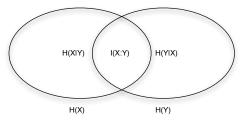
- Let X and Y be random variables.
- Entropy: $H(X) := \sum_{i} -\mathbb{P}[X = i] \log \mathbb{P}[X = i]$
- Conditional Entropy: $H(X|Y) := \mathbb{E}_{y \sim Y}[H(X|Y = y)] \leq H(X)$

- Let X and Y be random variables.
- Entropy: $H(X) := \sum_{i} -\mathbb{P}[X=i] \log \mathbb{P}[X=i]$
- Conditional Entropy: $H(X|Y) := \mathbb{E}_{y \sim Y}[H(X|Y = y)] \leq H(X)$
- Mutual Information: I(X : Y) = H(X) H(X|Y)

- Let X and Y be random variables.
- Entropy: $H(X) := \sum_{i} -\mathbb{P}[X = i] \log \mathbb{P}[X = i]$
- Conditional Entropy: $H(X|Y) := \mathbb{E}_{y \sim Y}[H(X|Y = y)] \leq H(X)$
- Mutual Information: I(X : Y) = H(X) H(X|Y)

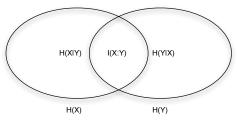


- Let X and Y be random variables.
- Entropy: $H(X) := \sum_{i} -\mathbb{P}[X = i] \log \mathbb{P}[X = i]$
- Conditional Entropy: $H(X|Y) := \mathbb{E}_{y \sim Y}[H(X|Y = y)] \leq H(X)$
- Mutual Information: I(X : Y) = H(X) H(X|Y)



Useful Facts:

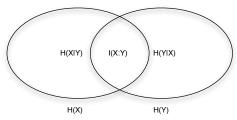
- Let X and Y be random variables.
- Entropy: $H(X) := \sum_{i} -\mathbb{P}[X = i] \log \mathbb{P}[X = i]$
- Conditional Entropy: $H(X|Y) := \mathbb{E}_{y \sim Y}[H(X|Y = y)] \leq H(X)$
- Mutual Information: I(X : Y) = H(X) H(X|Y)



Useful Facts:

• If X takes at most 2^{ℓ} values, then $H(X) \leq \ell$.

- Let X and Y be random variables.
- Entropy: $H(X) := \sum_{i} -\mathbb{P}[X = i] \log \mathbb{P}[X = i]$
- Conditional Entropy: $H(X|Y) := \mathbb{E}_{y \sim Y}[H(X|Y = y)] \le H(X)$
- Mutual Information: I(X : Y) = H(X) H(X|Y)



Useful Facts:

- If X takes at most 2^{ℓ} values, then $H(X) \leq \ell$.
- If X and Y are independent, then $I(XY : Z) \ge I(X : Z) + I(Y : Z)$.

Information Cost

Suppose you have a protocol Π for a two-party communication problem P in which Alice and Bob have random inputs X and Y.

Information Cost

- Suppose you have a protocol Π for a two-party communication problem P in which Alice and Bob have random inputs X and Y.
- ▶ Let *M* be the (random) message sent by Alice and define:

 $cost(\Pi) = max |M|$

and

 $icost(\Pi) = I(M : X)$

Information Cost

- Suppose you have a protocol Π for a two-party communication problem P in which Alice and Bob have random inputs X and Y.
- Let *M* be the (random) message sent by Alice and define:

 $cost(\Pi) = max |M|$

and

$$icost(\Pi) = I(M : X)$$

Note that

$$icost(\Pi) = I(M : X) \le H(M) \le cost(\Pi)$$
.

▶ We'll prove a lower bound on the information cost of INDEX where $X \in_R \{0,1\}^n$ in terms a simpler problem "ECHO."

- ▶ We'll prove a lower bound on the information cost of INDEX where $X \in_R \{0,1\}^n$ in terms a simpler problem "ECHO."
- ECHO: Alice has a single bit B ∈_R {0,1} and Bob wants to output B with probability at least 1 − δ.

- ▶ We'll prove a lower bound on the information cost of INDEX where $X \in_R \{0,1\}^n$ in terms a simpler problem "ECHO."
- ECHO: Alice has a single bit B ∈_R {0,1} and Bob wants to output B with probability at least 1 − δ.
- A protocol Π_{INDEX} for INDEX yields a protocol Π_{ECHO}, for ECHO where *i* is hard-coded into the protocol:

- ▶ We'll prove a lower bound on the information cost of INDEX where $X \in_R \{0,1\}^n$ in terms a simpler problem "ECHO."
- ECHO: Alice has a single bit B ∈_R {0,1} and Bob wants to output B with probability at least 1 − δ.
- A protocol Π_{INDEX} for INDEX yields a protocol Π_{ECHO,i} for ECHO where *i* is hard-coded into the protocol:
 - 1. Given *B*, Alice picks $X_j \in_R \{0,1\}$ for $j \neq i$ and generates:

$$X = (X_1, X_2, \ldots, X_{i-1}, B, X_{i+1}, \ldots, X_n)$$

- ▶ We'll prove a lower bound on the information cost of INDEX where $X \in_R \{0,1\}^n$ in terms a simpler problem "ECHO."
- ECHO: Alice has a single bit B ∈_R {0,1} and Bob wants to output B with probability at least 1 − δ.
- A protocol Π_{INDEX} for INDEX yields a protocol Π_{ECHO,i} for ECHO where *i* is hard-coded into the protocol:
 - 1. Given *B*, Alice picks $X_j \in_R \{0,1\}$ for $j \neq i$ and generates:

$$X = (X_1, X_2, \dots, X_{i-1}, B, X_{i+1}, \dots, X_n)$$

2. She sends the message M she'd have sent in Π_{INDEX} if she'd had X.

- ▶ We'll prove a lower bound on the information cost of INDEX where $X \in_R \{0,1\}^n$ in terms a simpler problem "ECHO."
- ECHO: Alice has a single bit B ∈_R {0,1} and Bob wants to output B with probability at least 1 − δ.
- A protocol Π_{INDEX} for INDEX yields a protocol Π_{ECHO,i} for ECHO where *i* is hard-coded into the protocol:
 - 1. Given *B*, Alice picks $X_j \in_R \{0,1\}$ for $j \neq i$ and generates:

$$X = (X_1, X_2, \ldots, X_{i-1}, B, X_{i+1}, \ldots, X_n)$$

- 2. She sends the message M she'd have sent in Π_{INDEX} if she'd had X.
- 3. Bob receives *M* and outputs the value he'd have returned in Π_{INDEX} had his input been *i*.

- ▶ We'll prove a lower bound on the information cost of INDEX where $X \in_R \{0,1\}^n$ in terms a simpler problem "ECHO."
- ECHO: Alice has a single bit B ∈_R {0,1} and Bob wants to output B with probability at least 1 − δ.
- A protocol Π_{INDEX} for INDEX yields a protocol Π_{ECHO}, *i* for ECHO where *i* is hard-coded into the protocol:
 - 1. Given *B*, Alice picks $X_j \in_R \{0,1\}$ for $j \neq i$ and generates:

$$X = (X_1, X_2, \ldots, X_{i-1}, B, X_{i+1}, \ldots, X_n)$$

- 2. She sends the message M she'd have sent in Π_{INDEX} if she'd had X.
- 3. Bob receives *M* and outputs the value he'd have returned in Π_{INDEX} had his input been *i*.
- ▶ *Note 1:* If Π_{INDEX} is correct with probability 1δ then $\Pi_{\text{ECHO},i}$ is also correct with probability 1δ .

- ▶ We'll prove a lower bound on the information cost of INDEX where $X \in_R \{0,1\}^n$ in terms a simpler problem "ECHO."
- ECHO: Alice has a single bit B ∈_R {0,1} and Bob wants to output B with probability at least 1 − δ.
- A protocol Π_{INDEX} for INDEX yields a protocol Π_{ECHO,i} for ECHO where *i* is hard-coded into the protocol:
 - 1. Given *B*, Alice picks $X_j \in_R \{0,1\}$ for $j \neq i$ and generates:

$$X = (X_1, X_2, \ldots, X_{i-1}, B, X_{i+1}, \ldots, X_n)$$

- 2. She sends the message M she'd have sent in Π_{INDEX} if she'd had X.
- 3. Bob receives *M* and outputs the value he'd have returned in Π_{INDEX} had his input been *i*.
- ▶ *Note 1:* If Π_{INDEX} is correct with probability 1δ then $\Pi_{\text{ECHO},i}$ is also correct with probability 1δ .
- Note 2: The message in Π_{INDEX} on input X ∈_R {0,1}ⁿ is distributed identically to the message in Π_{ECHO,i} on input B ∈_R {0,1}.

Relating Information Cost of $\ensuremath{\operatorname{INDEX}}$ and $\ensuremath{\operatorname{ECHO}}$

• Since X_1, X_2, \ldots, X_n are independent:

 $cost(\Pi_{\rm INDEX}) \ \geq \ icost(\Pi_{\rm INDEX})$

Relating Information Cost of $\ensuremath{\operatorname{INDEX}}$ and $\ensuremath{\operatorname{ECHO}}$

Since X_1, X_2, \ldots, X_n are independent:

 $\begin{aligned} \mathsf{cost}(\Pi_{\mathrm{INDEX}}) &\geq & \mathsf{icost}(\Pi_{\mathrm{INDEX}}) \\ &= & I(X_1 X_2 \dots X_n : M) \end{aligned}$

• Since X_1, X_2, \ldots, X_n are independent:

$$cost(\Pi_{INDEX}) \geq icost(\Pi_{INDEX})$$

= $I(X_1X_2...X_n:M)$
 $\geq I(X_1:M) + I(X_2:M) + ... + I(X_n:M)$

• Since X_1, X_2, \ldots, X_n are independent:

 $\begin{aligned} \operatorname{cost}(\Pi_{\mathrm{INDEX}}) &\geq \operatorname{icost}(\Pi_{\mathrm{INDEX}}) \\ &= I(X_1 X_2 \dots X_n : M) \\ &\geq I(X_1 : M) + I(X_2 : M) + \dots + I(X_n : M) \\ &= \operatorname{icost}(\Pi_{\mathrm{ECHO},1}) + \operatorname{icost}(\Pi_{\mathrm{ECHO},2}) + \dots + \operatorname{icost}(\Pi_{\mathrm{ECHO},n}) \end{aligned}$

Since X_1, X_2, \ldots, X_n are independent:

$$\begin{aligned} \operatorname{cost}(\Pi_{\mathrm{INDEX}}) &\geq \operatorname{icost}(\Pi_{\mathrm{INDEX}}) \\ &= I(X_1 X_2 \dots X_n : M) \\ &\geq I(X_1 : M) + I(X_2 : M) + \dots + I(X_n : M) \\ &= \operatorname{icost}(\Pi_{\mathrm{ECHO},1}) + \operatorname{icost}(\Pi_{\mathrm{ECHO},2}) + \dots + \operatorname{icost}(\Pi_{\mathrm{ECHO},n}) \end{aligned}$$

 \blacktriangleright By Fano's inequality, solving ${\rm ECHO}$ with probability $> 1-\delta$ requires

$$\mathrm{icost}(\Pi_{\mathrm{ECHO},i}) = H(B) - H(B|M) \geq 1 - H_2(\delta)$$

where $H_2(p) = -p \lg p - (1-p) \lg (1-p)$.

Since X_1, X_2, \ldots, X_n are independent:

$$\begin{aligned} \operatorname{cost}(\Pi_{\mathrm{INDEX}}) &\geq \operatorname{icost}(\Pi_{\mathrm{INDEX}}) \\ &= I(X_1 X_2 \dots X_n : M) \\ &\geq I(X_1 : M) + I(X_2 : M) + \dots + I(X_n : M) \\ &= \operatorname{icost}(\Pi_{\mathrm{ECHO},1}) + \operatorname{icost}(\Pi_{\mathrm{ECHO},2}) + \dots + \operatorname{icost}(\Pi_{\mathrm{ECHO},n}) \end{aligned}$$

 \blacktriangleright By Fano's inequality, solving ${\rm ECHO}$ with probability $> 1-\delta$ requires

$$\mathrm{icost}(\Pi_{\mathrm{ECHO},i}) = H(B) - H(B|M) \geq 1 - H_2(\delta)$$

where $H_2(p) = -p \lg p - (1-p) \lg (1-p)$. • Hence, $cost(\Pi_{INDEX}) \ge (1 - H_2(\delta))n$.

• Express $DISJ_t$ in terms of AND_t where $AND_t(x_1, \ldots, x_t) = \prod_i x_i$:

$$\operatorname{DISJ}_t(C) = \bigvee_{j \in [n]} \operatorname{AND}_t(C_{1,j}, \ldots, C_{t,j})$$

• Express $DISJ_t$ in terms of AND_t where $AND_t(x_1, \ldots, x_t) = \prod_i x_i$:

$$\operatorname{DISJ}_t(C) = \bigvee_{j \in [n]} \operatorname{AND}_t(C_{1,j}, \ldots, C_{t,j})$$

▶ Define input C by $C_{D_j j} \in_R \{0,1\}$ for $D_j \in_R [t]$. All other entries 0.

• Express $DISJ_t$ in terms of AND_t where $AND_t(x_1, \ldots, x_t) = \prod_i x_i$:

$$\operatorname{DISJ}_t(C) = \bigvee_{j \in [n]} \operatorname{AND}_t(C_{1,j}, \ldots, C_{t,j})$$

▶ Define input C by $C_{D_j j} \in_R \{0,1\}$ for $D_j \in_R [t]$. All other entries 0.

▶ Let M = (M₁,..., M_{t-1}) be the messages sent in a t-party protocol and define the information cost of a protocol as:

$$icost(\Pi|D) = I(C:M|D)$$
 where $D = (D_1, \dots, D_n)$.

• Express $DISJ_t$ in terms of AND_t where $AND_t(x_1, \ldots, x_t) = \prod_i x_i$:

$$\operatorname{DISJ}_t(C) = \bigvee_{j \in [n]} \operatorname{AND}_t(C_{1,j}, \ldots, C_{t,j})$$

▶ Define input C by $C_{D_j j} \in_R \{0,1\}$ for $D_j \in_R [t]$. All other entries 0.

▶ Let M = (M₁,..., M_{t-1}) be the messages sent in a t-party protocol and define the information cost of a protocol as:

$$\operatorname{icost}(\Pi|D) = I(C:M|D) \quad ext{ where } \quad D = (D_1,\ldots,D_n) \;.$$

• A protocol for $DISJ_t$ yields *n* different protocols $\Pi_{AND_t,i}$ for AND_t :

$$\mathrm{icost}(\Pi_{\mathrm{DISJ}_t}|D) \geq \sum_{i \in [n]} \mathrm{icost}(\Pi_{\mathrm{AND}_t,i}|D) \;.$$

• Express DISJ_t in terms of AND_t where $\text{AND}_t(x_1, \ldots, x_t) = \prod_i x_i$:

$$\operatorname{DISJ}_t(C) = \bigvee_{j \in [n]} \operatorname{AND}_t(C_{1,j}, \ldots, C_{t,j})$$

▶ Define input C by $C_{D_j j} \in_R \{0,1\}$ for $D_j \in_R [t]$. All other entries 0.

▶ Let M = (M₁,..., M_{t-1}) be the messages sent in a t-party protocol and define the information cost of a protocol as:

$$\mathsf{icost}(\Pi|D) = I(C:M|D) \quad \text{where} \quad D = (D_1,\ldots,D_n) \;.$$

• A protocol for $DISJ_t$ yields *n* different protocols $\Pi_{AND_t,i}$ for AND_t :

$$\mathrm{icost}(\Pi_{\mathrm{DISJ}_t}|D) \geq \sum_{i \in [n]} \mathrm{icost}(\Pi_{\mathrm{AND}_t,i}|D) \;.$$

• Result follows by showing $icost(\Pi_{AND_t,i}|D) = \Omega(1/t)$.

Outline

Classic Problems and Reductions

Information Statistics Approach

Hamming Approximation

Some communication results can be proved via a reduction from other communication results.

Theorem

If Alice and Bob have $x, y \in \{0, 1\}^n$ and Bob wants to determine $\Delta(x, y)$ up to $\pm \sqrt{n}$ with probability 9/10, then Alice must send $\Omega(n)$ bits.

▶ Reduction from INDEX problem: Alice knows z ∈ {0,1}^t and Bob knows j ∈ [t]. Let's assume |z| = t/2 and this is odd.

- ▶ Reduction from INDEX problem: Alice knows z ∈ {0,1}^t and Bob knows j ∈ [t]. Let's assume |z| = t/2 and this is odd.
- ▶ Alice and Bob pick $r \in_R \{-1, 1\}^t$ using public random bits.

- ▶ Reduction from INDEX problem: Alice knows z ∈ {0,1}^t and Bob knows j ∈ [t]. Let's assume |z| = t/2 and this is odd.
- ▶ Alice and Bob pick $r \in_R \{-1, 1\}^t$ using public random bits.
- Alice computes sign(r.z) and Bob computes sign(r_j)

- ▶ Reduction from INDEX problem: Alice knows z ∈ {0,1}^t and Bob knows j ∈ [t]. Let's assume |z| = t/2 and this is odd.
- Alice and Bob pick $r \in_R \{-1, 1\}^t$ using public random bits.
- Alice computes sign(r.z) and Bob computes sign(r_j)

• Lemma: For some constant c > 0,

$$\mathbb{P}\left[\operatorname{sign}(r.z) = \operatorname{sign}(r_j)\right] = \begin{cases} 1/2 & \text{if } z_j = 0\\ 1/2 + c/\sqrt{t} & \text{if } z_j = 1 \end{cases}$$

- ▶ Reduction from INDEX problem: Alice knows z ∈ {0,1}^t and Bob knows j ∈ [t]. Let's assume |z| = t/2 and this is odd.
- Alice and Bob pick $r \in_R \{-1, 1\}^t$ using public random bits.
- Alice computes sign(r.z) and Bob computes sign(r_j)

• Lemma: For some constant c > 0,

$$\mathbb{P}\left[\operatorname{sign}(r.z) = \operatorname{sign}(r_j)
ight] = \left\{egin{array}{cc} 1/2 & ext{if } z_j = 0 \ 1/2 + c/\sqrt{t} & ext{if } z_j = 1 \end{array}
ight.$$

• Repeat
$$n = 25t/c^2$$
 times to construct

$$x_i = I[sign(r.z) = +]$$
 and $y_i = I[sign(r_j) = +]$

- ▶ Reduction from INDEX problem: Alice knows z ∈ {0,1}^t and Bob knows j ∈ [t]. Let's assume |z| = t/2 and this is odd.
- Alice and Bob pick $r \in_R \{-1, 1\}^t$ using public random bits.
- Alice computes sign(r.z) and Bob computes sign(r_j)

• Lemma: For some constant c > 0,

$$\mathbb{P}\left[\operatorname{sign}(r.z) = \operatorname{sign}(r_j)
ight] = \left\{egin{array}{cc} 1/2 & ext{if } z_j = 0 \ 1/2 + c/\sqrt{t} & ext{if } z_j = 1 \end{array}
ight.$$

• Repeat $n = 25t/c^2$ times to construct

$$x_i = I[sign(r.z) = +]$$
 and $y_i = I[sign(r_j) = +]$

Note that

$$z_j = 0 \Rightarrow \mathbb{E} \left[\Delta(x, y) \right] = n/2$$
$$z_j = 1 \Rightarrow \mathbb{E} \left[\Delta(x, y) \right] = n/2 - 5\sqrt{n}$$

and by Chernoff bounds $\mathbb{P}\left[\left|\Delta(x,y) - \mathbb{E}\left[\Delta(x,y)\right]\right| \ge 2\sqrt{n}\right] < 1/10.$

- ▶ Reduction from INDEX problem: Alice knows z ∈ {0,1}^t and Bob knows j ∈ [t]. Let's assume |z| = t/2 and this is odd.
- Alice and Bob pick $r \in_R \{-1, 1\}^t$ using public random bits.
- Alice computes sign(r.z) and Bob computes sign(r_j)

• Lemma: For some constant c > 0,

$$\mathbb{P}\left[\operatorname{sign}(r.z) = \operatorname{sign}(r_j)
ight] = \left\{egin{array}{cc} 1/2 & ext{if } z_j = 0 \ 1/2 + c/\sqrt{t} & ext{if } z_j = 1 \end{array}
ight.$$

• Repeat $n = 25t/c^2$ times to construct

$$x_i = I[sign(r.z) = +]$$
 and $y_i = I[sign(r_j) = +]$

Note that

$$z_j = 0 \Rightarrow \mathbb{E} [\Delta(x, y)] = n/2$$

 $z_j = 1 \Rightarrow \mathbb{E} [\Delta(x, y)] = n/2 - 5\sqrt{n}$

and by Chernoff bounds $\mathbb{P}\left[|\Delta(x, y) - \mathbb{E}[\Delta(x, y)]| \ge 2\sqrt{n}\right] < 1/10.$ • Hence, a $\pm \sqrt{n}$ approx. of $\Delta(x, y)$ determines z_j with prob. > 9/10.

Claim

Let A be the event $A = {sign(r.z) = r_j}$. For some constant c > 0,

$$\mathbb{P}\left[A
ight] = \left\{egin{array}{cc} 1/2 & ext{if } z_j = 0 \ 1/2 + c/\sqrt{t} & ext{if } z_j = 1 \end{array}
ight.$$

Claim

Let A be the event $A = {sign(r.z) = r_j}$. For some constant c > 0,

$$\mathbb{P}\left[A
ight] = \left\{ egin{array}{cc} 1/2 & ext{if } z_j = 0 \ 1/2 + c/\sqrt{t} & ext{if } z_j = 1 \end{array}
ight.$$

• If $z_j = 0$: sign(r.z) and r_j are independent so $\mathbb{P}[A] = 1/2$.

Claim

Let A be the event $A = {sign(r.z) = r_j}$. For some constant c > 0,

$$\mathbb{P}\left[A
ight] = \left\{egin{array}{cc} 1/2 & ext{if } z_j = 0 \ 1/2 + c/\sqrt{t} & ext{if } z_j = 1 \end{array}
ight.$$

- If $z_j = 0$: sign(r.z) and r_j are independent so $\mathbb{P}[A] = 1/2$.
- If z_j = 1: Let s = r.z − r_j, the sum of an even number (ℓ = t/2 − 1) of independent ±1 values.

Claim

Let A be the event $A = {sign(r.z) = r_j}$. For some constant c > 0,

$$\mathbb{P}\left[A
ight] = \left\{egin{array}{cc} 1/2 & ext{if } z_j = 0 \ 1/2 + c/\sqrt{t} & ext{if } z_j = 1 \end{array}
ight.$$

If z_j = 0: sign(r.z) and r_j are independent so P[A] = 1/2.
If z_j = 1: Let s = r.z − r_j, the sum of an even number (ℓ = t/2 − 1) of independent ±1 values. Then,

$$\mathbb{P}[A] = \mathbb{P}[A|s=0] \mathbb{P}[s=0] + \mathbb{P}[A|s \neq 0] \mathbb{P}[s \neq 0]$$

Claim

Let A be the event $A = {sign(r.z) = r_j}$. For some constant c > 0,

$$\mathbb{P}\left[A
ight] = \left\{egin{array}{cc} 1/2 & ext{if } z_j = 0 \ 1/2 + c/\sqrt{t} & ext{if } z_j = 1 \end{array}
ight.$$

If z_j = 0: sign(r.z) and r_j are independent so P[A] = 1/2.
If z_j = 1: Let s = r.z − r_j, the sum of an even number (ℓ = t/2 − 1) of independent ±1 values. Then,

$$\mathbb{P}\left[A
ight]=\mathbb{P}\left[A|s=0
ight]\mathbb{P}\left[s=0
ight]+\mathbb{P}\left[A|s
eq0
ight]\mathbb{P}\left[s
eq0
ight]$$

•
$$\mathbb{P}[s=0] = \binom{\ell}{\ell/2}/2^{\ell} = 2c/\sqrt{t}$$
 for some constant $c > 0$.

Claim

Let A be the event $A = {sign(r.z) = r_j}$. For some constant c > 0,

$$\mathbb{P}\left[A
ight] = \left\{egin{array}{cc} 1/2 & ext{if } z_j = 0 \ 1/2 + c/\sqrt{t} & ext{if } z_j = 1 \end{array}
ight.$$

If z_j = 0: sign(r.z) and r_j are independent so P[A] = 1/2.
If z_j = 1: Let s = r.z − r_j, the sum of an even number (ℓ = t/2 − 1) of independent ±1 values. Then,

$$\mathbb{P}[A] = \mathbb{P}[A|s=0] \mathbb{P}[s=0] + \mathbb{P}[A|s\neq 0] \mathbb{P}[s\neq 0]$$

•
$$\mathbb{P}[s=0] = \binom{\ell}{\ell/2}/2^{\ell} = 2c/\sqrt{t}$$
 for some constant $c > 0$.

• $\mathbb{P}[A|s=0] = 1$ since $s=0 \Rightarrow r.z=r_j \Rightarrow A$.

Claim

Let A be the event $A = {sign(r.z) = r_j}$. For some constant c > 0,

$$\mathbb{P}\left[A
ight] = \left\{egin{array}{cc} 1/2 & ext{if } z_j = 0 \ 1/2 + c/\sqrt{t} & ext{if } z_j = 1 \end{array}
ight.$$

If z_j = 0: sign(r.z) and r_j are independent so P[A] = 1/2.
If z_j = 1: Let s = r.z − r_j, the sum of an even number (ℓ = t/2 − 1) of independent ±1 values. Then,

$$\mathbb{P}[A] = \mathbb{P}[A|s=0] \mathbb{P}[s=0] + \mathbb{P}[A|s\neq 0] \mathbb{P}[s\neq 0]$$

•
$$\mathbb{P}[s=0] = \binom{\ell}{\ell/2}/2^{\ell} = 2c/\sqrt{t}$$
 for some constant $c > 0$.

•
$$\mathbb{P}[A|s=0] = 1$$
 since $s=0 \Rightarrow r.z=r_j \Rightarrow A$.

▶ $\mathbb{P}[A|s \neq 0] = 1/2$ since $s \neq 0 \Rightarrow s = {\dots, -4, -2, 2, 4, \dots}$. Hence, sign(r.z) = sign(s) which is independent of r_j .

Claim

Let A be the event $A = {sign(r.z) = r_j}$. For some constant c > 0,

$$\mathbb{P}\left[A
ight] = \left\{egin{array}{cc} 1/2 & ext{if } z_j = 0 \ 1/2 + c/\sqrt{t} & ext{if } z_j = 1 \end{array}
ight.$$

If z_j = 0: sign(r.z) and r_j are independent so P[A] = 1/2.
If z_j = 1: Let s = r.z − r_j, the sum of an even number (ℓ = t/2 − 1) of independent ±1 values. Then,

$$\mathbb{P}[A] = \mathbb{P}[A|s=0] \mathbb{P}[s=0] + \mathbb{P}[A|s\neq 0] \mathbb{P}[s\neq 0]$$

• So
$$\mathbb{P}[A] = \mathbb{P}[s=0] + \frac{\mathbb{P}[s\neq 0]}{2} = \frac{1}{2} + \frac{\mathbb{P}[s=0]}{2} = \frac{1}{2} + \frac{c}{\sqrt{t}}.$$