
Data Streams & Communication Complexity
Lecture 3: Communication Complexity and Lower Bounds

Andrew McGregor, UMass Amherst

1/23

Basic Communication Complexity
I Three friends Alice, Bob, and Charlie each have some information

x , y , z and Charlie wants to compute some function P(x , y , z).

x y z

m1 m2 out

I To help Charlie, Alice sends a message m1 to Bob, and then Bob
sends a message m2 to Charlie.

I Question: How large must the total length of the messages be for
Charlie to evaluate P(x , y , z) correctly?

I Deterministic: m1(x), m2(m1, y), out(m2, z) = P(x , y , z)
I Random: m1(x , r), m2(m1, y , r), out(m2, z , r) where r is public

random string. Require Pr [out(m2, z , r) = P(x , y , z)] ≥ 9/10.

2/23

Basic Communication Complexity
I Three friends Alice, Bob, and Charlie each have some information

x , y , z and Charlie wants to compute some function P(x , y , z).

x y z

m1 m2 out

I To help Charlie, Alice sends a message m1 to Bob, and then Bob
sends a message m2 to Charlie.

I Question: How large must the total length of the messages be for
Charlie to evaluate P(x , y , z) correctly?

I Deterministic: m1(x), m2(m1, y), out(m2, z) = P(x , y , z)
I Random: m1(x , r), m2(m1, y , r), out(m2, z , r) where r is public

random string. Require Pr [out(m2, z , r) = P(x , y , z)] ≥ 9/10.

2/23

Basic Communication Complexity
I Three friends Alice, Bob, and Charlie each have some information

x , y , z and Charlie wants to compute some function P(x , y , z).

x y z

m1 m2 out

I To help Charlie, Alice sends a message m1 to Bob, and then Bob
sends a message m2 to Charlie.

I Question: How large must the total length of the messages be for
Charlie to evaluate P(x , y , z) correctly?

I Deterministic: m1(x), m2(m1, y), out(m2, z) = P(x , y , z)
I Random: m1(x , r), m2(m1, y , r), out(m2, z , r) where r is public

random string. Require Pr [out(m2, z , r) = P(x , y , z)] ≥ 9/10.

2/23

Basic Communication Complexity
I Three friends Alice, Bob, and Charlie each have some information

x , y , z and Charlie wants to compute some function P(x , y , z).

x y z

m1 m2 out

I To help Charlie, Alice sends a message m1 to Bob, and then Bob
sends a message m2 to Charlie.

I Question: How large must the total length of the messages be for
Charlie to evaluate P(x , y , z) correctly?

I Deterministic: m1(x), m2(m1, y), out(m2, z) = P(x , y , z)

I Random: m1(x , r), m2(m1, y , r), out(m2, z , r) where r is public
random string. Require Pr [out(m2, z , r) = P(x , y , z)] ≥ 9/10.

2/23

Basic Communication Complexity
I Three friends Alice, Bob, and Charlie each have some information

x , y , z and Charlie wants to compute some function P(x , y , z).

x y z

m1 m2 out

I To help Charlie, Alice sends a message m1 to Bob, and then Bob
sends a message m2 to Charlie.

I Question: How large must the total length of the messages be for
Charlie to evaluate P(x , y , z) correctly?

I Deterministic: m1(x), m2(m1, y), out(m2, z) = P(x , y , z)
I Random: m1(x , r), m2(m1, y , r), out(m2, z , r) where r is public

random string. Require Pr [out(m2, z , r) = P(x , y , z)] ≥ 9/10.

2/23

Stream Algorithms Yield Communication Protocols

I Let Q be some stream problem. Suppose there’s a reduction x → S1,
y → S2, z → S3 such that knowing Q(S1 ◦ S2 ◦ S3) solves P(x , y , z).

x y z

m1 m2 out

S1 S2 S3

I An s-bit stream algorithm A for Q yields 2s-bit protocol for P: Alice
runs A of S1; sends memory state to Bob; Bob instantiates A with
state and runs it on S2; sends state to Charlie who finishes running
A on S3 and infers P(x , y , z) from Q(S1 ◦ S2 ◦ S3).

3/23

Stream Algorithms Yield Communication Protocols
I Let Q be some stream problem. Suppose there’s a reduction x → S1,

y → S2, z → S3 such that knowing Q(S1 ◦ S2 ◦ S3) solves P(x , y , z).

x y z

m1 m2 out

S1 S2 S3

I An s-bit stream algorithm A for Q yields 2s-bit protocol for P: Alice
runs A of S1; sends memory state to Bob; Bob instantiates A with
state and runs it on S2; sends state to Charlie who finishes running
A on S3 and infers P(x , y , z) from Q(S1 ◦ S2 ◦ S3).

3/23

Stream Algorithms Yield Communication Protocols
I Let Q be some stream problem. Suppose there’s a reduction x → S1,

y → S2, z → S3 such that knowing Q(S1 ◦ S2 ◦ S3) solves P(x , y , z).

x y z

m1 m2 out

S1 S2 S3

I An s-bit stream algorithm A for Q yields 2s-bit protocol for P:

Alice
runs A of S1; sends memory state to Bob; Bob instantiates A with
state and runs it on S2; sends state to Charlie who finishes running
A on S3 and infers P(x , y , z) from Q(S1 ◦ S2 ◦ S3).

3/23

Stream Algorithms Yield Communication Protocols
I Let Q be some stream problem. Suppose there’s a reduction x → S1,

y → S2, z → S3 such that knowing Q(S1 ◦ S2 ◦ S3) solves P(x , y , z).

x y z

m1 m2 out

S1 S2 S3

I An s-bit stream algorithm A for Q yields 2s-bit protocol for P: Alice
runs A of S1;

sends memory state to Bob; Bob instantiates A with
state and runs it on S2; sends state to Charlie who finishes running
A on S3 and infers P(x , y , z) from Q(S1 ◦ S2 ◦ S3).

3/23

Stream Algorithms Yield Communication Protocols
I Let Q be some stream problem. Suppose there’s a reduction x → S1,

y → S2, z → S3 such that knowing Q(S1 ◦ S2 ◦ S3) solves P(x , y , z).

x y z

m1 m2 out

S1 S2 S3

I An s-bit stream algorithm A for Q yields 2s-bit protocol for P: Alice
runs A of S1; sends memory state to Bob;

Bob instantiates A with
state and runs it on S2; sends state to Charlie who finishes running
A on S3 and infers P(x , y , z) from Q(S1 ◦ S2 ◦ S3).

3/23

Stream Algorithms Yield Communication Protocols
I Let Q be some stream problem. Suppose there’s a reduction x → S1,

y → S2, z → S3 such that knowing Q(S1 ◦ S2 ◦ S3) solves P(x , y , z).

x y z

m1 m2 out

S1 S2 S3

I An s-bit stream algorithm A for Q yields 2s-bit protocol for P: Alice
runs A of S1; sends memory state to Bob; Bob instantiates A with
state and runs it on S2;

sends state to Charlie who finishes running
A on S3 and infers P(x , y , z) from Q(S1 ◦ S2 ◦ S3).

3/23

Stream Algorithms Yield Communication Protocols
I Let Q be some stream problem. Suppose there’s a reduction x → S1,

y → S2, z → S3 such that knowing Q(S1 ◦ S2 ◦ S3) solves P(x , y , z).

x y z

m1 m2 out

S1 S2 S3

I An s-bit stream algorithm A for Q yields 2s-bit protocol for P: Alice
runs A of S1; sends memory state to Bob; Bob instantiates A with
state and runs it on S2; sends state to Charlie who finishes running
A on S3 and infers P(x , y , z) from Q(S1 ◦ S2 ◦ S3).

3/23

Communication Lower Bounds imply Stream Lower Bounds

I Had there been t players, the s-bit stream algorithm for Q would
have lead to a (t − 1)s bit protocol P.

I Hence, a lower bound of L on the communication required for P
implies s ≥ L/(t − 1) bits of space are required to solve Q.

4/23

Communication Lower Bounds imply Stream Lower Bounds

I Had there been t players, the s-bit stream algorithm for Q would
have lead to a (t − 1)s bit protocol P.

I Hence, a lower bound of L on the communication required for P
implies s ≥ L/(t − 1) bits of space are required to solve Q.

4/23

Outline of Lecture

Classic Problems and Reductions

Information Statistics Approach

Hamming Approximation

5/23

Outline

Classic Problems and Reductions

Information Statistics Approach

Hamming Approximation

6/23

Indexing

I Consider a binary string x ∈ {0, 1}n and j ∈ [n], e.g.,

x =
(

0 1 0 1 1 0
)

and j = 3

and define Index(x , j) = xj

I Suppose Alice knows x and Bob knows j .

I How many bits need to be sent by Alice for Bob to determine
Index(x , j) with probability 9/10? Ω(n)

7/23

Indexing

I Consider a binary string x ∈ {0, 1}n and j ∈ [n], e.g.,

x =
(

0 1 0 1 1 0
)

and j = 3

and define Index(x , j) = xj
I Suppose Alice knows x and Bob knows j .

I How many bits need to be sent by Alice for Bob to determine
Index(x , j) with probability 9/10? Ω(n)

7/23

Indexing

I Consider a binary string x ∈ {0, 1}n and j ∈ [n], e.g.,

x =
(

0 1 0 1 1 0
)

and j = 3

and define Index(x , j) = xj
I Suppose Alice knows x and Bob knows j .

I How many bits need to be sent by Alice for Bob to determine
Index(x , j) with probability 9/10?

Ω(n)

7/23

Indexing

I Consider a binary string x ∈ {0, 1}n and j ∈ [n], e.g.,

x =
(

0 1 0 1 1 0
)

and j = 3

and define Index(x , j) = xj
I Suppose Alice knows x and Bob knows j .

I How many bits need to be sent by Alice for Bob to determine
Index(x , j) with probability 9/10? Ω(n)

7/23

Application: Median Finding

I Thm: Any algorithm that returns the exact median of length 2n − 1
stream requires Ω(n) memory.

I Reduction from Index: On input x ∈ {0, 1}n, Alice generates
S1 = {2i + xi : i ∈ [n]}. On input j ∈ [n], Bob generates
S2 = {n − j copies of 0 and j − 1 copies of 2n + 2}. E.g.,

x =
(

0 1 0 1 1 0
)
→ {2, 5, 6, 9, 11, 12}

j = 3 → {0, 0, 0, 14, 14}

I Then median(S1 ∪ S2) = 2j + xj and this determines Index(x , j).

I An s-space algorithm implies an s-bit protocol so

s = Ω(n)

by the communication complexity of indexing.

8/23

Application: Median Finding

I Thm: Any algorithm that returns the exact median of length 2n − 1
stream requires Ω(n) memory.

I Reduction from Index: On input x ∈ {0, 1}n, Alice generates
S1 = {2i + xi : i ∈ [n]}. On input j ∈ [n], Bob generates
S2 = {n − j copies of 0 and j − 1 copies of 2n + 2}. E.g.,

x =
(

0 1 0 1 1 0
)
→ {2, 5, 6, 9, 11, 12}

j = 3 → {0, 0, 0, 14, 14}

I Then median(S1 ∪ S2) = 2j + xj and this determines Index(x , j).

I An s-space algorithm implies an s-bit protocol so

s = Ω(n)

by the communication complexity of indexing.

8/23

Application: Median Finding

I Thm: Any algorithm that returns the exact median of length 2n − 1
stream requires Ω(n) memory.

I Reduction from Index: On input x ∈ {0, 1}n, Alice generates
S1 = {2i + xi : i ∈ [n]}. On input j ∈ [n], Bob generates
S2 = {n − j copies of 0 and j − 1 copies of 2n + 2}. E.g.,

x =
(

0 1 0 1 1 0
)
→ {2, 5, 6, 9, 11, 12}

j = 3 → {0, 0, 0, 14, 14}

I Then median(S1 ∪ S2) = 2j + xj and this determines Index(x , j).

I An s-space algorithm implies an s-bit protocol so

s = Ω(n)

by the communication complexity of indexing.

8/23

Application: Median Finding

I Thm: Any algorithm that returns the exact median of length 2n − 1
stream requires Ω(n) memory.

I Reduction from Index: On input x ∈ {0, 1}n, Alice generates
S1 = {2i + xi : i ∈ [n]}. On input j ∈ [n], Bob generates
S2 = {n − j copies of 0 and j − 1 copies of 2n + 2}. E.g.,

x =
(

0 1 0 1 1 0
)
→ {2, 5, 6, 9, 11, 12}

j = 3 → {0, 0, 0, 14, 14}

I Then median(S1 ∪ S2) = 2j + xj and this determines Index(x , j).

I An s-space algorithm implies an s-bit protocol so

s = Ω(n)

by the communication complexity of indexing.

8/23

Multi-Party Set-Disjointness

I Consider a t × n matrix where column has weight 0, 1, or t, e.g.,

C =

0 0 0 1 0 0
1 0 0 1 1 0
0 1 0 1 0 0
0 0 0 1 0 0

and let Disjt(C) = 1 if there is an all 1’s column and 0 otherwise.

I Consider t players where Pi knows i-th row of C .

I How many bits need to be communicated between the players to
determine Disjt(C)? Ω(n/t)

9/23

Multi-Party Set-Disjointness

I Consider a t × n matrix where column has weight 0, 1, or t, e.g.,

C =

0 0 0 1 0 0
1 0 0 1 1 0
0 1 0 1 0 0
0 0 0 1 0 0

and let Disjt(C) = 1 if there is an all 1’s column and 0 otherwise.

I Consider t players where Pi knows i-th row of C .

I How many bits need to be communicated between the players to
determine Disjt(C)? Ω(n/t)

9/23

Multi-Party Set-Disjointness

I Consider a t × n matrix where column has weight 0, 1, or t, e.g.,

C =

0 0 0 1 0 0
1 0 0 1 1 0
0 1 0 1 0 0
0 0 0 1 0 0

and let Disjt(C) = 1 if there is an all 1’s column and 0 otherwise.

I Consider t players where Pi knows i-th row of C .

I How many bits need to be communicated between the players to
determine Disjt(C)?

Ω(n/t)

9/23

Multi-Party Set-Disjointness

I Consider a t × n matrix where column has weight 0, 1, or t, e.g.,

C =

0 0 0 1 0 0
1 0 0 1 1 0
0 1 0 1 0 0
0 0 0 1 0 0

and let Disjt(C) = 1 if there is an all 1’s column and 0 otherwise.

I Consider t players where Pi knows i-th row of C .

I How many bits need to be communicated between the players to
determine Disjt(C)? Ω(n/t)

9/23

Application: Frequency Moments

I Thm: A 2-approximation algorithm for Fk needs Ω(n1−2/k) space.

I Reduction from Set Disjointness: The i-th player generates set
Si = {j : Cij = 1}, e.g.,

0 0 0 1 0 0
1 0 0 1 1 0
0 1 0 1 0 0
0 0 0 1 0 0

 −→ {4, 1, 4, 5, 2, 4, 4}
I If all columns have weight 0 or 1: Fk(S) ≤ n

I If there’s column of weight t: Fk(S) ≥ tk

I If t > 21/kn1/k then a 2 approximation of Fk(S) distinguishes cases.

I An s-space 2-approximation implies an s(t − 1) bit protocol so

s = Ω(n/t2) = Ω(n1−2/k)

by the communication complexity of set-disjointness.

10/23

Application: Frequency Moments

I Thm: A 2-approximation algorithm for Fk needs Ω(n1−2/k) space.

I Reduction from Set Disjointness:

The i-th player generates set
Si = {j : Cij = 1}, e.g.,

0 0 0 1 0 0
1 0 0 1 1 0
0 1 0 1 0 0
0 0 0 1 0 0

 −→ {4, 1, 4, 5, 2, 4, 4}
I If all columns have weight 0 or 1: Fk(S) ≤ n

I If there’s column of weight t: Fk(S) ≥ tk

I If t > 21/kn1/k then a 2 approximation of Fk(S) distinguishes cases.

I An s-space 2-approximation implies an s(t − 1) bit protocol so

s = Ω(n/t2) = Ω(n1−2/k)

by the communication complexity of set-disjointness.

10/23

Application: Frequency Moments

I Thm: A 2-approximation algorithm for Fk needs Ω(n1−2/k) space.

I Reduction from Set Disjointness: The i-th player generates set
Si = {j : Cij = 1}, e.g.,

0 0 0 1 0 0
1 0 0 1 1 0
0 1 0 1 0 0
0 0 0 1 0 0

 −→ {4, 1, 4, 5, 2, 4, 4}

I If all columns have weight 0 or 1: Fk(S) ≤ n

I If there’s column of weight t: Fk(S) ≥ tk

I If t > 21/kn1/k then a 2 approximation of Fk(S) distinguishes cases.

I An s-space 2-approximation implies an s(t − 1) bit protocol so

s = Ω(n/t2) = Ω(n1−2/k)

by the communication complexity of set-disjointness.

10/23

Application: Frequency Moments

I Thm: A 2-approximation algorithm for Fk needs Ω(n1−2/k) space.

I Reduction from Set Disjointness: The i-th player generates set
Si = {j : Cij = 1}, e.g.,

0 0 0 1 0 0
1 0 0 1 1 0
0 1 0 1 0 0
0 0 0 1 0 0

 −→ {4, 1, 4, 5, 2, 4, 4}
I If all columns have weight 0 or 1: Fk(S) ≤ n

I If there’s column of weight t: Fk(S) ≥ tk

I If t > 21/kn1/k then a 2 approximation of Fk(S) distinguishes cases.

I An s-space 2-approximation implies an s(t − 1) bit protocol so

s = Ω(n/t2) = Ω(n1−2/k)

by the communication complexity of set-disjointness.

10/23

Application: Frequency Moments

I Thm: A 2-approximation algorithm for Fk needs Ω(n1−2/k) space.

I Reduction from Set Disjointness: The i-th player generates set
Si = {j : Cij = 1}, e.g.,

0 0 0 1 0 0
1 0 0 1 1 0
0 1 0 1 0 0
0 0 0 1 0 0

 −→ {4, 1, 4, 5, 2, 4, 4}
I If all columns have weight 0 or 1: Fk(S) ≤ n

I If there’s column of weight t: Fk(S) ≥ tk

I If t > 21/kn1/k then a 2 approximation of Fk(S) distinguishes cases.

I An s-space 2-approximation implies an s(t − 1) bit protocol so

s = Ω(n/t2) = Ω(n1−2/k)

by the communication complexity of set-disjointness.

10/23

Application: Frequency Moments

I Thm: A 2-approximation algorithm for Fk needs Ω(n1−2/k) space.

I Reduction from Set Disjointness: The i-th player generates set
Si = {j : Cij = 1}, e.g.,

0 0 0 1 0 0
1 0 0 1 1 0
0 1 0 1 0 0
0 0 0 1 0 0

 −→ {4, 1, 4, 5, 2, 4, 4}
I If all columns have weight 0 or 1: Fk(S) ≤ n

I If there’s column of weight t: Fk(S) ≥ tk

I If t > 21/kn1/k then a 2 approximation of Fk(S) distinguishes cases.

I An s-space 2-approximation implies an s(t − 1) bit protocol so

s = Ω(n/t2) = Ω(n1−2/k)

by the communication complexity of set-disjointness.

10/23

Application: Frequency Moments

I Thm: A 2-approximation algorithm for Fk needs Ω(n1−2/k) space.

I Reduction from Set Disjointness: The i-th player generates set
Si = {j : Cij = 1}, e.g.,

0 0 0 1 0 0
1 0 0 1 1 0
0 1 0 1 0 0
0 0 0 1 0 0

 −→ {4, 1, 4, 5, 2, 4, 4}
I If all columns have weight 0 or 1: Fk(S) ≤ n

I If there’s column of weight t: Fk(S) ≥ tk

I If t > 21/kn1/k then a 2 approximation of Fk(S) distinguishes cases.

I An s-space 2-approximation implies an s(t − 1) bit protocol so

s = Ω(n/t2) = Ω(n1−2/k)

by the communication complexity of set-disjointness.

10/23

Hamming Approximation

I Consider 2 binary vectors x , y ∈ {0, 1}n, e.g.,

x =
(

0 1 0 1 1 0
)

y =
(

1 1 0 0 1 1
)

and define the Hamming distance ∆(x , y) = |{i : xi 6= yi}|.

I Suppose Alice knows x and Bob knows y .

I How many bits need to be communicated to estimate ∆(x , y) up to
an additive

√
n error? Ω(n) bits.

11/23

Hamming Approximation

I Consider 2 binary vectors x , y ∈ {0, 1}n, e.g.,

x =
(

0 1 0 1 1 0
)

y =
(

1 1 0 0 1 1
)

and define the Hamming distance ∆(x , y) = |{i : xi 6= yi}|.
I Suppose Alice knows x and Bob knows y .

I How many bits need to be communicated to estimate ∆(x , y) up to
an additive

√
n error? Ω(n) bits.

11/23

Hamming Approximation

I Consider 2 binary vectors x , y ∈ {0, 1}n, e.g.,

x =
(

0 1 0 1 1 0
)

y =
(

1 1 0 0 1 1
)

and define the Hamming distance ∆(x , y) = |{i : xi 6= yi}|.
I Suppose Alice knows x and Bob knows y .

I How many bits need to be communicated to estimate ∆(x , y) up to
an additive

√
n error?

Ω(n) bits.

11/23

Hamming Approximation

I Consider 2 binary vectors x , y ∈ {0, 1}n, e.g.,

x =
(

0 1 0 1 1 0
)

y =
(

1 1 0 0 1 1
)

and define the Hamming distance ∆(x , y) = |{i : xi 6= yi}|.
I Suppose Alice knows x and Bob knows y .

I How many bits need to be communicated to estimate ∆(x , y) up to
an additive

√
n error? Ω(n) bits.

11/23

Application: Distinct Elements
I Thm: A (1 + ε)-approximation algorithm for F0 needs Ω(ε−2) space.

I Reduction from Hamming Approximation: On input x , y ∈ {0, 1}n,
players form S1 = {j : xj = 1} and S2 = {j : yj = 1}, e.g.,(

0 1 0 1 1 0
)
,
(

1 1 0 0 1 1
)
−→ {2, 4, 5, 1, 2, 5, 6}

I Note that 2F0(S) = |x |+ |y |+ ∆(x , y).

I We may assume |x | and |y | are known Bob. Hence, a (1 + ε)
approximation of F0 yields an additive approximation to ∆(x , y) of

ε(|x |+ |y |+ ∆(x , y))/2 ≤ nε

I This is less than
√
n if ε < 1/

√
n

I An s-space (1 + ε)-approximation implies an s bit protocol so

s = Ω(n) = Ω(1/ε2)

by communication complexity of approximating Hamming distance.

12/23

Application: Distinct Elements
I Thm: A (1 + ε)-approximation algorithm for F0 needs Ω(ε−2) space.

I Reduction from Hamming Approximation: On input x , y ∈ {0, 1}n,
players form S1 = {j : xj = 1} and S2 = {j : yj = 1}, e.g.,(

0 1 0 1 1 0
)
,
(

1 1 0 0 1 1
)
−→ {2, 4, 5, 1, 2, 5, 6}

I Note that 2F0(S) = |x |+ |y |+ ∆(x , y).

I We may assume |x | and |y | are known Bob. Hence, a (1 + ε)
approximation of F0 yields an additive approximation to ∆(x , y) of

ε(|x |+ |y |+ ∆(x , y))/2 ≤ nε

I This is less than
√
n if ε < 1/

√
n

I An s-space (1 + ε)-approximation implies an s bit protocol so

s = Ω(n) = Ω(1/ε2)

by communication complexity of approximating Hamming distance.

12/23

Application: Distinct Elements
I Thm: A (1 + ε)-approximation algorithm for F0 needs Ω(ε−2) space.

I Reduction from Hamming Approximation: On input x , y ∈ {0, 1}n,
players form S1 = {j : xj = 1} and S2 = {j : yj = 1}, e.g.,(

0 1 0 1 1 0
)
,
(

1 1 0 0 1 1
)
−→ {2, 4, 5, 1, 2, 5, 6}

I Note that 2F0(S) = |x |+ |y |+ ∆(x , y).

I We may assume |x | and |y | are known Bob. Hence, a (1 + ε)
approximation of F0 yields an additive approximation to ∆(x , y) of

ε(|x |+ |y |+ ∆(x , y))/2 ≤ nε

I This is less than
√
n if ε < 1/

√
n

I An s-space (1 + ε)-approximation implies an s bit protocol so

s = Ω(n) = Ω(1/ε2)

by communication complexity of approximating Hamming distance.

12/23

Application: Distinct Elements
I Thm: A (1 + ε)-approximation algorithm for F0 needs Ω(ε−2) space.

I Reduction from Hamming Approximation: On input x , y ∈ {0, 1}n,
players form S1 = {j : xj = 1} and S2 = {j : yj = 1}, e.g.,(

0 1 0 1 1 0
)
,
(

1 1 0 0 1 1
)
−→ {2, 4, 5, 1, 2, 5, 6}

I Note that 2F0(S) = |x |+ |y |+ ∆(x , y).

I We may assume |x | and |y | are known Bob. Hence, a (1 + ε)
approximation of F0 yields an additive approximation to ∆(x , y) of

ε(|x |+ |y |+ ∆(x , y))/2 ≤ nε

I This is less than
√
n if ε < 1/

√
n

I An s-space (1 + ε)-approximation implies an s bit protocol so

s = Ω(n) = Ω(1/ε2)

by communication complexity of approximating Hamming distance.

12/23

Application: Distinct Elements
I Thm: A (1 + ε)-approximation algorithm for F0 needs Ω(ε−2) space.

I Reduction from Hamming Approximation: On input x , y ∈ {0, 1}n,
players form S1 = {j : xj = 1} and S2 = {j : yj = 1}, e.g.,(

0 1 0 1 1 0
)
,
(

1 1 0 0 1 1
)
−→ {2, 4, 5, 1, 2, 5, 6}

I Note that 2F0(S) = |x |+ |y |+ ∆(x , y).

I We may assume |x | and |y | are known Bob. Hence, a (1 + ε)
approximation of F0 yields an additive approximation to ∆(x , y) of

ε(|x |+ |y |+ ∆(x , y))/2 ≤ nε

I This is less than
√
n if ε < 1/

√
n

I An s-space (1 + ε)-approximation implies an s bit protocol so

s = Ω(n) = Ω(1/ε2)

by communication complexity of approximating Hamming distance.

12/23

Application: Distinct Elements
I Thm: A (1 + ε)-approximation algorithm for F0 needs Ω(ε−2) space.

I Reduction from Hamming Approximation: On input x , y ∈ {0, 1}n,
players form S1 = {j : xj = 1} and S2 = {j : yj = 1}, e.g.,(

0 1 0 1 1 0
)
,
(

1 1 0 0 1 1
)
−→ {2, 4, 5, 1, 2, 5, 6}

I Note that 2F0(S) = |x |+ |y |+ ∆(x , y).

I We may assume |x | and |y | are known Bob. Hence, a (1 + ε)
approximation of F0 yields an additive approximation to ∆(x , y) of

ε(|x |+ |y |+ ∆(x , y))/2 ≤ nε

I This is less than
√
n if ε < 1/

√
n

I An s-space (1 + ε)-approximation implies an s bit protocol so

s = Ω(n) = Ω(1/ε2)

by communication complexity of approximating Hamming distance.

12/23

Outline

Classic Problems and Reductions

Information Statistics Approach

Hamming Approximation

13/23

Information Statistics Approach

I Information statistics approach is based on analyzing the
“information revealed” about the input from the messages.

I Useful for proving bounds on complicated functions in terms of
simpler problems, e.g., proving a bound on

Disjt(M) =
∨
j∈[n]

Andt(M1,j , . . . ,Mt,j)

by first establishing a bound on Andt .

I We’ll first give some definitions and then run through an example.

14/23

Information Statistics Approach

I Information statistics approach is based on analyzing the
“information revealed” about the input from the messages.

I Useful for proving bounds on complicated functions in terms of
simpler problems, e.g., proving a bound on

Disjt(M) =
∨
j∈[n]

Andt(M1,j , . . . ,Mt,j)

by first establishing a bound on Andt .

I We’ll first give some definitions and then run through an example.

14/23

Information Statistics Approach

I Information statistics approach is based on analyzing the
“information revealed” about the input from the messages.

I Useful for proving bounds on complicated functions in terms of
simpler problems, e.g., proving a bound on

Disjt(M) =
∨
j∈[n]

Andt(M1,j , . . . ,Mt,j)

by first establishing a bound on Andt .

I We’ll first give some definitions and then run through an example.

14/23

Information Theory Definitions

I Let X and Y be random variables.

I Entropy: H(X) :=
∑

i −P [X = i] lgP [X = i]

I Conditional Entropy: H(X |Y) := Ey∼Y [H(X |Y = y)] ≤ H(X)

I Mutual Information: I (X : Y) = H(X)− H(X |Y)

H(X) H(Y)

I(X:Y)H(X|Y) H(Y|X)

I Useful Facts:
I If X takes at most 2` values, then H(X) ≤ `.
I If X and Y are independent, then I (XY : Z) ≥ I (X : Z) + I (Y : Z).

15/23

Information Theory Definitions

I Let X and Y be random variables.

I Entropy: H(X) :=
∑

i −P [X = i] lgP [X = i]

I Conditional Entropy: H(X |Y) := Ey∼Y [H(X |Y = y)] ≤ H(X)

I Mutual Information: I (X : Y) = H(X)− H(X |Y)

H(X) H(Y)

I(X:Y)H(X|Y) H(Y|X)

I Useful Facts:
I If X takes at most 2` values, then H(X) ≤ `.
I If X and Y are independent, then I (XY : Z) ≥ I (X : Z) + I (Y : Z).

15/23

Information Theory Definitions

I Let X and Y be random variables.

I Entropy: H(X) :=
∑

i −P [X = i] lgP [X = i]

I Conditional Entropy: H(X |Y) := Ey∼Y [H(X |Y = y)]

≤ H(X)

I Mutual Information: I (X : Y) = H(X)− H(X |Y)

H(X) H(Y)

I(X:Y)H(X|Y) H(Y|X)

I Useful Facts:
I If X takes at most 2` values, then H(X) ≤ `.
I If X and Y are independent, then I (XY : Z) ≥ I (X : Z) + I (Y : Z).

15/23

Information Theory Definitions

I Let X and Y be random variables.

I Entropy: H(X) :=
∑

i −P [X = i] lgP [X = i]

I Conditional Entropy: H(X |Y) := Ey∼Y [H(X |Y = y)] ≤ H(X)

I Mutual Information: I (X : Y) = H(X)− H(X |Y)

H(X) H(Y)

I(X:Y)H(X|Y) H(Y|X)

I Useful Facts:
I If X takes at most 2` values, then H(X) ≤ `.
I If X and Y are independent, then I (XY : Z) ≥ I (X : Z) + I (Y : Z).

15/23

Information Theory Definitions

I Let X and Y be random variables.

I Entropy: H(X) :=
∑

i −P [X = i] lgP [X = i]

I Conditional Entropy: H(X |Y) := Ey∼Y [H(X |Y = y)] ≤ H(X)

I Mutual Information: I (X : Y) = H(X)− H(X |Y)

H(X) H(Y)

I(X:Y)H(X|Y) H(Y|X)

I Useful Facts:
I If X takes at most 2` values, then H(X) ≤ `.
I If X and Y are independent, then I (XY : Z) ≥ I (X : Z) + I (Y : Z).

15/23

Information Theory Definitions

I Let X and Y be random variables.

I Entropy: H(X) :=
∑

i −P [X = i] lgP [X = i]

I Conditional Entropy: H(X |Y) := Ey∼Y [H(X |Y = y)] ≤ H(X)

I Mutual Information: I (X : Y) = H(X)− H(X |Y)

H(X) H(Y)

I(X:Y)H(X|Y) H(Y|X)

I Useful Facts:
I If X takes at most 2` values, then H(X) ≤ `.
I If X and Y are independent, then I (XY : Z) ≥ I (X : Z) + I (Y : Z).

15/23

Information Theory Definitions

I Let X and Y be random variables.

I Entropy: H(X) :=
∑

i −P [X = i] lgP [X = i]

I Conditional Entropy: H(X |Y) := Ey∼Y [H(X |Y = y)] ≤ H(X)

I Mutual Information: I (X : Y) = H(X)− H(X |Y)

H(X) H(Y)

I(X:Y)H(X|Y) H(Y|X)

I Useful Facts:

I If X takes at most 2` values, then H(X) ≤ `.
I If X and Y are independent, then I (XY : Z) ≥ I (X : Z) + I (Y : Z).

15/23

Information Theory Definitions

I Let X and Y be random variables.

I Entropy: H(X) :=
∑

i −P [X = i] lgP [X = i]

I Conditional Entropy: H(X |Y) := Ey∼Y [H(X |Y = y)] ≤ H(X)

I Mutual Information: I (X : Y) = H(X)− H(X |Y)

H(X) H(Y)

I(X:Y)H(X|Y) H(Y|X)

I Useful Facts:
I If X takes at most 2` values, then H(X) ≤ `.

I If X and Y are independent, then I (XY : Z) ≥ I (X : Z) + I (Y : Z).

15/23

Information Theory Definitions

I Let X and Y be random variables.

I Entropy: H(X) :=
∑

i −P [X = i] lgP [X = i]

I Conditional Entropy: H(X |Y) := Ey∼Y [H(X |Y = y)] ≤ H(X)

I Mutual Information: I (X : Y) = H(X)− H(X |Y)

H(X) H(Y)

I(X:Y)H(X|Y) H(Y|X)

I Useful Facts:
I If X takes at most 2` values, then H(X) ≤ `.
I If X and Y are independent, then I (XY : Z) ≥ I (X : Z) + I (Y : Z).

15/23

Information Cost

I Suppose you have a protocol Π for a two-party communication
problem P in which Alice and Bob have random inputs X and Y .

I Let M be the (random) message sent by Alice and define:

cost(Π) = max |M|

and
icost(Π) = I (M : X)

I Note that

icost(Π) = I (M : X) ≤ H(M) ≤ cost(Π) .

16/23

Information Cost

I Suppose you have a protocol Π for a two-party communication
problem P in which Alice and Bob have random inputs X and Y .

I Let M be the (random) message sent by Alice and define:

cost(Π) = max |M|

and
icost(Π) = I (M : X)

I Note that

icost(Π) = I (M : X) ≤ H(M) ≤ cost(Π) .

16/23

Information Cost

I Suppose you have a protocol Π for a two-party communication
problem P in which Alice and Bob have random inputs X and Y .

I Let M be the (random) message sent by Alice and define:

cost(Π) = max |M|

and
icost(Π) = I (M : X)

I Note that

icost(Π) = I (M : X) ≤ H(M) ≤ cost(Π) .

16/23

Example: Indexing

I We’ll prove a lower bound on the information cost of Index where
X ∈R {0, 1}n in terms a simpler problem “Echo.”

I Echo: Alice has a single bit B ∈R {0, 1} and Bob wants to output
B with probability at least 1− δ.

I A protocol ΠIndex for Index yields a protocol ΠEcho,i for Echo
where i is hard-coded into the protocol:

1. Given B, Alice picks Xj ∈R {0, 1} for j 6= i and generates:

X = (X1,X2, . . . ,Xi−1,B,Xi+1, . . . ,Xn)

2. She sends the message M she’d have sent in ΠIndex if she’d had X .
3. Bob receives M and outputs the value he’d have returned in ΠIndex

had his input been i .

I Note 1: If ΠIndex is correct with probability 1− δ then ΠEcho,i is
also correct with probability 1− δ.

I Note 2: The message in ΠIndex on input X ∈R {0, 1}n is distributed
identically to the message in ΠEcho,i on input B ∈R {0, 1}.

17/23

Example: Indexing

I We’ll prove a lower bound on the information cost of Index where
X ∈R {0, 1}n in terms a simpler problem “Echo.”

I Echo: Alice has a single bit B ∈R {0, 1} and Bob wants to output
B with probability at least 1− δ.

I A protocol ΠIndex for Index yields a protocol ΠEcho,i for Echo
where i is hard-coded into the protocol:

1. Given B, Alice picks Xj ∈R {0, 1} for j 6= i and generates:

X = (X1,X2, . . . ,Xi−1,B,Xi+1, . . . ,Xn)

2. She sends the message M she’d have sent in ΠIndex if she’d had X .
3. Bob receives M and outputs the value he’d have returned in ΠIndex

had his input been i .

I Note 1: If ΠIndex is correct with probability 1− δ then ΠEcho,i is
also correct with probability 1− δ.

I Note 2: The message in ΠIndex on input X ∈R {0, 1}n is distributed
identically to the message in ΠEcho,i on input B ∈R {0, 1}.

17/23

Example: Indexing

I We’ll prove a lower bound on the information cost of Index where
X ∈R {0, 1}n in terms a simpler problem “Echo.”

I Echo: Alice has a single bit B ∈R {0, 1} and Bob wants to output
B with probability at least 1− δ.

I A protocol ΠIndex for Index yields a protocol ΠEcho,i for Echo
where i is hard-coded into the protocol:

1. Given B, Alice picks Xj ∈R {0, 1} for j 6= i and generates:

X = (X1,X2, . . . ,Xi−1,B,Xi+1, . . . ,Xn)

2. She sends the message M she’d have sent in ΠIndex if she’d had X .
3. Bob receives M and outputs the value he’d have returned in ΠIndex

had his input been i .

I Note 1: If ΠIndex is correct with probability 1− δ then ΠEcho,i is
also correct with probability 1− δ.

I Note 2: The message in ΠIndex on input X ∈R {0, 1}n is distributed
identically to the message in ΠEcho,i on input B ∈R {0, 1}.

17/23

Example: Indexing

I We’ll prove a lower bound on the information cost of Index where
X ∈R {0, 1}n in terms a simpler problem “Echo.”

I Echo: Alice has a single bit B ∈R {0, 1} and Bob wants to output
B with probability at least 1− δ.

I A protocol ΠIndex for Index yields a protocol ΠEcho,i for Echo
where i is hard-coded into the protocol:

1. Given B, Alice picks Xj ∈R {0, 1} for j 6= i and generates:

X = (X1,X2, . . . ,Xi−1,B,Xi+1, . . . ,Xn)

2. She sends the message M she’d have sent in ΠIndex if she’d had X .
3. Bob receives M and outputs the value he’d have returned in ΠIndex

had his input been i .

I Note 1: If ΠIndex is correct with probability 1− δ then ΠEcho,i is
also correct with probability 1− δ.

I Note 2: The message in ΠIndex on input X ∈R {0, 1}n is distributed
identically to the message in ΠEcho,i on input B ∈R {0, 1}.

17/23

Example: Indexing

I We’ll prove a lower bound on the information cost of Index where
X ∈R {0, 1}n in terms a simpler problem “Echo.”

I Echo: Alice has a single bit B ∈R {0, 1} and Bob wants to output
B with probability at least 1− δ.

I A protocol ΠIndex for Index yields a protocol ΠEcho,i for Echo
where i is hard-coded into the protocol:

1. Given B, Alice picks Xj ∈R {0, 1} for j 6= i and generates:

X = (X1,X2, . . . ,Xi−1,B,Xi+1, . . . ,Xn)

2. She sends the message M she’d have sent in ΠIndex if she’d had X .

3. Bob receives M and outputs the value he’d have returned in ΠIndex

had his input been i .

I Note 1: If ΠIndex is correct with probability 1− δ then ΠEcho,i is
also correct with probability 1− δ.

I Note 2: The message in ΠIndex on input X ∈R {0, 1}n is distributed
identically to the message in ΠEcho,i on input B ∈R {0, 1}.

17/23

Example: Indexing

I We’ll prove a lower bound on the information cost of Index where
X ∈R {0, 1}n in terms a simpler problem “Echo.”

I Echo: Alice has a single bit B ∈R {0, 1} and Bob wants to output
B with probability at least 1− δ.

I A protocol ΠIndex for Index yields a protocol ΠEcho,i for Echo
where i is hard-coded into the protocol:

1. Given B, Alice picks Xj ∈R {0, 1} for j 6= i and generates:

X = (X1,X2, . . . ,Xi−1,B,Xi+1, . . . ,Xn)

2. She sends the message M she’d have sent in ΠIndex if she’d had X .
3. Bob receives M and outputs the value he’d have returned in ΠIndex

had his input been i .

I Note 1: If ΠIndex is correct with probability 1− δ then ΠEcho,i is
also correct with probability 1− δ.

I Note 2: The message in ΠIndex on input X ∈R {0, 1}n is distributed
identically to the message in ΠEcho,i on input B ∈R {0, 1}.

17/23

Example: Indexing

I We’ll prove a lower bound on the information cost of Index where
X ∈R {0, 1}n in terms a simpler problem “Echo.”

I Echo: Alice has a single bit B ∈R {0, 1} and Bob wants to output
B with probability at least 1− δ.

I A protocol ΠIndex for Index yields a protocol ΠEcho,i for Echo
where i is hard-coded into the protocol:

1. Given B, Alice picks Xj ∈R {0, 1} for j 6= i and generates:

X = (X1,X2, . . . ,Xi−1,B,Xi+1, . . . ,Xn)

2. She sends the message M she’d have sent in ΠIndex if she’d had X .
3. Bob receives M and outputs the value he’d have returned in ΠIndex

had his input been i .

I Note 1: If ΠIndex is correct with probability 1− δ then ΠEcho,i is
also correct with probability 1− δ.

I Note 2: The message in ΠIndex on input X ∈R {0, 1}n is distributed
identically to the message in ΠEcho,i on input B ∈R {0, 1}.

17/23

Example: Indexing

I We’ll prove a lower bound on the information cost of Index where
X ∈R {0, 1}n in terms a simpler problem “Echo.”

I Echo: Alice has a single bit B ∈R {0, 1} and Bob wants to output
B with probability at least 1− δ.

I A protocol ΠIndex for Index yields a protocol ΠEcho,i for Echo
where i is hard-coded into the protocol:

1. Given B, Alice picks Xj ∈R {0, 1} for j 6= i and generates:

X = (X1,X2, . . . ,Xi−1,B,Xi+1, . . . ,Xn)

2. She sends the message M she’d have sent in ΠIndex if she’d had X .
3. Bob receives M and outputs the value he’d have returned in ΠIndex

had his input been i .

I Note 1: If ΠIndex is correct with probability 1− δ then ΠEcho,i is
also correct with probability 1− δ.

I Note 2: The message in ΠIndex on input X ∈R {0, 1}n is distributed
identically to the message in ΠEcho,i on input B ∈R {0, 1}.

17/23

Relating Information Cost of Index and Echo

I Since X1,X2, . . . ,Xn are independent:

cost(ΠIndex) ≥ icost(ΠIndex)

= I (X1X2 . . .Xn : M)

≥ I (X1 : M) + I (X2 : M) + . . .+ I (Xn : M)

= icost(ΠEcho,1) + icost(ΠEcho,2) + . . .+ icost(ΠEcho,n)

I By Fano’s inequality, solving Echo with probability > 1− δ requires

icost(ΠEcho,i) = H(B)− H(B|M) ≥ 1− H2(δ)

where H2(p) = −p lg p − (1− p) lg(1− p).

I Hence, cost(ΠIndex) ≥ (1− H2(δ))n.

18/23

Relating Information Cost of Index and Echo

I Since X1,X2, . . . ,Xn are independent:

cost(ΠIndex) ≥ icost(ΠIndex)

= I (X1X2 . . .Xn : M)

≥ I (X1 : M) + I (X2 : M) + . . .+ I (Xn : M)

= icost(ΠEcho,1) + icost(ΠEcho,2) + . . .+ icost(ΠEcho,n)

I By Fano’s inequality, solving Echo with probability > 1− δ requires

icost(ΠEcho,i) = H(B)− H(B|M) ≥ 1− H2(δ)

where H2(p) = −p lg p − (1− p) lg(1− p).

I Hence, cost(ΠIndex) ≥ (1− H2(δ))n.

18/23

Relating Information Cost of Index and Echo

I Since X1,X2, . . . ,Xn are independent:

cost(ΠIndex) ≥ icost(ΠIndex)

= I (X1X2 . . .Xn : M)

≥ I (X1 : M) + I (X2 : M) + . . .+ I (Xn : M)

= icost(ΠEcho,1) + icost(ΠEcho,2) + . . .+ icost(ΠEcho,n)

I By Fano’s inequality, solving Echo with probability > 1− δ requires

icost(ΠEcho,i) = H(B)− H(B|M) ≥ 1− H2(δ)

where H2(p) = −p lg p − (1− p) lg(1− p).

I Hence, cost(ΠIndex) ≥ (1− H2(δ))n.

18/23

Relating Information Cost of Index and Echo

I Since X1,X2, . . . ,Xn are independent:

cost(ΠIndex) ≥ icost(ΠIndex)

= I (X1X2 . . .Xn : M)

≥ I (X1 : M) + I (X2 : M) + . . .+ I (Xn : M)

= icost(ΠEcho,1) + icost(ΠEcho,2) + . . .+ icost(ΠEcho,n)

I By Fano’s inequality, solving Echo with probability > 1− δ requires

icost(ΠEcho,i) = H(B)− H(B|M) ≥ 1− H2(δ)

where H2(p) = −p lg p − (1− p) lg(1− p).

I Hence, cost(ΠIndex) ≥ (1− H2(δ))n.

18/23

Relating Information Cost of Index and Echo

I Since X1,X2, . . . ,Xn are independent:

cost(ΠIndex) ≥ icost(ΠIndex)

= I (X1X2 . . .Xn : M)

≥ I (X1 : M) + I (X2 : M) + . . .+ I (Xn : M)

= icost(ΠEcho,1) + icost(ΠEcho,2) + . . .+ icost(ΠEcho,n)

I By Fano’s inequality, solving Echo with probability > 1− δ requires

icost(ΠEcho,i) = H(B)− H(B|M) ≥ 1− H2(δ)

where H2(p) = −p lg p − (1− p) lg(1− p).

I Hence, cost(ΠIndex) ≥ (1− H2(δ))n.

18/23

Relating Information Cost of Index and Echo

I Since X1,X2, . . . ,Xn are independent:

cost(ΠIndex) ≥ icost(ΠIndex)

= I (X1X2 . . .Xn : M)

≥ I (X1 : M) + I (X2 : M) + . . .+ I (Xn : M)

= icost(ΠEcho,1) + icost(ΠEcho,2) + . . .+ icost(ΠEcho,n)

I By Fano’s inequality, solving Echo with probability > 1− δ requires

icost(ΠEcho,i) = H(B)− H(B|M) ≥ 1− H2(δ)

where H2(p) = −p lg p − (1− p) lg(1− p).

I Hence, cost(ΠIndex) ≥ (1− H2(δ))n.

18/23

Outline for Disjt Lower Bound

I Express Disjt in terms of Andt where Andt(x1, . . . , xt) =
∏

i xi :

Disjt(C) =
∨
j∈[n]

Andt(C1,j , . . . ,Ct,j)

I Define input C by CDj j ∈R {0, 1} for Dj ∈R [t]. All other entries 0.

I Let M = (M1, . . . ,Mt−1) be the messages sent in a t-party protocol
and define the information cost of a protocol as:

icost(Π|D) = I (C : M|D) where D = (D1, . . . ,Dn) .

I A protocol for Disjt yields n different protocols ΠAndt ,i for Andt :

icost(ΠDisjt |D) ≥
∑
i∈[n]

icost(ΠAndt ,i |D) .

I Result follows by showing icost(ΠAndt ,i |D) = Ω(1/t).

19/23

Outline for Disjt Lower Bound

I Express Disjt in terms of Andt where Andt(x1, . . . , xt) =
∏

i xi :

Disjt(C) =
∨
j∈[n]

Andt(C1,j , . . . ,Ct,j)

I Define input C by CDj j ∈R {0, 1} for Dj ∈R [t]. All other entries 0.

I Let M = (M1, . . . ,Mt−1) be the messages sent in a t-party protocol
and define the information cost of a protocol as:

icost(Π|D) = I (C : M|D) where D = (D1, . . . ,Dn) .

I A protocol for Disjt yields n different protocols ΠAndt ,i for Andt :

icost(ΠDisjt |D) ≥
∑
i∈[n]

icost(ΠAndt ,i |D) .

I Result follows by showing icost(ΠAndt ,i |D) = Ω(1/t).

19/23

Outline for Disjt Lower Bound

I Express Disjt in terms of Andt where Andt(x1, . . . , xt) =
∏

i xi :

Disjt(C) =
∨
j∈[n]

Andt(C1,j , . . . ,Ct,j)

I Define input C by CDj j ∈R {0, 1} for Dj ∈R [t]. All other entries 0.

I Let M = (M1, . . . ,Mt−1) be the messages sent in a t-party protocol
and define the information cost of a protocol as:

icost(Π|D) = I (C : M|D) where D = (D1, . . . ,Dn) .

I A protocol for Disjt yields n different protocols ΠAndt ,i for Andt :

icost(ΠDisjt |D) ≥
∑
i∈[n]

icost(ΠAndt ,i |D) .

I Result follows by showing icost(ΠAndt ,i |D) = Ω(1/t).

19/23

Outline for Disjt Lower Bound

I Express Disjt in terms of Andt where Andt(x1, . . . , xt) =
∏

i xi :

Disjt(C) =
∨
j∈[n]

Andt(C1,j , . . . ,Ct,j)

I Define input C by CDj j ∈R {0, 1} for Dj ∈R [t]. All other entries 0.

I Let M = (M1, . . . ,Mt−1) be the messages sent in a t-party protocol
and define the information cost of a protocol as:

icost(Π|D) = I (C : M|D) where D = (D1, . . . ,Dn) .

I A protocol for Disjt yields n different protocols ΠAndt ,i for Andt :

icost(ΠDisjt |D) ≥
∑
i∈[n]

icost(ΠAndt ,i |D) .

I Result follows by showing icost(ΠAndt ,i |D) = Ω(1/t).

19/23

Outline for Disjt Lower Bound

I Express Disjt in terms of Andt where Andt(x1, . . . , xt) =
∏

i xi :

Disjt(C) =
∨
j∈[n]

Andt(C1,j , . . . ,Ct,j)

I Define input C by CDj j ∈R {0, 1} for Dj ∈R [t]. All other entries 0.

I Let M = (M1, . . . ,Mt−1) be the messages sent in a t-party protocol
and define the information cost of a protocol as:

icost(Π|D) = I (C : M|D) where D = (D1, . . . ,Dn) .

I A protocol for Disjt yields n different protocols ΠAndt ,i for Andt :

icost(ΠDisjt |D) ≥
∑
i∈[n]

icost(ΠAndt ,i |D) .

I Result follows by showing icost(ΠAndt ,i |D) = Ω(1/t).

19/23

Outline

Classic Problems and Reductions

Information Statistics Approach

Hamming Approximation

20/23

Hamming Approximation Lower Bound

Some communication results can be proved via a reduction from other
communication results.

Theorem
If Alice and Bob have x , y ∈ {0, 1}n and Bob wants to determine ∆(x , y)
up to ±

√
n with probability 9/10, then Alice must send Ω(n) bits.

21/23

Hamming Approximation Lower Bound
I Reduction from index problem: Alice knows z ∈ {0, 1}t and Bob

knows j ∈ [t]. Let’s assume |z | = t/2 and this is odd.

I Alice and Bob pick r ∈R {−1, 1}t using public random bits.
I Alice computes sign(r .z) and Bob computes sign(rj)
I Lemma: For some constant c > 0,

P [sign(r .z) = sign(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I Repeat n = 25t/c2 times to construct

xi = I [sign(r .z) = +] and yi = I [sign(rj) = +]

I Note that
zj = 0⇒ E [∆(x , y)] = n/2

zj = 1⇒ E [∆(x , y)] = n/2− 5
√
n

and by Chernoff bounds P
[
|∆(x , y)− E [∆(x , y)] | ≥ 2

√
n
]
< 1/10.

I Hence, a ±
√
n approx. of ∆(x , y) determines zj with prob. > 9/10.

22/23

Hamming Approximation Lower Bound
I Reduction from index problem: Alice knows z ∈ {0, 1}t and Bob

knows j ∈ [t]. Let’s assume |z | = t/2 and this is odd.
I Alice and Bob pick r ∈R {−1, 1}t using public random bits.

I Alice computes sign(r .z) and Bob computes sign(rj)
I Lemma: For some constant c > 0,

P [sign(r .z) = sign(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I Repeat n = 25t/c2 times to construct

xi = I [sign(r .z) = +] and yi = I [sign(rj) = +]

I Note that
zj = 0⇒ E [∆(x , y)] = n/2

zj = 1⇒ E [∆(x , y)] = n/2− 5
√
n

and by Chernoff bounds P
[
|∆(x , y)− E [∆(x , y)] | ≥ 2

√
n
]
< 1/10.

I Hence, a ±
√
n approx. of ∆(x , y) determines zj with prob. > 9/10.

22/23

Hamming Approximation Lower Bound
I Reduction from index problem: Alice knows z ∈ {0, 1}t and Bob

knows j ∈ [t]. Let’s assume |z | = t/2 and this is odd.
I Alice and Bob pick r ∈R {−1, 1}t using public random bits.
I Alice computes sign(r .z) and Bob computes sign(rj)

I Lemma: For some constant c > 0,

P [sign(r .z) = sign(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I Repeat n = 25t/c2 times to construct

xi = I [sign(r .z) = +] and yi = I [sign(rj) = +]

I Note that
zj = 0⇒ E [∆(x , y)] = n/2

zj = 1⇒ E [∆(x , y)] = n/2− 5
√
n

and by Chernoff bounds P
[
|∆(x , y)− E [∆(x , y)] | ≥ 2

√
n
]
< 1/10.

I Hence, a ±
√
n approx. of ∆(x , y) determines zj with prob. > 9/10.

22/23

Hamming Approximation Lower Bound
I Reduction from index problem: Alice knows z ∈ {0, 1}t and Bob

knows j ∈ [t]. Let’s assume |z | = t/2 and this is odd.
I Alice and Bob pick r ∈R {−1, 1}t using public random bits.
I Alice computes sign(r .z) and Bob computes sign(rj)
I Lemma: For some constant c > 0,

P [sign(r .z) = sign(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I Repeat n = 25t/c2 times to construct

xi = I [sign(r .z) = +] and yi = I [sign(rj) = +]

I Note that
zj = 0⇒ E [∆(x , y)] = n/2

zj = 1⇒ E [∆(x , y)] = n/2− 5
√
n

and by Chernoff bounds P
[
|∆(x , y)− E [∆(x , y)] | ≥ 2

√
n
]
< 1/10.

I Hence, a ±
√
n approx. of ∆(x , y) determines zj with prob. > 9/10.

22/23

Hamming Approximation Lower Bound
I Reduction from index problem: Alice knows z ∈ {0, 1}t and Bob

knows j ∈ [t]. Let’s assume |z | = t/2 and this is odd.
I Alice and Bob pick r ∈R {−1, 1}t using public random bits.
I Alice computes sign(r .z) and Bob computes sign(rj)
I Lemma: For some constant c > 0,

P [sign(r .z) = sign(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I Repeat n = 25t/c2 times to construct

xi = I [sign(r .z) = +] and yi = I [sign(rj) = +]

I Note that
zj = 0⇒ E [∆(x , y)] = n/2

zj = 1⇒ E [∆(x , y)] = n/2− 5
√
n

and by Chernoff bounds P
[
|∆(x , y)− E [∆(x , y)] | ≥ 2

√
n
]
< 1/10.

I Hence, a ±
√
n approx. of ∆(x , y) determines zj with prob. > 9/10.

22/23

Hamming Approximation Lower Bound
I Reduction from index problem: Alice knows z ∈ {0, 1}t and Bob

knows j ∈ [t]. Let’s assume |z | = t/2 and this is odd.
I Alice and Bob pick r ∈R {−1, 1}t using public random bits.
I Alice computes sign(r .z) and Bob computes sign(rj)
I Lemma: For some constant c > 0,

P [sign(r .z) = sign(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I Repeat n = 25t/c2 times to construct

xi = I [sign(r .z) = +] and yi = I [sign(rj) = +]

I Note that
zj = 0⇒ E [∆(x , y)] = n/2

zj = 1⇒ E [∆(x , y)] = n/2− 5
√
n

and by Chernoff bounds P
[
|∆(x , y)− E [∆(x , y)] | ≥ 2

√
n
]
< 1/10.

I Hence, a ±
√
n approx. of ∆(x , y) determines zj with prob. > 9/10.

22/23

Hamming Approximation Lower Bound
I Reduction from index problem: Alice knows z ∈ {0, 1}t and Bob

knows j ∈ [t]. Let’s assume |z | = t/2 and this is odd.
I Alice and Bob pick r ∈R {−1, 1}t using public random bits.
I Alice computes sign(r .z) and Bob computes sign(rj)
I Lemma: For some constant c > 0,

P [sign(r .z) = sign(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I Repeat n = 25t/c2 times to construct

xi = I [sign(r .z) = +] and yi = I [sign(rj) = +]

I Note that
zj = 0⇒ E [∆(x , y)] = n/2

zj = 1⇒ E [∆(x , y)] = n/2− 5
√
n

and by Chernoff bounds P
[
|∆(x , y)− E [∆(x , y)] | ≥ 2

√
n
]
< 1/10.

I Hence, a ±
√
n approx. of ∆(x , y) determines zj with prob. > 9/10.

22/23

Proof of Lemma

Claim
Let A be the event A = {sign(r .z) = rj}. For some constant c > 0,

P [A] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I If zj = 0: sign(r .z) and rj are independent so P [A] = 1/2.

I If zj = 1: Let s = r .z − rj , the sum of an even number (` = t/2− 1)
of independent ±1 values. Then,

P [A] = P [A|s = 0]P [s = 0] + P [A|s 6= 0]P [s 6= 0]

I P [s = 0] =
(

`
`/2

)
/2` = 2c/

√
t for some constant c > 0.

I P [A|s = 0] = 1 since s = 0⇒ r .z = rj ⇒ A.
I P [A|s 6= 0] = 1/2 since s 6= 0⇒ s = {. . . ,−4,−2, 2, 4, . . .}. Hence,

sign(r .z) = sign(s) which is independent of rj .

I So P [A] = P [s = 0] + P[s 6=0]
2 = 1

2 + P[s=0]
2 = 1

2 + c√
t
.

23/23

Proof of Lemma

Claim
Let A be the event A = {sign(r .z) = rj}. For some constant c > 0,

P [A] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I If zj = 0: sign(r .z) and rj are independent so P [A] = 1/2.

I If zj = 1: Let s = r .z − rj , the sum of an even number (` = t/2− 1)
of independent ±1 values. Then,

P [A] = P [A|s = 0]P [s = 0] + P [A|s 6= 0]P [s 6= 0]

I P [s = 0] =
(

`
`/2

)
/2` = 2c/

√
t for some constant c > 0.

I P [A|s = 0] = 1 since s = 0⇒ r .z = rj ⇒ A.
I P [A|s 6= 0] = 1/2 since s 6= 0⇒ s = {. . . ,−4,−2, 2, 4, . . .}. Hence,

sign(r .z) = sign(s) which is independent of rj .

I So P [A] = P [s = 0] + P[s 6=0]
2 = 1

2 + P[s=0]
2 = 1

2 + c√
t
.

23/23

Proof of Lemma

Claim
Let A be the event A = {sign(r .z) = rj}. For some constant c > 0,

P [A] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I If zj = 0: sign(r .z) and rj are independent so P [A] = 1/2.

I If zj = 1: Let s = r .z − rj , the sum of an even number (` = t/2− 1)
of independent ±1 values.

Then,

P [A] = P [A|s = 0]P [s = 0] + P [A|s 6= 0]P [s 6= 0]

I P [s = 0] =
(

`
`/2

)
/2` = 2c/

√
t for some constant c > 0.

I P [A|s = 0] = 1 since s = 0⇒ r .z = rj ⇒ A.
I P [A|s 6= 0] = 1/2 since s 6= 0⇒ s = {. . . ,−4,−2, 2, 4, . . .}. Hence,

sign(r .z) = sign(s) which is independent of rj .

I So P [A] = P [s = 0] + P[s 6=0]
2 = 1

2 + P[s=0]
2 = 1

2 + c√
t
.

23/23

Proof of Lemma

Claim
Let A be the event A = {sign(r .z) = rj}. For some constant c > 0,

P [A] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I If zj = 0: sign(r .z) and rj are independent so P [A] = 1/2.

I If zj = 1: Let s = r .z − rj , the sum of an even number (` = t/2− 1)
of independent ±1 values. Then,

P [A] = P [A|s = 0]P [s = 0] + P [A|s 6= 0]P [s 6= 0]

I P [s = 0] =
(

`
`/2

)
/2` = 2c/

√
t for some constant c > 0.

I P [A|s = 0] = 1 since s = 0⇒ r .z = rj ⇒ A.
I P [A|s 6= 0] = 1/2 since s 6= 0⇒ s = {. . . ,−4,−2, 2, 4, . . .}. Hence,

sign(r .z) = sign(s) which is independent of rj .

I So P [A] = P [s = 0] + P[s 6=0]
2 = 1

2 + P[s=0]
2 = 1

2 + c√
t
.

23/23

Proof of Lemma

Claim
Let A be the event A = {sign(r .z) = rj}. For some constant c > 0,

P [A] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I If zj = 0: sign(r .z) and rj are independent so P [A] = 1/2.

I If zj = 1: Let s = r .z − rj , the sum of an even number (` = t/2− 1)
of independent ±1 values. Then,

P [A] = P [A|s = 0]P [s = 0] + P [A|s 6= 0]P [s 6= 0]

I P [s = 0] =
(

`
`/2

)
/2` = 2c/

√
t for some constant c > 0.

I P [A|s = 0] = 1 since s = 0⇒ r .z = rj ⇒ A.
I P [A|s 6= 0] = 1/2 since s 6= 0⇒ s = {. . . ,−4,−2, 2, 4, . . .}. Hence,

sign(r .z) = sign(s) which is independent of rj .

I So P [A] = P [s = 0] + P[s 6=0]
2 = 1

2 + P[s=0]
2 = 1

2 + c√
t
.

23/23

Proof of Lemma

Claim
Let A be the event A = {sign(r .z) = rj}. For some constant c > 0,

P [A] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I If zj = 0: sign(r .z) and rj are independent so P [A] = 1/2.

I If zj = 1: Let s = r .z − rj , the sum of an even number (` = t/2− 1)
of independent ±1 values. Then,

P [A] = P [A|s = 0]P [s = 0] + P [A|s 6= 0]P [s 6= 0]

I P [s = 0] =
(

`
`/2

)
/2` = 2c/

√
t for some constant c > 0.

I P [A|s = 0] = 1 since s = 0⇒ r .z = rj ⇒ A.

I P [A|s 6= 0] = 1/2 since s 6= 0⇒ s = {. . . ,−4,−2, 2, 4, . . .}. Hence,
sign(r .z) = sign(s) which is independent of rj .

I So P [A] = P [s = 0] + P[s 6=0]
2 = 1

2 + P[s=0]
2 = 1

2 + c√
t
.

23/23

Proof of Lemma

Claim
Let A be the event A = {sign(r .z) = rj}. For some constant c > 0,

P [A] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I If zj = 0: sign(r .z) and rj are independent so P [A] = 1/2.

I If zj = 1: Let s = r .z − rj , the sum of an even number (` = t/2− 1)
of independent ±1 values. Then,

P [A] = P [A|s = 0]P [s = 0] + P [A|s 6= 0]P [s 6= 0]

I P [s = 0] =
(

`
`/2

)
/2` = 2c/

√
t for some constant c > 0.

I P [A|s = 0] = 1 since s = 0⇒ r .z = rj ⇒ A.
I P [A|s 6= 0] = 1/2 since s 6= 0⇒ s = {. . . ,−4,−2, 2, 4, . . .}. Hence,

sign(r .z) = sign(s) which is independent of rj .

I So P [A] = P [s = 0] + P[s 6=0]
2 = 1

2 + P[s=0]
2 = 1

2 + c√
t
.

23/23

Proof of Lemma

Claim
Let A be the event A = {sign(r .z) = rj}. For some constant c > 0,

P [A] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I If zj = 0: sign(r .z) and rj are independent so P [A] = 1/2.

I If zj = 1: Let s = r .z − rj , the sum of an even number (` = t/2− 1)
of independent ±1 values. Then,

P [A] = P [A|s = 0]P [s = 0] + P [A|s 6= 0]P [s 6= 0]

I P [s = 0] =
(

`
`/2

)
/2` = 2c/

√
t for some constant c > 0.

I P [A|s = 0] = 1 since s = 0⇒ r .z = rj ⇒ A.
I P [A|s 6= 0] = 1/2 since s 6= 0⇒ s = {. . . ,−4,−2, 2, 4, . . .}. Hence,

sign(r .z) = sign(s) which is independent of rj .

I So P [A] = P [s = 0] + P[s 6=0]
2 = 1

2 + P[s=0]
2 = 1

2 + c√
t
.

23/23

	Classic Problems and Reductions
	Information Statistics Approach
	Hamming Approximation

