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® Big Graphs
Social networks, web, call graphs, biological
networks... Graphs are a natural way to encode
structural information when we have data about
both basic entities and their relationships.

Can'’t use classic algorithms on such graphs. Often can’t

store graph in memory, may be distributed across
multiple machines, data may change over time...

What are new
—Pp “textbook” algorithms for
modern massive graphs?




® Jutorial Goals and Caveats

Present some new algorithmic primitives for large graphs.

Widely applicable technique; try to be platform agnostic.

. Won'’t be comprehensive; will cherry pick illustrative results.

"o« Focus on arbitrary graphs rather than specific applications.

Won't focus on proofs but will give basic outline when it
helps convey why certain approaches are effective.

® Resources

Survey: SIGMOD Record
http://people.cs.umass.edu/~mcgregor/papers/graphsurvey.pdf

Tutorial: Slides and Bibliography
http://people.cs.umass.edu/~mcgregor/graphs

Lectures: Ten Lectures on Graph Streams
https://people.cs.umass.edu/~mcgregor/courses/CS71 1S18/



http://people.cs.umass.edu/~mcgregor/graphs
https://people.cs.umass.edu/~mcgregor/courses/CS711S18/

Overview

® Part [:Sampling Sampling for finding densest subgraphs,
" _small matchings, triangles, spectral properties.

“Different sampling techniques for different problems™

f
) ML

(ol ® ““Part II: Sketching Dimensionality reduction for graph data.
2 Examples include connectivity and cut sparsification.

“Homomorphic compression: sketch first and then run
algorithms on the sketched data™

® Part lll: Streaming What can you compute in limited memory
with only a few passes over the edges.

“A little inspiration yields a lot less iteration™




Recurring Theme

? What’s appropriate notion of lossy compression for graphs!?

® [f compression is easy, we get faster and more-space efficient
algorithms by using existing algorithms on compressed graphs.
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Given a graph G, the density of a set of nodes ScV is:

7t of edges with both endpoints in 5

D
> # of nodes in S

Problem Estimating D*=maxs Ds is a basic graph problem with
numerous applications. Studied in a variety of models.

See tutorial Gionis, Tsourakakis [KDD 1[5]

® Thm Sample O(g2 n) edges uniformly and find the densest
subgraph in sampled graph. Gives a (|+¢&)-approx whp.
McGregor et al. [MFCS |5], Esfandiari et al. [SPAA 16]
Mitzenmacher et al. [KDD 15]




Why Uniform Sampling Works...

@ Essentially sampling each edge w/p p = e=2n/m.

o Let D’s be density of S in sampled graph.

Ds=1.0
D's= 0.5

@ Chernoff: For each S, Ds = D’s/p+eD”* w/p 1-n-3sl
@ Union Bound: Bound applies for all S w/p 1-n-

@ There are < nk subsets of k nodes. So bound fails
for some subset of size k w/p < nk n-3k = n-2

@ Bound fails for some subset w/p < n-2+n-4+...+n-2n < n-!

@ So max density of sampled graph gives l+& approx.
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Matching Problem Find large set of edges such that no two
edges share an endpoint.

How many “samples” are needed to find a matching of size k!

Sampling uniformly can be very inefficient...
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® SNAPE “Sample Nodes And Pick Edge’” Sampling:
® Sample each node with probability I/k and delete rest

® Pick a random edge amongst those that remain.

® T[heorem If G has max matching size k, then O(k? log k)
SNAPE samples will include a max matching from G.
Chitnis et al. [SODA 16], Bury et al. [Algorithmica 18]




Why SNAPE Sampling Works...

@ Consider a maximum matching M of size k and focus
on arbitrary edge {u,v} in this matching.

fo 7 T sk o
) V\W.

o W/p Q(k-2) u and v only endpoints of M sampled.

& Hence, when we pick one of the remaining edges its
either {u,v} or another edge thats equally useful.

o Take O(k2 log k) samples; apply analysis to all edges.
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® Given a graph G, the global clustering coefficient is

3 X number of triangles

A number of length 2 paths

A measure of how much nodes tend to cluster together.

® Monochromatic Sampling Randomly color each node from a set
of colors. Store all edges with monochromatic endpoints. If
length-2 path {u,v}, {v,w} is stored, {u,w} also stored if it exists.

® Thm Can additively estimate k from O(+/n) samples.
Pagh, Tsourakakis [IPL 12], Jha, Seshadhri, Pinar [KDD 15]




9

9

Proof of Lemma

Let k = # colors and Ts = # friangles sampled.

Edges Sampled: mp

Expectation: E[Ts]=Tp2 where p=1/k and T is # triangles
Variance: Let W = # length 2-paths

Var[Ts] < Tp? + 10 - W3/2p3
Chebyshev Bound:

Var[T. O(1
Pr{| Fe/p? =M W e

k=e2./(m2/n) for 0.01 error prob. and O(s-2 +/n) samples
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® Defn A sparsifier of graph G is a weighted subgraph H with:

V cuts: “‘size of cut in G” = (lxg) “size of cut in H”

Basic Abproach Sample each edge uv with probability p.y and
reweight by |/pu. Probabilities depend on edge properties...

® Thm If piw=e€2/Ay or puw=e2ry then result is sparsifier with
0(8'2 n) edges.  Fung et al. [STOC | 1], Spielman, Srivastava [STOC 08]

4 ) 4
Aw is the min number of e | ruv is potential difference

edges whose removal + < when unit of flow injected
disconnects u and v ) >4 L at u and extracted at v

® Simpler Thm If min-cut is » €2log n then pe=1/2 works.




Proof Idea of Simpler Theorem ...

a Lemma (Chernoff) Let k" be number of edges that
were sampled across some cut of size k. Then

Prik’ # (1x€) k/2] < exp(-€2 k/6)

o Lemma (Karger) The number of cuts with k edges
is < exp(2k log n /A) where A is size of min-cut.

o Result then follows by substituting bound for A
and applying union bound over all cuts.
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Sketching

What is sketching?
Surprising connectivity example
Revisiting graph cuts and sparsification
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What is sketching?
Surprising connectivity example
Revisiting graph cuts and sparsification




Random linear projection M: RN—RD where D«N that preserves
properties of any veRN with high probability.

M = |[Mv| —— answer

Many results for numerical statistics and geometric properties...
extensive theory with connections to hashing, compressed
sensing, dimensionality reduction, metric embeddings... widely
applicable since parallelizable and suitable for stream processing.

Example “lop Sampling” Sketch Can be used to sample uniformly
from non-zero entries of the vector where D=polylog(N).
Jowhari, Saglam, Tardos [PODS | I], Kapralov et al. [FOCS 7]

Question VWWhat about analyzing massive graphs via sketches!?
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Basic Idea for lo sampling...

@ Entry in ith row of M is 1 w/p 2-i*l. Some entry of Ma
probably corresponds to single entry of a.

Lo 1 P T
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«— (00 many
«— Too many

«Just right

«— Too few

@ How do we know when this happens? How do we

know which entry of the vector was isolated?



More Details for lo sampling...

o Take 3 copies of M: Replace 15 in 2nd copy by #col.
Replace 1s in 3rd copy by r#cl where r is random.

\/

\ ( x:i:z \

0
X+ 4y 4+ bz

X+ rty + rz
Pz

o o v o o Nji—e © o —

O O O o © O owjio © ©

@ Lemma: With high probability, if w=rv& u then we've
isolated non-zero element in position v/u.
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® Communication Problem n players each have a list their
friends. Simultaneously, they each send a message to a
central player who deduces if underlying graph is connected.

® Thm O(polylog n) bit message from each player suffices.
Ahn, Guha, McGregor [SODA 12]




® (Can’t be possible! What if there’s a bridge (u,v) in the graph,i.e.,
a friendship that is critical to ensuring the graph is connected.

® |t appears that at least one player needs to send {)(n) bits.

- Central player needs to know about the special friendship.
- Participant doesn’t know which friendships are special.
- Participants may have ()(n) friends.




® Players send carefully-designed sketches of address books.

® Homomorphic Compression Instead of running algorithm on
original data, run algorithm on sketched data.
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Ingredient 1: Basic Algorithm

@ Algorithm (Spanning Forest):
@ For each node: pick incident edge
@ For each connected component: pick incident edge

@ Repeat until no edges between connected comp.

o Lemma After O(log n) rounds selected edges include
spanning forest.



Ingredient 2: Sketching Neighborhoods

@ For node i, let aj be vector indexed by node pairs.
Non-zero entries: aili,jl=1 if j>i and aili,jl=-1 if j«i.

{12} {1,3} {14} {15} {23} {24} {25} {34} {35} {45}

a; = (RE-DR0- 00, 070 OMREREe ")
a; = (=1, 0807 0.1 0 0 0¥rs0y)
a1+a2:(0100100000)

@ Lemma For any subset of nodes ScV, non-zero
entries of ) ._ca; are edges across cut (SV\S)

@ Player j sends M(aj) where M is "lop sampling” sketch.



Recipe: Sketch & Compute on Sketches

@ Player with Address Books: Player j sends Ma,;

a Central Player: "Runs Algorithm in Sketch Space”
@ Use Ma; to get incident edge on each node |
a For i=2 to log n:

@ To get incident edge on component ScV use:

Z Ma; = M(Z a;) — non-zero elt. of Z a; = edge across cut

JES JES JES

Detail: Actually each player sends log n independent sketches Miaj, Mzaj, ...
and central player uses Mia; when emulating ith iteration of the algorithm.



® Thm O(polylog n) bit message from each player suffices.

® Extensions O(k) bit messages for k-edge connectivity and
O(k?) bit messages for k-node connectivity.




Extending to k-Edge-Connectivity

£ & Algorithm: For i=l fo k:

% Let Fi be spanning forest of G(V,E-Fi-...-Fi.1)
f;,;’, @ Lemma: Fi+..+Fk is k-edge-connected iff G is.

@

, @ Sketch: Simultaneously construct k independent
S connectivity sketches My(G), M2(G), ..., Mk(G).

g @ Run Algorithm in Sketch Space:

% o Use M((G) to find a spanning forest F, of G
c  © Use MAG)-MuF)=Mo(G-F)) to find F2

5 o Use M3(G)-Ms(F1)-Ms(F2)=Ms(G-Fi-F2) to find Fs..
5

@ Extension: Can recover a set of "weak” edges whose
removal leaves connected components with min-cut > k.



k-Node-Connectivity

@ Algorithm:

Let Hi, Hz, ... H- where r=k3 log n and H; is induced
subgraph on random set of n/k nodes.

Let Fi be a spanning forest of Hi.

Basic Algorithm

@ Lemma: Whp, Fi+F2+...4+F: is k-node connected iff G is.

a Sketch: Construct connectivity sketch for each H;, and
use this to find Fi.

Emulation in
Sketch Space
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Thm O(e2 polylog n) bit messages suffice for central player

to construct sparsifier and approx all graph cuts.
Guha, McGregor,Tench [PODS 15], Kapralov et al. [STOC [4]

Main Ildeas

|. For a graph G, can find all edges in small cuts.

2. For large cuts, suffices to sample edges with prob. |/2.

3. So, sparsifying G reduces to sparsifying sampled graph G’.

4. To sparsify G’ recurse... Can do recursion in parallel.
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Revisiting Matching
Correlation Clustering
Coloring Graphs
Coverage and Submodular Maximization




® Two Main Graph Stream Models

® Insert-Only Model: Input is a stream of edges.

® |nsert-Delete Model: Edge insertions and edge deletions.

Mark and Erica are now friends.
2n Like - Add Friend

® Goal Using small memory, compute properties of the graph.

® All the earlier algorithms apply in insert-delete model:
® Maintain sketch Mx where x is characteristic vector of edges.
® When e inserted, update sketch Mx—Mx+(eth column of M)

® When e deleted, update sketch Mx—Mx-(eth column of M)




® Results so far: One-pass dynamic data stream algorithms for:
a) |+€ approx of densest subgraph in O(€-2n) space.

b) 1+¢€ approx of all cuts in O(€-2n) space via cut sparsification.

c) Additive € approx of clustering coefficient in O(g-2+/n) space.

d) Finding matching and vertex cover of size k in O(k2) space.
e) k-edge connectivity in O(nk) space.
f) k-node connectivity in O(nk2) space.

® Many of above space bounds can be shown to be optimal via
reductions from communication complexity.

® Many other algorithms... some only for edge insertions or use
multiple passes or only work for certain types of graphs.
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® Unweighted Matching Greedy algorithm returns 2-approx using
O(n) space. Embarrassingly, this is best known one-pass result!

Approximation Ratios for Weighted Matching

Feigenbaum et al. McGregor Epstein et al. Crouch-Stubbs Paz-Schwartzman

® Weighted Matching 2+€ approx in O(n/€) space.
Paz, Schwartzman [SODA 17], Ghaffari, Wajc [SOSA 19]

? Improve result for sparse graphs? Graph has arboricity a if all
subgraphs have average degree < d. Planar graph has a=3.




Insert-Delete Algorithm

O

Lemma: match(G)/(2+a) < A< match(G) where A is total edge
weight if each edge uv gets weight

. 1 1
Fuv = TN (deg(u) + 1" deg(v) + 1)

Thm: Can 2+a+¢ approximate match(G) using O(n*5) space:
If match(G)=<n?5>, can find exactly using earlier algorithm.

Otherwise, evaluate A on random set of = n%> nodes.




Proof of Lemma

® The edge weights are a fractional matching, i.e., for any node u:

1
Z Horw = Z deg(u) + 1 <1

vel(u) vel(u)
® Jo prove total weight < match(G): Use Edmond’s matching
polytope thm since weight on subgraph of r nodes is <(r-1)/2.

® To prove total weight = match(G)/(2+0):

Total weight of edges incident to “high degree” vertices H at
least |H|/(2+0) and all other weights are at least |/(2+q).

Matching size is at most |H| + “edges not incident to H”




Insert-Only Algorithm

® Thm a+2+¢€ approx of matching size in O(polylog n) space.
Cormode et al. [ESA 17], McGregor,Vorotnikova [SOSA 18]

® Define Edge {u,v} is special if < a edges incident to uand < @
edges incident to v later than {u,v}. Let s be # special edges.

® |emma match(G)=<s<(2+a)match(G).

® Proof Ingredients Graph of special edges has degrees < a+1.
Low arboricity bounds number of almost special edges.

® Algorithm Estimate s up to a factor |+¢&

a) Suppose we have guess g that is 2-approximates s

b) Sample each edge w/p =&2 (log n)/g. If you subsequently
see >0 edges incident to either endpoint, drop the edge.

® Can show a) the current sample size is always small and b)
size of final sample and g yields good approx for s.




Final Optimized Algorithm...

1. Initialize S < 0, p = 1, estimate = 0
2. For each edge e = uv in the stream:
a. With probability p add e to S and initialize counters c¥ <— 0 and c? < 0
b. For each edge ¢’ € S, if €’ shares endpoint w with e:
Increment c;;
If ¢% > «, remove €' and corresponding counters from S
c. If | S| > 40e2 logn:
p < p/2
Remove each edge in S and corresponding counters with probability 1/2
d. estimate <— max(estimate, |S|/p)
3. Return estimate

® PBest Case Scenario You put a lot of work/maths into designing
and analyzing an algorithm but the final algorithm is simple.
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® Consider a complete graph where edges are labelled
attractive or repulsive. Given a node partition, an attractive
edge is sad if it is cut and a repulsive edge is sad if it is not cut.

Correlation Clustering Find partition minimizing # sad edges.
See tutorial Bonchi, Garcia-Soriano, Liberty [KDD [4]

® 3-ApproxAlgorithm a) Pick random node. b) Form cluster with
it and its attracted neighbors. c) Remove cluster from graph
and repeat until nodes remain.  Ailon, Charikar, Newman [J.ACM 08]




® Emulating algorithm in two passes:

® Preprocess Randomly order nodes, vi, vy, ..., Vn.

® first Pass Store all attractive edges incident to {vi,...,vvn }.
Now can emulate first +/n iterations of the algorithm.

Second Pass Store all remaining attractive edges. Now can
emulate remaining steps of the algorithm.

® Thm Algorithm uses O(n'5) space. Ahn et al. [ICML 16]

® Proof Idea At most n!- edges stored in first pass. In second,
pass, can show remaining node have at most n%> neighbors.

® With more work, can get O(n) space with O(log log n) passes.
Can also find maximal independent sets.
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® (Coloring With min number of colors, assign a color to every

4

node such that no edge has monochromatic endpoints.

Thm Can color a graph in A+1 colors where A is max degree.

How can we do this in a few passes with O(n) space?

O(A log log n) passes via independent sets. Let’s do better!




® (|+¢&)A Coloring a) Randomly color with A/r colors. b) Store
edges E’ with monochromatic endpoints. c) Shade colors such
that E’ edges no longer monochromatic.  Berq, Ghosh [ArXiv 18]

W ol

Spbace Analysis |E’|=O(nr) since probability edge in E’ is r/A.

Colors Analysis If r=e2log n, max degree in E’ is Ap<(l+€)r and
final number of colors is (1+Ag)A/r= (1+€)A.

A+1 Coloring Idea For node v, pick Syc{l,...,A+1} of O(log n)

random colors. May assume Vv’s color in Sy. Assadi et al. [SODA 19]
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® Max-k-Coverage Given a stream of subsets S|, ..., Sm of [n], find
C that maximizes f(C)=|Uicc Si| subject to |C|<k.

Q

Q

Q QIQ Q

® Submodular Functions f is sub-modular if for AcB and x¢B,

F(AU{x}) = f(A) =2 f(BU {x}) — f(B)

® Thm (1-€)/2 approx. of max-coverage in O(e-3k) space.
McGregor,Vu [ICDT 17]




® Algorithm Guess g such that OPT<g=<(1+€&)OPT. Add first <k
sets that each cover at least g/(2k) new elements.

® Approx Ratio
® |f k sets added, we cover g/2>=OPT/2.

® |f less sets added, each set not added covers <g/(2k) new
elements and hence we covered OPT-g/2>OPT(|-¢€)/2.

® Reducing Space Above algorithm requires O(&-! OPT) space.
Can use subsampling to such that OPT = O(&-2k).

® Generalizations Constant passes for = |-|/e approx. Extends to
other monotone submodular function. Other work on non-

monotone functions, beyond cardinality constraints, etc.
McGregor,Vu [ICDT 17], Bateni et al. [SPAA 17], Assadi [PODS 17]




Obrigado!




