
Algorithmic Approaches
for Analyzing Large Graphs:

Sampling, Sketching, Streaming

Andrew McGregor
University of Massachusetts, Amherst

What are new
“textbook” algorithms for
modern massive graphs?

• Big Graphs
Social networks, web, call graphs, biological
networks… Graphs are a natural way to encode
structural information when we have data about
both basic entities and their relationships.

Can’t use classic algorithms on such graphs. Often can’t
store graph in memory, may be distributed across
multiple machines, data may change over time…

• Tutorial Goals and Caveats

Present some new algorithmic primitives for large graphs.

Widely applicable technique; try to be platform agnostic.

Won’t be comprehensive; will cherry pick illustrative results.

Focus on arbitrary graphs rather than specific applications.

Won’t focus on proofs but will give basic outline when it
helps convey why certain approaches are effective.

• Resources
• Survey: SIGMOD Record
• http://people.cs.umass.edu/~mcgregor/papers/graphsurvey.pdf
• Tutorial: Slides and Bibliography
• http://people.cs.umass.edu/~mcgregor/graphs
• Lectures: Ten Lectures on Graph Streams
• https://people.cs.umass.edu/~mcgregor/courses/CS711S18/

Graph Stream Algorithms: A Survey

Andrew McGregor⇤

University of Massachusetts

mcgregor@cs.umass.edu

ABSTRACT

Over the last decade, there has been considerable in-

terest in designing algorithms for processing massive

graphs in the data stream model. The original moti-

vation was two-fold: a) in many applications, the dy-

namic graphs that arise are too large to be stored in the

main memory of a single machine and b) considering

graph problems yields new insights into the complexity

of stream computation. However, the techniques devel-

oped in this area are now finding applications in other

areas including data structures for dynamic graphs, ap-

proximation algorithms, and distributed and parallel com-

putation. We survey the state-of-the-art results; iden-

tify general techniques; and highlight some simple al-

gorithms that illustrate basic ideas.

1. INTRODUCTION

Massive graphs arise in any application where there

is data about both basic entities and the relationships

between these entities, e.g., web-pages and hyperlinks;

neurons and synapses; papers and citations; IP addresses

and network flows; people and their friendships. Graphs

have also become the de facto standard for representing

many types of highly-structured data. However, analyz-

ing these graphs via classical algorithms can be chal-

lenging given the sheer size of the graphs. For exam-

ple, both the web graph and models of the human brain

would use around 10
10 nodes and IPv6 supports 212

8

possible addresses.

One approach to handling such graphs is to process

them in the data stream model where the input is de-

fined by a stream of data. For example, the stream could

consist of the edges of the graph. Algorithms in this

model must process the input stream in the order it ar-

rives while using only a limited amount memory. These

constraints capture various challenges that arise when

processing massive data sets, e.g., monitoring network

traffic in real time or ensuring I/O efficiency when pro-

cessing data that does not fit in main memory. Related

⇤Supported in part by NSF awards CCF-0953754 and CCF-

1320719 and a Google Research Award.

questions that arise include how to trade-off size and ac-

curacy when constructing data summaries and how to

quickly update these summaries. Techniques that have

been developed to the reduce the space use have also

been useful in reducing communication in distributed

systems. The model also has deep connections with a

variety of areas in theoretical computer science includ-

ing communication complexity, metric embeddings, com-

pressed sensing, and approximation algorithms.

The data stream model has become increasingly pop-

ular over the last twenty years although the focus of

much of the early work was on processing numerical

data such as estimating quantiles, heavy hitters, or the

number of distinct elements in the stream. The earli-

est work to explicitly consider graph problems was the

influential by paper by Henzinger et al. [36] which con-

sidered problems related to following paths in directed

graphs and connectivity. Most of the work on graph

streams has occurred in the last decade and focuses on

the semi-streaming model [27, 52]. In this model the

data stream algorithm is permittedO(n polylog
n) space

where n is the number of nodes in the graph. This is

because most problems are provably intractable if the

available space is sub-linear in n, whereas many prob-

lems become feasible once there is memory roughly pro-

portional to the number of nodes in the graph.

In this document we will survey the results known

for processing graph streams. In doing so there are nu-

merous goals including identifying the state-of-the-art

results for a variety of popular problems and identify-

ing general algorithmic techniques. It will also be nat-

ural to discuss some important summary data structures

for graphs, such as spanners and sparsifiers. Through-

out, we will present various simple algorithms, some of

which may not be optimal, that illustrate basic ideas and

would be suitable for teaching in an undergraduate or

graduate classroom setting.

Notation. Throughout this document we will use n and

m to denote the number of nodes and edges in the graph

under consideration. For any natural number k, we use

[k] to denote the set {1, 2, . . .
, k}. We write a = b ± c

http://people.cs.umass.edu/~mcgregor/graphs
https://people.cs.umass.edu/~mcgregor/courses/CS711S18/

• Part 1: Sampling Sampling for finding densest subgraphs,
small matchings, triangles, spectral properties.

“Different sampling techniques for different problems”

• Part II: Sketching Dimensionality reduction for graph data.
Examples include connectivity and cut sparsification.

“Homomorphic compression: sketch first and then run
algorithms on the sketched data”

• Part III: Streaming What can you compute in limited memory
with only a few passes over the edges.

“A little inspiration yields a lot less iteration”

Overview

? What’s appropriate notion of lossy compression for graphs?

• If compression is easy, we get faster and more-space efficient
algorithms by using existing algorithms on compressed graphs.

Recurring Theme

Part 1

Sampling
Uniform Sampling + Densest Subgraph

Snape Sampling + Matching
Monochromatic Sampling + Clustering Coefficient
Edge-Weighted Sampling + Cuts and Sparsification

Part 1

Sampling
Uniform Sampling + Densest Subgraph

Snape Sampling + Matching
Monochromatic Sampling + Clustering Coefficient
Edge-Weighted Sampling + Cuts and Sparsification

• Given a graph G, the density of a set of nodes S⊂V is:

• Problem Estimating D*=maxS DS is a basic graph problem with
numerous applications. Studied in a variety of models.

• See tutorial Gionis, Tsourakakis [KDD 15]

• Thm Sample Õ(ε-2 n) edges uniformly and find the densest
subgraph in sampled graph. Gives a (1+ε)-approx whp.

• McGregor et al. [MFCS 15], Esfandiari et al. [SPAA 16]

• Mitzenmacher et al. [KDD 15]

DS =
of edges with both endpoints in S

of nodes in S

Essentially sampling each edge w/p p ≈ ε-2n/m.

Let D’S be density of S in sampled graph.

Chernoff: For each S, DS = D’S/p±εD* w/p 1-n-3|S|

Union Bound: Bound applies for all S w/p 1-n-1

There are ≤ nk subsets of k nodes. So bound fails
for some subset of size k w/p ≤ nk n-3k = n-2k

Bound fails for some subset w/p ≤ n-2+n-4+…+n-2n ≤ n-1

So max density of sampled graph gives 1+ε approx.

Why Uniform Sampling Works…

DS = 1.0
D’S = 0.5

Part 1

Sampling
Uniform Sampling + Densest Subgraph

Snape Sampling + Matching
Monochromatic Sampling + Clustering Coefficient
Edge-Weighted Sampling + Cuts and Sparsification

• Matching Problem Find large set of edges such that no two
edges share an endpoint.

• How many “samples” are needed to find a matching of size k?

• Sampling uniformly can be very inefficient…

C
O

M
PL

ET
E

BI
PA

RT
IT

E

n≫k/2 k/2

• SNAPE “Sample Nodes And Pick Edge” Sampling:

• Sample each node with probability 1/k and delete rest

• Pick a random edge amongst those that remain.

• Theorem If G has max matching size k, then O(k2 log k)
SNAPE samples will include a max matching from G.

Chitnis et al. [SODA 16], Bury et al. [Algorithmica 18]

Consider a maximum matching M of size k and focus
on arbitrary edge {u,v} in this matching.

W/p Ω(k-2) u and v only endpoints of M sampled.

Hence, when we pick one of the remaining edges it’s
either {u,v} or another edge that’s equally useful.

Take O(k2 log k) samples; apply analysis to all edges.

Why SNAPE Sampling Works…

u

v
w

Part 1

Sampling
Uniform Sampling + Densest Subgraph

Snape Sampling + Matching
Monochromatic Sampling + Clustering Coefficient
Edge-Weighted Sampling + Cuts and Sparsification

• Given a graph G, the global clustering coefficient is

A measure of how much nodes tend to cluster together.

• Monochromatic Sampling Randomly color each node from a set
of colors. Store all edges with monochromatic endpoints. If
length-2 path {u,v}, {v,w} is stored, {u,w} also stored if it exists.

• Thm Can additively estimate κ from Õ(√n) samples.

• Pagh, Tsourakakis [IPL 12], Jha, Seshadhri, Pinar [KDD 15]

 =
3⇥ number of triangles

number of length 2 paths

Let k = # colors and TS = # triangles sampled.

Edges Sampled: mp

Expectation: E[TS]=Tp2 where p=1/k and T is # triangles

Variance: Let W = # length 2-paths

Chebyshev Bound:

k≈ε2√(m2/n) for 0.01 error prob. and O(ε-2 √n) samples

Proof of Lemma

Pr[|TS/p2 � T | > ✏W]  Var [TS]
✏2p4W 2  O(1)

p✏2
p
W

Var [TS]  Tp2 + 10 ·W 3/2p3

Part 1

Sampling
Uniform Sampling + Densest Subgraph

Snape Sampling + Matching
Monochromatic Sampling + Clustering Coefficient
Edge-Weighted Sampling + Cuts and Sparsification

• Defn A sparsifier of graph G is a weighted subgraph H with:

∀ cuts: “size of cut in G” = (1±ε) “size of cut in H”

• Basic Approach Sample each edge uv with probability puv and
reweight by 1/puv. Probabilities depend on edge properties…

• Thm If puv≈ε-2/λuv or puv≈ε-2ruv then result is sparsifier with
Õ(ε-2 n) edges. Fung et al. [STOC 11], Spielman, Srivastava [STOC 08]

• Simpler Thm If min-cut is ≫ ε-2 log n then pe=1/2 works.

1

2

3

5

4

ruv is potential difference
when unit of flow injected

at u and extracted at v

λuv is the min number of
edges whose removal
disconnects u and v

Lemma (Chernoff) Let k’ be number of edges that
were sampled across some cut of size k. Then

Pr[k’ ≠ (1±ℇ) k/2] ≤ exp(-ℇ2 k/6)

Lemma (Karger) The number of cuts with k edges
is < exp(2k log n /𝝺) where 𝝺 is size of min-cut.

Result then follows by substituting bound for 𝝺
and applying union bound over all cuts.

Proof Idea of Simpler Theorem …

Part II

Sketching
What is sketching?

Surprising connectivity example
Revisiting graph cuts and sparsification

Part II

Sketching
What is sketching?

Surprising connectivity example
Revisiting graph cuts and sparsification

• Random linear projection M: ℝN→ℝD where D≪N that preserves
properties of any v∈ℝN with high probability.

• Many results for numerical statistics and geometric properties...
extensive theory with connections to hashing, compressed
sensing, dimensionality reduction, metric embeddings... widely
applicable since parallelizable and suitable for stream processing.

• Example “l0 Sampling” Sketch Can be used to sample uniformly
from non-zero entries of the vector where D=polylog(N).

 Jowhari, Saglam, Tardos [PODS 11], Kapralov et al. [FOCS 17]

? Question What about analyzing massive graphs via sketches?

�! answer

2

666666664

v

3

777777775

2

4 M

3

5 =

2

4Mv

3

5

Entry in ith row of M is 1 w/p 2-i+1. Some entry of Ma
probably corresponds to single entry of a.

How do we know when this happens? How do we
know which entry of the vector was isolated?

Basic Idea for l0 sampling...

Take 3 copies of M: Replace 1’s in 2nd copy by #col.
Replace 1’s in 3rd copy by r#col where r is random.

Lemma: With high probability, if w=rv/u u then we’ve
isolated non-zero element in position v/u.

=

0

BBBBBBBBBBBBBBBBBB@

x + y + z
x + z
y
0

x + 4y + 5z
x + 5z
4y
0

rx + r4y + r5z
rx + r5z

r4y
0

1

CCCCCCCCCCCCCCCCCCA

More Details for l0 sampling...

0

BBBBBBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1
1 0 0 0 1 1 1 0
0 0 0 1 0 0 1 0
0 1 0 0 0 0 0 0
1 2 3 4 5 6 7 8
1 0 0 0 5 6 7 0
0 0 0 4 0 0 7 0
0 2 0 0 0 0 0 0
r1 r2 r3 r4 r5 r6 r7 r8

r1 0 0 0 r5 r6 r7 0
0 0 0 r4 0 0 r7 0
0 r2 0 0 0 0 0 0

1

CCCCCCCCCCCCCCCCCCA

= u

= v

= w

Part II

Sketching
What is sketching?

Surprising connectivity example
Revisiting graph cuts and sparsification

...

• Communication Problem n players each have a list their
friends. Simultaneously, they each send a message to a
central player who deduces if underlying graph is connected.

• Thm O(polylog n) bit message from each player suffices.
 Ahn, Guha, McGregor [SODA 12]

• Can’t be possible! What if there’s a bridge (u,v) in the graph, i.e.,
a friendship that is critical to ensuring the graph is connected.

• It appears that at least one player needs to send Ω(n) bits.

- Central player needs to know about the special friendship.

- Participant doesn’t know which friendships are special.

- Participants may have Ω(n) friends.

• Players send carefully-designed sketches of address books.

• Homomorphic Compression Instead of running algorithm on
original data, run algorithm on sketched data.

AlgorithmAlgorithm ANSWER

Sketch

O
R

IG
IN

A
L

G
R

A
PH

...

M()
M()

M()

...

SK
ET

C
H

ED
 G

R
A

PH
M()

Algorithm (Spanning Forest):

For each node: pick incident edge

For each connected component: pick incident edge

Repeat until no edges between connected comp.

Lemma After O(log n) rounds selected edges include
spanning forest.

Ingredient 1: Basic Algorithm

For node i, let ai be vector indexed by node pairs.
Non-zero entries: ai[i,j]=1 if j>i and ai[i,j]=-1 if j<i.

Lemma For any subset of nodes S⊂V, non-zero
entries of are edges across cut (S,V\S)

Player j sends M(aj) where M is “l0 sampling” sketch.

Ingredient 2: Sketching Neighborhoods

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

a1 + a2 =
�
0 1 0 0 1 0 0 0 0 0

�

P
j2S aj

Player with Address Books: Player j sends Maj

Central Player: “Runs Algorithm in Sketch Space”

Use Maj to get incident edge on each node j

For i=2 to log n:

To get incident edge on component S⊂V use:

Recipe: Sketch & Compute on Sketches

X

j2S

Maj = M(
X

j2S

aj)

Detail: Actually each player sends log n independent sketches M1aj, M2aj, ...
and central player uses Miaj when emulating ith iteration of the algorithm.

�! non-zero elt. of
X

j2S

aj = edge across cut

...

• Thm O(polylog n) bit message from each player suffices.

• Extensions Õ(k) bit messages for k-edge connectivity and
Õ(k2) bit messages for k-node connectivity.

Algorithm: For i=1 to k:

• Let Fi be spanning forest of G(V,E-F1-...-Fi-1)

Lemma: F1+...+Fk is k-edge-connected iff G is.

Sketch: Simultaneously construct k independent
connectivity sketches M1(G), M2(G), ..., Mk(G).

Run Algorithm in Sketch Space:

Use M1(G) to find a spanning forest F1 of G

Use M2(G)-M2(F1)=M2(G-F1) to find F2

Use M3(G)-M3(F1)-M3(F2)=M3(G-F1-F2) to find F3…

Extension: Can recover a set of “weak” edges whose
removal leaves connected components with min-cut > k.

Extending to k-Edge-Connectivity
Ba

sic
 A

lg
or

ith
m

Em
ul

at
io
n

in
 S

ke
tc

h
Sp

ac
e

Algorithm:

•Let H1, H2, … Hr where r=k3 log n and Hi is induced
subgraph on random set of n/k nodes.

•Let Fi be a spanning forest of Hi.

Lemma: Whp, F1+F2+…+Fr is k-node connected iff G is.

Sketch: Construct connectivity sketch for each Hi, and
use this to find Fi.

k-Node-Connectivity
Ba

sic
 A

lg
or

ith
m

Em
ul

at
io
n

in

Sk
et

ch
 S

pa
ce

Part II

Sketching
What is sketching?

Surprising connectivity example
Revisiting graph cuts and sparsification

• Thm O(ε-2 polylog n) bit messages suffice for central player
to construct sparsifier and approx all graph cuts.

Guha, McGregor, Tench [PODS 15], Kapralov et al. [STOC 14]

• Main Ideas

1. For a graph G, can find all edges in small cuts.

2. For large cuts, suffices to sample edges with prob. 1/2.

3. So, sparsifying G reduces to sparsifying sampled graph G’.

4. To sparsify G’ recurse… Can do recursion in parallel.

Part III

Streaming
Revisiting Matching

Correlation Clustering
Coloring Graphs

Coverage and Submodular Maximization

• Two Main Graph Stream Models

• Insert-Only Model: Input is a stream of edges.

• Insert-Delete Model: Edge insertions and edge deletions.

• Goal Using small memory, compute properties of the graph.

• All the earlier algorithms apply in insert-delete model:

• Maintain sketch Mx where x is characteristic vector of edges.

• When e inserted, update sketch Mx←Mx+(eth column of M)

• When e deleted, update sketch Mx←Mx-(eth column of M)

Mark and Erica are now friends.

 Like · Add Friend

• Results so far: One-pass dynamic data stream algorithms for:

a) 1+ε approx of densest subgraph in Õ(ε-2n) space.

b) 1+ε approx of all cuts in Õ(ε-2n) space via cut sparsification.

c) Additive ε approx of clustering coefficient in Õ(ε-2√n) space.

d) Finding matching and vertex cover of size k in Õ(k2) space.

e) k-edge connectivity in Õ(nk) space.

f) k-node connectivity in Õ(nk2) space.

• Many of above space bounds can be shown to be optimal via
reductions from communication complexity.

• Many other algorithms… some only for edge insertions or use
multiple passes or only work for certain types of graphs.

Part III

Streaming
Revisiting Matching

Correlation Clustering
Coloring Graphs

Coverage and Submodular Maximization

• Unweighted Matching Greedy algorithm returns 2-approx using
Õ(n) space. Embarrassingly, this is best known one-pass result!

• Weighted Matching 2+ε approx in Õ(n/ε) space.
Paz, Schwartzman [SODA 17], Ghaffari, Wajc [SOSA 19]

? Improve result for sparse graphs? Graph has arboricity ɑ if all
subgraphs have average degree < ɑ. Planar graph has ɑ=3.

Approximation Ratios for Weighted Matching

Feigenbaum et al. McGregor Zelke Epstein et al. Crouch-Stubbs Paz-Schwartzman

6 5.83 5.59
4.91

4

2

• Lemma: match(G)/(2+ɑ) ≤ A≤ match(G) where A is total edge
weight if each edge uv gets weight

• Thm: Can 2+ɑ+ε approximate match(G) using Õ(n4/5) space:

If match(G)≤n2/5, can find exactly using earlier algorithm.

Otherwise, evaluate A on random set of ≈ n4/5 nodes.

xuv = min

✓
1

deg(u) + 1
,

1

deg(v) + 1

◆

1/5

1/5 1/5

1/6

1/6

1/6

1/6

1/6

1/3

1/4

Insert-Delete Algorithm

• The edge weights are a fractional matching, i.e., for any node u:

• To prove total weight ≤ match(G): Use Edmond’s matching
polytope thm since weight on subgraph of r nodes is ≤(r-1)/2.

• To prove total weight ≥ match(G)/(2+ɑ):

Total weight of edges incident to “high degree” vertices H at
least |H|/(2+ɑ) and all other weights are at least 1/(2+ɑ).

Matching size is at most |H| + “edges not incident to H”

Proof of Lemma

1/5

1/5 1/5

1/6

1/6

1/6

1/6

1/6

1/3

1/4

X

v2�(u)

xuv 
X

v2�(u)

1

deg(u) + 1
< 1

• Thm ɑ+2+ε approx of matching size in O(polylog n) space.
 Cormode et al. [ESA 17], McGregor, Vorotnikova [SOSA 18]

• Define Edge {u,v} is special if ≤ ɑ edges incident to u and ≤ ɑ
edges incident to v later than {u,v}. Let s be # special edges.

• Lemma match(G)≤s≤(2+ɑ)match(G).

• Proof Ingredients Graph of special edges has degrees ≤ ɑ+1.
Low arboricity bounds number of almost special edges.

• Algorithm Estimate s up to a factor 1+ε

a) Suppose we have guess g that is 2-approximates s

b) Sample each edge w/p ≈ε-2 (log n)/g. If you subsequently
see >ɑ edges incident to either endpoint, drop the edge.

• Can show a) the current sample size is always small and b)
size of final sample and g yields good approx for s.

Insert-Only Algorithm

A. McGregor and S. Vorotnikova 14:3

Algorithm 1: Approximating Eú

1. Initialize S Ω ÿ, p = 1, estimate = 0
2. For each edge e = uv in the stream:

a. With probability p add e to S and initialize counters cu
e Ω 0 and cv

e Ω 0
b. For each edge eÕ œ S, if eÕ shares endpoint w with e:

Increment cw
eÕ

If cw
eÕ > –, remove eÕ and corresponding counters from S

c. If |S| > 40‘≠2 log n:
p Ω p/2
Remove each edge in S and corresponding counters with probability 1/2

d. estimate Ω max(estimate, |S|/p)
3. Return estimate

Figure 1 Approximating Eú
Algorithm.

we start sampling with probability 1 and put a cap on the number of edges stored by the
algorithm. Whenever the capacity is reached, the algorithm halves the sampling probability
and deletes every edge currently stored with probability 1/2. This modification saves a factor
of O(‘≠1 log n) in the space use and update time of the algorithm. We save a further O(–)
factor in the analysis by using the algorithm to estimate Eú rather than |E–|.

I Theorem 3. With high probability, Algorithm 1 outputs a (1 + ‘) approximation of Eú
.

Proof. Let k be such that 2k≠1· Æ Eú < 2k· where · = 20‘≠2 log n. First suppose we toss
O(log n) coins for each edge in Et

– and say that an edge e is sampled at level i if at least
the first i ≠ 1 coin tosses at heads. Hence, the probability that an edge is sampled at level
i is pi = 1/2i and that the probability an edge is sampled at level i conditioned on being
sampled at level i ≠ 1 is 1/2. Let st

i be the number of edges sampled. It follows from the
Cherno� bound that for i Æ k,

P
#
|st

i ≠ pi|Et
–|| Ø ‘piE

ú$
Æ exp

3
≠‘2Eúpi

4

4
Æ exp

3
≠‘2Eúpk

4

4
Æ exp

3
≠‘2·

8

4
= 1

poly(n) .

By the union bound, with high probability, st
i/pi = |Et

–| ± ‘Eú for all 0 Æ i Æ k, 1 Æ t Æ –n.
The algorithm initially maintains the edges in Et

– sampled at level i = 0. If the number
of these edges exceeds the threshold, we subsample these to construct the set of edges
sampled at level i = 1. If this set of edges also exceeds the threshold, we again subsample
these to construct the set of edges at level i = 2 and so on. If i never exceeds k, then
the above calculation implies that the output is (1 ± ‘)Eú. But if st

k is bounded above by
(1 + ‘)Eú/2k < (1 + ‘)· for all t with high probability, then i never exceeds k. J

It is immediate that the algorithm uses O(‘≠2 log n) space since this is the maximum
number of edges stored at any one time. By Corollary 2, Eú is an (– + 2) approximation of
match(G) and hence we have proved the following theorem.

I Theorem 4. The size of the maximum matching of a graph with arboricity – can be

(– + 2)(1 + ‘)-approximated with high probability using a single pass over the edges of G given

O(‘≠2 log n) space.

Acknowledgement. In an earlier version of the proof of Theorem 3, we erroneously claimed
that, conditioned on the current sampling rate being 1/2j , edges in Et

– had been sampled at

SOSA 2018

Final Optimized Algorithm…

• Best Case Scenario You put a lot of work/maths into designing
and analyzing an algorithm but the final algorithm is simple.

Part III

Streaming
Revisiting Matching

Correlation Clustering
Coloring Graphs

Coverage and Submodular Maximization

• Consider a complete graph where edges are labelled
attractive or repulsive. Given a node partition, an attractive
edge is sad if it is cut and a repulsive edge is sad if it is not cut.

• Correlation Clustering Find partition minimizing # sad edges.
 See tutorial Bonchi, Garcia-Soriano, Liberty [KDD 14]

• 3-Approx Algorithm a) Pick random node. b) Form cluster with
it and its attracted neighbors. c) Remove cluster from graph
and repeat until nodes remain. Ailon, Charikar, Newman [J. ACM 08]

• Emulating algorithm in two passes:

• Preprocess Randomly order nodes, v1, v2, . . . , vn.

• First Pass Store all attractive edges incident to {v1 , . . . , v√n }.
Now can emulate first √n iterations of the algorithm.

• Second Pass Store all remaining attractive edges. Now can
emulate remaining steps of the algorithm.

• Thm Algorithm uses Õ(n1.5) space. Ahn et al. [ICML 16]

• Proof Idea At most n1.5 edges stored in first pass. In second,
pass, can show remaining node have at most n0.5 neighbors.

• With more work, can get Õ(n) space with O(log log n) passes.
Can also find maximal independent sets.

Part III

Streaming
Revisiting Matching

Correlation Clustering
Coloring Graphs

Coverage and Submodular Maximization

• Coloring With min number of colors, assign a color to every
node such that no edge has monochromatic endpoints.

• Thm Can color a graph in Δ+1 colors where Δ is max degree.

? How can we do this in a few passes with Õ(n) space?

• O(Δ log log n) passes via independent sets. Let’s do better!

• (1+ε)Δ Coloring a) Randomly color with Δ/r colors. b) Store
edges E’ with monochromatic endpoints. c) Shade colors such
that E’ edges no longer monochromatic. Bera, Ghosh [ArXiv 18]

• Space Analysis |E’|=O(nr) since probability edge in E’ is r/Δ.

• Colors Analysis If r≈ε-2 log n, max degree in E’ is ΔE’<(1+ε)r and
final number of colors is (1+ΔE’)Δ/r= (1+ε)Δ.

• Δ+1 Coloring Idea For node v, pick Sv⊂{1,…,Δ+1} of O(log n)
random colors. May assume v’s color in Sv. Assadi et al. [SODA 19]

Part III

Streaming
Revisiting Matching

Correlation Clustering
Coloring Graphs

Coverage and Submodular Maximization

• Max-k-Coverage Given a stream of subsets S1, …, Sm of [n], find
C that maximizes f(C)=|⋃i∈C Si| subject to |C|≤k.

• Submodular Functions f is sub-modular if for A⊂B and x∉B,

• Thm (1-ε)/2 approx. of max-coverage in Õ(ε-3k) space.
McGregor, Vu [ICDT 17]

f (A [{x})� f (A) � f (B [{x})� f (B)

• Algorithm Guess g such that OPT≤g≤(1+ε)OPT. Add first ≤k
sets that each cover at least g/(2k) new elements.

• Approx Ratio

• If k sets added, we cover g/2≥OPT/2.

• If less sets added, each set not added covers <g/(2k) new
elements and hence we covered OPT-g/2≥OPT(1-ε)/2.

• Reducing Space Above algorithm requires Õ(ε-1 OPT) space.
Can use subsampling to such that OPT = Õ(ε-2 k).

• Generalizations Constant passes for ≈1-1/e approx. Extends to
other monotone submodular function. Other work on non-
monotone functions, beyond cardinality constraints, etc.

McGregor, Vu [ICDT 17], Bateni et al. [SPAA 17], Assadi [PODS 17]

Obrigado!

