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® (lassic Big Graphs
Call graph (5x108 nodes), web graph (5x10? nodes), IP
graph (232 nodes), social networks (10? nodes), ...

Challenge: Can’t use conventional algorithms on graphs this
{ large. Often can’t even store graph in memory. Graphs may
~=+“ be changing over time and data may be distributed.
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/'@ Use Abstraction of Structure

“ " Graphs are a natural way to encode structural information
where we have data about both basic entities and their
relationships. Examples include graphical networks, citation
networks, protein interaction and metabolic networks.

® Want streaming, parallel, distributed algorithms...




® Jutorial Goals and Caveats

Present some new algorithmic primitives for large graphs.

Techniques are widely applicable; we’ll be platform agnostic.

Won’t be comprehensive; will cherry pick illustrative results.
Focus on arbitrary graphs rather than specific applications.

Won't focus on proofs but will give basic outline when it
helps convey why certain approaches are effective.

® Resources

Survey: SIGMOD Record 2014
http://people.cs.umass.edu/~mcgregor/papers/ | 3-graphsurvey.pdf

Tutorial: Slides and Bibliography
http://people.cs.umass.edu/~mcgregor/graphs



http://people.cs.umass.edu/~mcgregor/graphs

Overview

® Part |:Graph Sampling Sampling for finding densest
subgraphs, small matchings, triangles, spectral properties.

“Different sampling for different problems.”
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":"Part ll: Graph Sketching Dimensionality reduction for graph
data. Examples include connectivity and sparsification.

“Homomorphic compression: sketch first and then run
algorithms on the sketched data.”

Part Ill: Small-Space Optimization Combining sparsification
and multiplicative weights for fast, small-space optimization.
Examples include large matching and correlation clustering.




Recurring Theme

? What’s appropriate notion of lossy compression for graphs!?

® [f compression is easy, we get faster and more-space efficient
algorithms by using existing algorithms on compressed graphs.




Part |

Sampling

“ Uniform Sampling + Densest Subgraph

Snape Sampling + Matching
" ‘Monochromatic Sampling + Clustering Coefficient
Edge-Weighted Sampling + Cuts and Spectral Properties
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Given a graph G, the density of a set of nodes ScV is:

7 of edges with both endpoints in S
N # of nodes in S

Ds

Problem Estimating maxs Dsis a basic graph problem with
numerous applications. Studied in a variety of models.

See tutorial Gionis, Tsourakakis [KDD 15]

Thm Sample of O(g2 n) edges uniformly and find the densest
subgraph in sampled graph. This yields a (|1+€)-approx whp.

McGregor et al. [MFCS 15], Esfandiari et al. [15], Mitzenmacher et al. [KDD 15]

Proof Idea Density of specific subgraph in sampled graph
indicates whether actual density is large; if so, we get estimate
of the density whp. Then union bound over 2" subgraphs.
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Matching Problem Find large set of edges such that no two
edges share an endpoint.

How many “samples” are needed to find a matching of size k!

Sampling uniformly can be very inefficient...
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® SNAPE “Sample Nodes And Pick Edge’ Sampling:

® Sample each node with probability © (k') and delete rest

® Pick a random edge amongst those that remain.

® Theorem If G has max matching size k, then O(k? log k)
SNAPE samples will include a max matching from G.
Chitnis et al. [SODA 16], Bury, Schwiegelshohn [ESA 15]




Why SNAPE Sampling Works...

@ Pick a maximum matching M of size k and pick
arbitrary edge uv in this matching.

BT 0
) V\W.

@ With Q(k-2) probability u and v are only endpoints of
M that arent deleted.

@ Hence, when we pick one of the remaining edges its
either uv or another edge thats equally useful.

@ Take O(k? log k) samples; apply analysis to all edges.
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Given a graph G, the global clustering coefficient is

3 X number of triangles

A number of length 2 paths

A measure how much nodes tend to cluster together.

Monochromatic Sampling Randomly color each node from a set
of colors. Store all edges with monochromatic endpoints.

Thm Can additively estimate K from O(+/n) samples.
Pagh, Tsourakakis [IPL 12], Jha, Seshadhri, Pinar [KDD 15]

Proof Idea Compute expectation and variance of number of
triangles amongst sampled edges and apply Chebyshev bound.
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® Defn A sparsifier of graph G is a weighted subgraph H with:

V cuts: “‘size of cut in G” = (lxg) “size of cut in H”

Basic Abproach Sample each edge uv with probability p.y and
reweight by |/pu. Probabilities depend on edge properties...

® Thm If piw=e?/ Ay or puw=e?ry then result is sparsifier with
0(8'2 n) edges.  Fung et al. [STOC | 1], Spielman, Srivastava [STOC 08]

4 ) 4
Aw is the min number of e | ruv is potential difference

edges whose removal + < when unit of flow injected
disconnects u and v ) >4 L at u and extracted at v

e Simpler Thm If min-cut is » €2 log n then pe=1/2 works.




Proof Idea of Simpler Theorem ...

@ Lemma (Chernoff) Let k' be the number of edges
that were sampled across some cut of size k. Then

Prik’=(1+€)k/2] < exp(-&2 k/6)

@ Lemma (Karger) The number of cuts with k edges
is < exp(2k log n /A) where A is size of min-cut.

@ Result then follows by substituting bound for A
and applying union bound over all cuts.



Part Il

Sketching

What is sketching?
Surprising connectivity example
Revisiting graph cuts and sparsification
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Random linear projection M: RN—-RP where D«N that preserves

properties of any veRN with high probability.

M = |[Mv| —— answer

Many results for numerical statistics and geometric properties...
extensive theory with connections to hashing, compressed
sensing, dimensionality reduction, metric embeddings... widely
applicable since parallelizable and suitable for stream processing.

Example “lop Sampling” Sketch Can be used to sample uniformly
from non-zero entries of the vector where D=polylog(N).
Jowhari, Saglam, Tardos [PODS 1 1]

Question VWWhat about analyzing massive graphs via sketches!?




Part Il

Sketching

What is sketching?
Surprising connectivity example
Revisiting graph cuts and sparsification




Communication Problem n players each have a book listing
their friends. Simultaneously, they each send a message to a
central player who deduces if underlying graph is connected.

Thm O(polylog n) bit message from each player suffices.
Ahn, Guha, McGregor [SODA 12]




Can’t be possible! What if there’s a bridge (u,v) in the graph, i.e.,
a friendship that is critical to ensuring the graph is connected.

It appears like at least one player needs to send ()(n) bits.
- Central player needs to know about the special friendship.
- Participant doesn’t know which friendships are special.

- Participants may have ()(n) friends.




® Players send carefully-designed sketches of address books.

® Homomorphic Compression Instead of running algorithm on
original data, run algorithm on sketched data.
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Ingredient 1: Basic Algorithm

@ Algorithm (Spanning Forest):
@ For each node: pick incident edge
@ For each connected comp: pick incident edge

@ Repeat until no edges between connected comp.

@ Lemma After O(log n) rounds selected edges include
spanning forest.



Ingredient 2: Sketching Neighborhoods

@ For node i, let ai be vector indexed by node pairs.
Non-zero entries: aili,jl=1 if j>i and aii,jl=-1 if j«i.

{12} {1,3} {14} {15} {23} {24} {25} {34} {35} {45}

a; = (Rl sli-080. 0 , 0570 | OgRiEo” |
a;=("=1_,080° 0,1 0 0 OFS0s)
a1+a2:(0100100000)

@ Lemma For any subset of nodes ScV, non-zero
entries of ) . 5a; are edges across cut (SV\S)

@ Player j sends M(a;) where M is “lo sampling” sketch.



Recipe: Sketch & Compute on Sketches

@ Player with Address Books: Player j sends Ma;

@ Central Player: "Runs Algorithm in Sketch Space”
@ Use Ma; to get incident edge on each node |
@ For i=2 to log n:

@ To get incident edge on component ScV use:

Z Ma; = M(Z aj) — non-zero elt. of Z a; = edge across cut

JES JES J &5

Detail: Actually each player sends log n independent sketches Miaj, Mzaj, ...
and central player uses Mia; when emulating i iteration of the algorithm.



® Thm O(polylog n) bit message from each player suffices.

® \Various extensions E.g., with O(k) bit messages, can find all
edges that participate in cuts of size less than k.
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® Thm O(g? polylog n) bit messages suffice for central player

to construct sparsifier and approx all graph cuts.
Guha, McGregor,Tench [PODS 15], Kapralov et al. [STOC [4]

® Main ldeas:

|. For a graph G, can find set all edges in small cuts.

2. For large cuts, suffices to sample edges with prob. |/2.

3. So, sparsifying G reduces to sparsifying sampled graph G’.

4. To sparsify G’ recurse... Can do recursion in parallel.




Thanks! Over to Sudipto...



