
Streaming, Sampling, Sketching,
Small-Space Optimization
Algorithmic Approaches

for Analyzing Large Graphs

Sudipto Guha
University of Pennsylvania

Andrew McGregor
University of Massachusetts

• Classic Big Graphs
Call graph (5x108 nodes), web graph (5x109 nodes), IP
graph (232 nodes), social networks (109 nodes), ...

Challenge: Can’t use conventional algorithms on graphs this
large. Often can’t even store graph in memory. Graphs may
be changing over time and data may be distributed.

• Use Abstraction of Structure
Graphs are a natural way to encode structural information
where we have data about both basic entities and their
relationships. Examples include graphical networks, citation
networks, protein interaction and metabolic networks.

• Want streaming, parallel, distributed algorithms…

• Tutorial Goals and Caveats

Present some new algorithmic primitives for large graphs.

Techniques are widely applicable; we’ll be platform agnostic.

Won’t be comprehensive; will cherry pick illustrative results.

Focus on arbitrary graphs rather than specific applications.

Won’t focus on proofs but will give basic outline when it
helps convey why certain approaches are effective.

• Resources
• Survey: SIGMOD Record 2014
• http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf
• Tutorial: Slides and Bibliography
• http://people.cs.umass.edu/~mcgregor/graphs

G

r

a

p

h

S

t

r

e

a

m

A

l

g

o

r

i

t

h

m

s

:

A

S

u

r

v

e

y

Andrew McGregor⇤

University of Massachusetts

mcgregor@cs.umass.edu

ABSTRACT

Over the last decade, there has been considerable in-

terest in designing algorithms for processing massive

graphs in the data stream model. The original moti-

vation was two-fold: a) in many applications, the dy-

namic graphs that arise are too large to be stored in the

main memory of a single machine and b) considering

graph problems yields new insights into the complexity

of stream computation. However, the techniques devel-

oped in this area are now finding applications in other

areas including data structures for dynamic graphs, ap-

proximation algorithms, and distributed and parallel com-

putation. We survey the state-of-the-art results; iden-

tify general techniques; and highlight some simple al-

gorithms that illustrate basic ideas.

1. INTRODUCTION

Massive graphs arise in any application where there

is data about both basic entities and the relationships

between these entities, e.g., web-pages and hyperlinks;

neurons and synapses; papers and citations; IP addresses

and network flows; people and their friendships. Graphs

have also become the de facto standard for representing

many types of highly-structured data. However, analyz-

ing these graphs via classical algorithms can be chal-

lenging given the sheer size of the graphs. For exam-

ple, both the web graph and models of the human brain

would use around 1

0

1

0 nodes and IPv6 supports 2

1

2

8

possible addresses.

One approach to handling such graphs is to process

them in the data stream model where the input is de-

fined by a stream of data. For example, the stream could

consist of the edges of the graph. Algorithms in this

model must process the input stream in the order it ar-

rives while using only a limited amount memory. These

constraints capture various challenges that arise when

processing massive data sets, e.g., monitoring network

traffic in real time or ensuring I/O efficiency when pro-

cessing data that does not fit in main memory. Related

⇤Supported in part by NSF awards CCF-0953754 and CCF-

1320719 and a Google Research Award.

questions that arise include how to trade-off size and ac-

curacy when constructing data summaries and how to

quickly update these summaries. Techniques that have

been developed to the reduce the space use have also

been useful in reducing communication in distributed

systems. The model also has deep connections with a

variety of areas in theoretical computer science includ-

ing communication complexity, metric embeddings, com-

pressed sensing, and approximation algorithms.

The data stream model has become increasingly pop-

ular over the last twenty years although the focus of

much of the early work was on processing numerical

data such as estimating quantiles, heavy hitters, or the

number of distinct elements in the stream. The earli-

est work to explicitly consider graph problems was the

influential by paper by Henzinger et al. [36] which con-

sidered problems related to following paths in directed

graphs and connectivity. Most of the work on graph

streams has occurred in the last decade and focuses on

the semi-streaming model [27, 52]. In this model the

data stream algorithm is permittedO(

n p

o

ly

lo

g

n) space

where n is the number of nodes in the graph. This is

because most problems are provably intractable if the

available space is sub-linear in n, whereas many prob-

lems become feasible once there is memory roughly pro-

portional to the number of nodes in the graph.

In this document we will survey the results known

for processing graph streams. In doing so there are nu-

merous goals including identifying the state-of-the-art

results for a variety of popular problems and identify-

ing general algorithmic techniques. It will also be nat-

ural to discuss some important summary data structures

for graphs, such as spanners and sparsifiers. Through-

out, we will present various simple algorithms, some of

which may not be optimal, that illustrate basic ideas and

would be suitable for teaching in an undergraduate or

graduate classroom setting.

Notation. Throughout this document we will use n and

m to denote the number of nodes and edges in the graph

under consideration. For any natural number k, we use

[k] to denote the set {1, 2, . . .
, k}. We write a =

b ± c

http://people.cs.umass.edu/~mcgregor/graphs

• Part 1: Graph Sampling Sampling for finding densest
subgraphs, small matchings, triangles, spectral properties.

“Different sampling for different problems.”

• Part II: Graph Sketching Dimensionality reduction for graph
data. Examples include connectivity and sparsification.

“Homomorphic compression: sketch first and then run
algorithms on the sketched data.”

• Part III: Small-Space Optimization Combining sparsification
and multiplicative weights for fast, small-space optimization.
Examples include large matching and correlation clustering.

Overview

? What’s appropriate notion of lossy compression for graphs?

• If compression is easy, we get faster and more-space efficient
algorithms by using existing algorithms on compressed graphs.

Recurring Theme

Part 1

Sampling
 Uniform Sampling + Densest Subgraph
 Snape Sampling + Matching
 Monochromatic Sampling + Clustering Coefficient
 Edge-Weighted Sampling + Cuts and Spectral Properties

Part 1

Sampling
 Uniform Sampling + Densest Subgraph
 Snape Sampling + Matching
 Monochromatic Sampling + Clustering Coefficient
 Edge-Weighted Sampling + Cuts and Spectral Properties

• Given a graph G, the density of a set of nodes S⊂V is:

• Problem Estimating maxS DS is a basic graph problem with
numerous applications. Studied in a variety of models.

• See tutorial Gionis, Tsourakakis [KDD 15]

• Thm Sample of Õ(ε-2 n) edges uniformly and find the densest
subgraph in sampled graph. This yields a (1+ε)-approx whp.

• McGregor et al. [MFCS 15], Esfandiari et al. [15], Mitzenmacher et al. [KDD 15]

• Proof Idea Density of specific subgraph in sampled graph
indicates whether actual density is large; if so, we get estimate
of the density whp. Then union bound over 2n subgraphs.

DS =

of edges with both endpoints in S

of nodes in S

Part 1

Sampling
 Uniform Sampling + Densest Subgraph
 Snape Sampling + Matching
 Monochromatic Sampling + Clustering Coefficient
 Edge-Weighted Sampling + Cuts and Spectral Properties

• Matching Problem Find large set of edges such that no two
edges share an endpoint.

• How many “samples” are needed to find a matching of size k?

• Sampling uniformly can be very inefficient…

C
O

M
PL

ET
E

BI
PA

RT
IT

E

n≫k/2 k/2

• SNAPE “Sample Nodes And Pick Edge” Sampling:

• Sample each node with probability ϴ(k-1) and delete rest

• Pick a random edge amongst those that remain.

• Theorem If G has max matching size k, then O(k2 log k)
SNAPE samples will include a max matching from G.

Chitnis et al. [SODA 16], Bury, Schwiegelshohn [ESA 15]

Pick a maximum matching M of size k and pick
arbitrary edge uv in this matching.

With Ω(k-2) probability u and v are only endpoints of
M that aren’t deleted.

Hence, when we pick one of the remaining edges it’s
either uv or another edge that’s equally useful.

Take O(k2 log k) samples; apply analysis to all edges.

Why SNAPE Sampling Works…

u

v
w

Part 1

Sampling
 Uniform Sampling + Densest Subgraph
 Snape Sampling + Matching
 Monochromatic Sampling + Clustering Coefficient
 Edge-Weighted Sampling + Cuts and Spectral Properties

• Given a graph G, the global clustering coefficient is

A measure how much nodes tend to cluster together.

• Monochromatic Sampling Randomly color each node from a set
of colors. Store all edges with monochromatic endpoints.

• Thm Can additively estimate κ from Õ(√n) samples.

• Pagh, Tsourakakis [IPL 12], Jha, Seshadhri, Pinar [KDD 15]

• Proof Idea Compute expectation and variance of number of
triangles amongst sampled edges and apply Chebyshev bound.

 =

3⇥ number of triangles

number of length 2 paths

Part 1

Sampling
 Uniform Sampling + Densest Subgraph
 Snape Sampling + Matching
 Monochromatic Sampling + Clustering Coefficient
 Edge-Weighted Sampling + Cuts and Spectral Properties

• Defn A sparsifier of graph G is a weighted subgraph H with:

∀ cuts: “size of cut in G” = (1±ε) “size of cut in H”

• Basic Approach Sample each edge uv with probability puv and
reweight by 1/puv. Probabilities depend on edge properties…

• Thm If puv≈ε-2/λuv or puv≈ε-2ruv then result is sparsifier with
Õ(ε-2 n) edges. Fung et al. [STOC 11], Spielman, Srivastava [STOC 08]

• Simpler Thm If min-cut is ≫ ε-2 log n then pe=1/2 works.

1

2

3

5

4

ruv is potential difference
when unit of flow injected

at u and extracted at v

λuv is the min number of
edges whose removal
disconnects u and v

Lemma (Chernoff) Let k’ be the number of edges
that were sampled across some cut of size k. Then

Pr[k’=(1±ℇ)k/2] < exp(-ℇ2 k/6)

Lemma (Karger) The number of cuts with k edges
is < exp(2k log n /𝝺) where 𝝺 is size of min-cut.

Result then follows by substituting bound for 𝝺
and applying union bound over all cuts.

Proof Idea of Simpler Theorem …

Part II

Sketching
What is sketching?

Surprising connectivity example
Revisiting graph cuts and sparsification

Part II

Sketching
What is sketching?

Surprising connectivity example
Revisiting graph cuts and sparsification

• Random linear projection M: ℝN→ℝD where D≪N that preserves
properties of any v∈ℝN with high probability.

• Many results for numerical statistics and geometric properties...
extensive theory with connections to hashing, compressed
sensing, dimensionality reduction, metric embeddings... widely
applicable since parallelizable and suitable for stream processing.

• Example “l0 Sampling” Sketch Can be used to sample uniformly
from non-zero entries of the vector where D=polylog(N).

 Jowhari, Saglam, Tardos [PODS 11]

? Question What about analyzing massive graphs via sketches?

�! answer

2

666666664

v

3

777777775

2

4 M

3

5 =

2

4Mv

3

5

Part II

Sketching
What is sketching?

Surprising connectivity example
Revisiting graph cuts and sparsification

...

• Communication Problem n players each have a book listing
their friends. Simultaneously, they each send a message to a
central player who deduces if underlying graph is connected.

• Thm O(polylog n) bit message from each player suffices.
 Ahn, Guha, McGregor [SODA 12]

• Can’t be possible! What if there’s a bridge (u,v) in the graph, i.e.,
a friendship that is critical to ensuring the graph is connected.

• It appears like at least one player needs to send Ω(n) bits.

- Central player needs to know about the special friendship.

- Participant doesn’t know which friendships are special.

- Participants may have Ω(n) friends.

• Players send carefully-designed sketches of address books.

• Homomorphic Compression Instead of running algorithm on
original data, run algorithm on sketched data.

AlgorithmAlgorithm ANSWER

Sketch

O
R

IG
IN

A
L

G
R

A
PH

...

M()
M()

M()

...

SK
ET

C
H

ED
 G

R
A

PH
M()

Algorithm (Spanning Forest):

For each node: pick incident edge

For each connected comp: pick incident edge

Repeat until no edges between connected comp.

Lemma After O(log n) rounds selected edges include
spanning forest.

Ingredient 1: Basic Algorithm

For node i, let ai be vector indexed by node pairs.
Non-zero entries: ai[i,j]=1 if j>i and ai[i,j]=-1 if j<i.

Lemma For any subset of nodes S⊂V, non-zero
entries of are edges across cut (S,V\S)

Player j sends M(aj) where M is “l0 sampling” sketch.

Ingredient 2: Sketching Neighborhoods

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

a1 + a2 =
�
0 1 0 0 1 0 0 0 0 0

�

P
j2S aj

Player with Address Books: Player j sends Maj

Central Player: “Runs Algorithm in Sketch Space”

Use Maj to get incident edge on each node j

For i=2 to log n:

To get incident edge on component S⊂V use:

Recipe: Sketch & Compute on Sketches

X

j2S

Maj = M(
X

j2S

aj)

Detail: Actually each player sends log n independent sketches M1aj, M2aj, ...
and central player uses Miaj when emulating ith iteration of the algorithm.

�! non-zero elt. of

X

j2S

aj = edge across cut

...

• Thm O(polylog n) bit message from each player suffices.

• Various extensions E.g., with Õ(k) bit messages, can find all
edges that participate in cuts of size less than k.

Part II

Sketching
What is sketching?

Surprising connectivity example
Revisiting graph cuts and sparsification

• Thm O(ε-2 polylog n) bit messages suffice for central player
to construct sparsifier and approx all graph cuts.

Guha, McGregor, Tench [PODS 15], Kapralov et al. [STOC 14]

• Main Ideas:

1. For a graph G, can find set all edges in small cuts.

2. For large cuts, suffices to sample edges with prob. 1/2.

3. So, sparsifying G reduces to sparsifying sampled graph G’.

4. To sparsify G’ recurse… Can do recursion in parallel.

Thanks! Over to Sudipto…

