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Many results such as distinct elements, entropy,
frequency moments, quantiles, histograms, linear
regression, clustering, shape approximation...
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Problem: Fingerprint files such that we can test if files
are close under some cyclic rotation.

Theorem: Fingerprints of size = D(n) bits suffice where
D(n) is the number of divisors of n.

Surprising? Fingerprint size isn’t monotonic in file size!
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a) Connectivity via O(polylog n) bit Fingerprints
b) Extension to Estimating Cuts and Eigenvalues

Joint work with Kook Jin Ahn and Sudipto Guha
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® Theorem: Can check k-connectivity w.h.p. using O(k polylog n)
bit fingerprint of each adjacency list.

® Corollary: Can monitor connectivity in a dynamic graph stream
where edges are both inserted and deleted.

® Previous stream work assumed no edge deletions.
e.g., [Feigenbaum, Kannan, McGregor, Suri, Zhang 2004, 2005], [McGregor 2005]
[Jowhari, Ghodsi 2005], [Zelke 2008], [Sarma, Gollapudi, Panigrahy 2008, 2009]
[Ahn, Guha 2009, 201 I], [Konrad, Magniez, Mathieu 2012], [Goel, Kapralov, Khanna 2012]
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Theorem: Can check k-connectivity w.h.p. using O(k polylog n)
bit fingerprint of each adjacency list.

Corollary: Can monitor connectivity in a dynamic graph stream
where edges are both inserted and deleted.

Previous stream work assumed no edge deletions.

e.g., [Feigenbaum, Kannan, McGregor, Suri, Zhang 2004, 2005], [McGregor 2005]
[Jowhari, Ghodsi 2005], [Zelke 2008], [Sarma, Gollapudi, Panigrahy 2008, 2009]
[Ahn, Guha 2009, 201 I], [Konrad, Magniez, Mathieu 2012], [Goel, Kapralov, Khanna 2012]

New sliding window graph results presented yesterday.
[Crouch, McGregor, Stubbs 201 3]
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® Defn: Let aibe i™ row of signed vertex-edge matrix
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For ScV, non-zero entries of > ;¢ aj equals E(S,V\S)

® Fingerprint: Ma; where M is O(k) dim. proj. such that k
non-zero entries of any x can be recovered from Mx.

@ Utility: Can find min(all,k) edges across any cut S. Call
the set of recovered edges a "k-skeleton”.

Z Ma; = M(Z a;) — min(all, k) edges in E(S, V' \ S)
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Theorem: Can (1+¢€)-approximate every graph cut using
O(e2 polylog n) bit fingerprints of each adjacency list.

Theorem: Can construct a spectral sparsifier H using
O(&2 n?3 polylog n) bit fingerprints of each adjacency list.

VxeR" : (1-— e)xTLGx <x"lyx < (1+ e)xTL(;x

where L and Ly are the Laplacians of G and H.
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® Thm (Fung et al.) Sample edge e w/p p. and weight by
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@ Algorithm (Edge sampling via k-skeletons)

@ Let Gi be graph with edges sampled w/p 2-'.

@ Return k-skeleton H; for each Gij where k= 2¢ log® n
@ Thm: e=(u,v) is in some H; with probability at least pe
@ Proof: Let C be edges in min u-v cut in G.

@ For i= -log pe, E[ICnGil]=€"2 log? n and whp ICnGil<k.

® Hence ecH; iff e<G; which happens w/p pe
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Spectral Sparsification

@ Thm (Spielman-Srivastava) Sample edge e w/p p. and
weight by 1/pe. If pe= €2 relog n where re is the
effective resistance, then preserve spectral properties.

5 Effective resistance of (u,v)
oﬂ‘* $ is potential difference

when unit of flow injected

e Ak at u and extracted at v

@ Lemma: 1/ce < re ¢ O(n?3)/c. for edges in a simple graph.
@ Proof: Find O(c.) disjoint paths of length O(n/~/ce)

@ Corollary: Increasing sampling probability by O(n?3) in
cut sparsification, also preserves spectral properties.
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a) Testing Equality with Rotation
b) Matching Lower Bound

Joint work with Alexandr Andoni, Assaf Goldberger, Ely Porat
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—

“The cluicﬁ brown_ | CYCLIC ROTATION - “quicﬁ brown qu

fox J’umyecﬂ > jumjoecf over the-
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® Theorem: There’s a D(n) polylog n bit fingerprint F that is:

» Useful: F(a) and F(b) determine if a, be/Z" are rotations w.h.p.
» Homomorphic: From F(a) can construct F(any rotation of a)
» Linear: From F(a) and F(b) can compute F(a+b).

® Theorem: Fingerprints with above properties need D(n) bits.

® [xtension: (t + D(n)) polylog n bit fingerprints F(a) and F(b)
determine if a,b are within t substitutions of being rotations.
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@ Rabin-Karp: For some p and r, encode a=aopaia:...an-1 as
f(r,a) =ag+ air + ghie e 5 T Limad p
® Fermats Little Thm: If p=n+l prime, r"=1 mod p and so,
rf(r,apay ... an_1) = aor + C W BRI S e B
—ig  REET i 40 S L e
= f(rias_120... 20
@ So, if b is k-shift of a then g(r) = r*f(r,a) — f(r,b) =0
® Schwartz-Zippel: If r is random and g non-zero:
Plg(r) =0F="1a 1)/p =1 ="CEm)

@ Conclusion: No false negatives but likely false positives.
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Beyond Schwartz-Zippel

@ Evaluate g on roots of x"-1 but work in larger field
@ x"-1 factorizes as D(n) irreducible polys over rationals:
X10 AN — ¢1(X)¢2(X)¢5(X)¢10(X)
= (x—1)(1+ x)(1 R —|—x4)(1 0 G —|—X4)
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Beyond Schwartz-Zippel

® Evaluate g on roots of x"-1 but work in larger field
@ x"-1 factorizes as D(n) irreducible polys over rationals:
x10— 1= &1(x)Ps(x)P5(x)P10(x)
— Ll ) (1 X e o ek o | X )
@ At least one ¢; has no shared roots with g:
@ If ¢i shares one root, ¢ divides g (Abels Irred. Thm)
@ Cant all divide g because g has degree < n-1
@ Suffices to test g on an arbiftrary root of each ¢
@ Bad News: Cant guarantee g(r) has finite precision.

@ Good News: Work modulo a random p. Can show ¢; still
doesnt share roots with g whp by analyzing resultant.
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Lower Bound: Basic Idea

@ Can recover D(n) bits about a from F(a) by summing the
fingerprints of rotations

@ To deduce a = Z a; from F(30313233a4a5)

F(agaiazazaszas) + F(ai1azasazasag) + ... + F(asapaiazasas) = F(aaaaaa)

and compare F(gggggg) for all g until matches.
@ To deduce 5 = a1 + a3 + as

F(apaiazasazas) + F(azasazasapar) + F(azasagaiazas) = F(6v5v87)
and compare F(gg'gg’gg’) for all g, g'=a-g until matches.

@ And so on for other divisors of n...



Thanks!

® Homomorphic Sketches: Compress using sketches such
that we can run algorithms on compressed data directly.
Resulting algorithms are parallelizable + streamable.

Graphs: Dimensionality reduction for preserving
structural properties. Enables dynamic graph streaming.

Fingerprinting with Misalignments: Tight bounds on size of
fingerprint necessary for testing equality up to rotations.







