Graph Synopses, Sketches,
and Streams: A Survey

Sudipto Guha Andrew McGregor

University of Pennsylvania University of Massachusetts

Massive Graphs

® (lassic Big Graphs:

Call graph (5x10® nodes), web graph (5x10'? nodes), IP
_graph (232 nodes), social networks (107 nodes), ...

e ~ Challenge: Can’t use conventional algorithms on graphs this
large. Sometimes can’t even store graph in memory!
Graphs may be dynamic and/or distributed.

Massive Graphs

® (lassic Big Graphs:

Call graph (5x10® nodes), web graph (5x10'? nodes), IP
graph (232 nodes), social networks (107 nodes), ...

e ~ Challenge: Can’t use conventional algorithms on graphs this
large. Sometimes can’t even store graph in memory!
Graphs may be dynamic and/or distributed.

® Use Abstraction of Structure:
Graphs are a natural way to encode structural information
where we have data about both basic entities and their
relationships. Examples include graphical networks, citation
networks, protein interaction and metabolic networks, ...

Focus of Tutorial

Focus of Tutorial

Question I: What are appropriate synopsis data structures for
massive graphs? How do we trade-off space and accuracy!?

Focus of Tutorial

Question I: What are appropriate synopsis data structures for
massive graphs? How do we trade-off space and accuracy!?

Question 2: How can we construct these synopses efficiently?
In particular, what is the input is streaming or distributed!?

Focus of Tutorial

Question I: What are appropriate synopsis data structures for
massive graphs? How do we trade-off space and accuracy!?

Question 2: How can we construct these synopses efficiently?
In particular, what is the input is streaming or distributed!?

® Tutorial focuses on the algorithmic and theoretical issues.
Consider arbitrary graphs rather than being domain specific.

This Talk: Definitions & Basic Building Blocks

Next Talk: Applications & Extensions

Mark and Erica are now friends.
2a Like - Add Friend

Mark and Erica are no longer friends.
25 Like - Add Friend

Eduardo and Mark are now friends.
29 Like - Add Friend

Tyler and Cameron are friends with Mark.
29 Like - Add Friend

Sean and Mark are now friends.
29 Like - Add Friend

Eduardo and Mark are no longer friends.
29 Like - Add Friend

Tyler and Cameron are no longer friends with Mark.
29 Like - Add Friend

L awyers are now friends with everyone.
25 Like - Add Friend

Data Streams

® |nput: Observe stream of edges on n nodes added/deleted.

Data Streams

® |nput: Observe stream of edges on n nodes added/deleted.

® [Example: Using O(n) space, maintain connected components.

Data Streams

® |nput: Observe stream of edges on n nodes added/deleted.

Example: Using O(n) space, maintain connected components.

Other Results: Dense subgraphs, matchings, distances,

clustering, partitioning and cuts, diameter, random walks, ...

e.g., [Feigenbaum, Kannan, McGregor, Suri, Zhang 2004, 2005], [McGregor 2005]

[Jowhari, Ghodsi 2005], [Zelke 2008], [Sarma, Gollapudi, Panigrahy 2008, 2009]
[Eggert, Kliemann, Srivastav 2009], [Epstein, Levin, Mestre, Segev 2009]
[Ahn, Guha 2009, 201 1], [Kelner, Levine 201 I], [Goel, Kapralov, Khanna 2012]

Distributed Processing

(Input: G=(V;E))

Distributed Processing

ﬁlﬂ: G=(\@\

G2=(V.E2) G3=(V,E3) G4=(V;E4)

Distributed Processing

Gi=(V;E) G2=(V,E) G3=(V,E3) G4=(V;E4)

Distributed Processing

ﬁUtG (\@\

G= (VE) Gy= (VE2) Gs= (VE3) G4—(VE4)

(" Output (G) given f(G1). .. f(Gs))

|. Spanners IIl. Sparsifiers Ill. Sketches

. Spanners

Synopsis for Distance Estimation
“Greedy” Stream Algorithm
Extensions

Spanners & Distances

Spanners & Distances

® Measure: The distance dg(u,v) between two nodes u, v is
the length of the shortest path between the nodes.

Original Graph G

Spanners & Distances

® Measure: The distance dg(u,v) between two nodes u, v is
the length of the shortest path between the nodes.

Original Graph G

® Synopsis: A subgraph H of G is a k-spanner if

dc(u,v) < du(u,v)<k dg(u,v) for all node pairs.

Spanners & Distances

® Measure: The distance dg(u,v) between two nodes u, v is
the length of the shortest path between the nodes.

Original Graph G Spanner Graph H

® Synopsis: A subgraph H of G is a k-spanner if

dc(u,v) < du(u,v)<k dg(u,v) for all node pairs.

Spanners & Distances

® Measure: The distance dg(u,v) between two nodes u, v is
the length of the shortest path between the nodes.

Original Graph G Spanner Graph H

® Synopsis: A subgraph H of G is a k-spanner if

dc(u,v) < du(u,v)<k dg(u,v) for all node pairs.

® Thm: Streaming construction using O(n!*?(+1)) space.

Spanner: Algorithm

0O 6 ©
O 6 0
@ 0 O

@ Algorithm: Add new edge (u,v) to H if du(u,v)>3.

Spanner: Algorithm

Ill
O 6 0
@ 0 O

@ Algorithm: Add new edge (u,v) to H if du(u,v)>3.

Spanner: Algorithm

Ill
BB
@ 0 O

@ Algorithm: Add new edge (u,v) to H if du(u,v)>3.

Spanner: Algorithm

Ill
8 0O
0—0 O

@ Algorithm: Add new edge (u,v) to H if du(u,v)>3.

Spanner: Algorithm

Ill
\B 6
—0 ©O

@ Algorithm: Add new edge (u,v) to H if du(u,v)>3.

Spanner: Algorithm

Ill
8 0O
0—0 O

@ Algorithm: Add new edge (u,v) to H if du(u,v)>3.

Spanner: Algorithm

Ill
—B 6
0—0 O

@ Algorithm: Add new edge (u,v) to H if du(u,v)>3.

Spanner: Algorithm

III
—B—B
0—0 O

@ Algorithm: Add new edge (u,v) to H if du(u,v)>3.

Spanner: Algorithm

III 2 f(3
—B—B
0—0 O

@ Algorithm: Add new edge (u,v) to H if du(u,v)>3.

Spanner: Algorithm

P O 2
e -
—0 O

@ Algorithm: Add new edge (u,v) to H if du(u,v)>3.

Spanner: Algorithm

O 0O €
4
O—0 0

@ Algorithm: Add new edge (u,v) to H if du(u,v)>3.

Spanner: Algorithm

P O 2
e -
—0 O

@ Algorithm: Add new edge (u,v) to H if du(u,v)>3.

Spanner: Algorithm

P O 2
_ 2
0—0—0

@ Algorithm: Add new edge (u,v) to H if du(u,v)>3.

Spanner: Algorithm

O 0O €
4
O—0—0

@ Algorithm: Add new edge (u,v) to H if du(u,v)>3.

Spanner: Algorithm

O 0O €
4
7 R g R

@ Algorithm: Add new edge (u,v) to H if du(u,v)>3.

Spanner: Algorithm

O 0O €
4
O—0—0

@ Algorithm: Add new edge (u,v) to H if du(u,v)>3.

Spanner: Algorithm

O 60 06
O 0 0O
—0—0

@ Algorithm: Add new edge (u,v) to H if du(u,v)>3.

@ Lemma: All distances preserved up to a factor 3.

Spanner: Algorithm

O 60 06
O 0 0O
—0—0

@ Algorithm: Add new edge (u,v) to H if du(u,v)>3.
@ Lemma: All distances preserved up to a factor 3.

@ Lemma: O(n¥2) edges stored since shortest cycle
among stored edges has length at least 5.

Spanners: Analysis

@ If H has m edges, average degree is d=2m/n.

@ Claim: H contains a non-empty subgraph H’ with
minimum degree at least d'=d/2

Spanners: Analysis

@ If H has m edges, average degree is d=2m/n.

@ Claim: H contains a non-empty subgraph H’ with
minimum degree at least d'=d/2

@ Proof: Remove all nodes with degree < d'. Can
only remove < nd’=nd/2=m edges so H' non-empty.

Spanners: Analysis

@ If H has m edges, average degree is d=2m/n.

@ Claim: H contains a non-empty subgraph H’ with
minimum degree at least d'=d/2

@ Proof: Remove all nodes with degree < d'. Can
only remove < nd’=nd/2=m edges so H' non-empty.

@ Consider node in H':

Spanners: Analysis

@ If H has m edges, average degree is d=2m/n.

@ Claim: H contains a non-empty subgraph H’ with
minimum degree at least d'=d/2

@ Proof: Remove all nodes with degree < d'. Can
only remove < nd’=nd/2=m edges so H' non-empty.

@ Consider node in H':

e
o/o/ \o d

Spanners: Analysis

@ If H has m edges, average degree is d=2m/n.

@ Claim: H contains a non-empty subgraph H’ with
minimum degree at least d'=d/2

@ Proof: Remove all nodes with degree < d'. Can
only remove < nd’=nd/2=m edges so H' non-empty.

@ Consider node in H':

e
o/o/ \o d

@ If length of all cycles is 25, the node has at least
d’(d’-1) < n distinct neighbors of neighbors.

Spanners: Analysis

@ If H has m edges, average degree is d=2m/n.

@ Claim: H contains a non-empty subgraph H’ with
minimum degree at least d'=d/2

@ Proof: Remove all nodes with degree < d'. Can
only remove < nd’=nd/2=m edges so H' non-empty.

@ Consider node in H": e
././ \. 7
S o
8- 000 0 @ dd-1)

@ If length of all cycles is 25, the node has at least
d’(d’-1) < n distinct neighbors of neighbors.

Spanners Summary

® Thm:There’s a O(n'*!)-space stream algorithm returns
a (2t- |)-spanner. [Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

Extension: Can process weighted graphs by rounding
weights and constructing spanners for each weight class.

|. Spanners IIl. Sparsifiers Ill. Sketches

IIl. Sparsifiers

Synopsis for Cut Estimation
Merge-Reduce Stream Algorithm
Extensions

Sparsifiers & Cuts

Sparsifiers & Cuts

® Measure: Given a cut (L,R), the size of a cut cg(L,R) is
the weight of all edges crossing the cut.

Original Graph G

Sparsifiers & Cuts

® Measure: Given a cut (L,R), the size of a cut cg(L,R) is
the weight of all edges crossing the cut.

Original Graph G

® Synopsis: A subgraph H of G is a (| +¢) sparsifier if

cG(L,R)=< cH(L,R)=<(1+¢€) cc(L,R) for all cuts.

Sparsifiers & Cuts

® Measure: Given a cut (L,R), the size of a cut cg(L,R) is
the weight of all edges crossing the cut.

S,
2
| .
S

I

~

2

Z

W
S
SO
(%]
4,
d=J
.
S
S
O
(%]

=

&
.
U)

Original Graph G Sparsifier Graph H

® Synopsis: A subgraph H of G is a (| +¢) sparsifier if
cG(L,R)=< cH(L,R)=<(1+¢€) cc(L,R) for all cuts.

Sparsifiers & Cuts

® Measure: Given a cut (L,R), the size of a cut cg(L,R) is
the weight of all edges crossing the cut.

>
2
-
S
I
-~
2
Z
—
S
S,
(%]
Q
d=J
.
S
Q
O
(%]
<
5
L.
O

Original Graph G Sparsifier Graph H
® Synopsis: A subgraph H of G is a (| +¢) sparsifier if

cG(L,R)=< cH(L,R)=<(1+¢€) cc(L,R) for all cuts.

® Thm (Benzur-Karger): For any graph G there exists a
(1+¢) sparsifier with only O(€2n) edges.

Sparsifiers & Cuts

® Measure: Given a cut (L,R), the size of a cut cg(L,R) is
the weight of all edges crossing the cut.

>
@)
>
| .
S
I
~
&
Z
—
)
S
(%]
Q
4=
o
S
)
O
(%]
<
Q
S
O

Original Graph G Sparsifier Graph H

® Synopsis: A subgraph H of G is a (| +¢) sparsifier if
cG(L,R)=< cH(L,R)=<(1+¢€) cc(L,R) for all cuts.

® Thm (Benzur-Karger): For any graph G there exists a
(1+¢) sparsifier with only O(€2n) edges.

® Thm: Streaming construction in O(e2n log? n) space.

Sparsifier: Algorithm

® Main Idea: Segment stream as E;, Ez, ... each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

Sparsifier: Algorithm

® Main Idea: Segment stream as Ej, Ez, .. each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

o Y& e {ele e o6

Sparsifier: Algorithm

® Main Idea: Segment stream as Ej, Ez, .. each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

/s &8 A S\
o Y e e eleJa)o e

Sparsifier: Algorithm

@ Main Idea: Segment stream as Ey, Ea, .. each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

e S s P
/RN N A FoE\
o Y e e eleJa)o e

Sparsifier: Algorithm

@ Main Idea: Segment stream as Ey, Ea, .. each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

¥ i«

e i S s P
/RN N A FoE\
o Y e e eleJa)o e

Sparsifier: Algorithm

® Main Idea: Segment stream as Ej, Ez, .. each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

e

e i S s P
/s &8 A S\
o Y e e eleJa)o e

@ Lemma: Hrop is a (1+y)? sparsifier for d=O(log n).
Setting y = O(¢/log n) yields a (1+¢) sparsifier.

Sparsifier: Algorithm

® Main Idea: Segment stream as Ej, Ez, .. each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

¥ i«

e i B s P
/RN &8 A S\
o Y e e eleJa)o e

@ Lemma: Hrop is a (1+y)? sparsifier for d=O(log n).
Setting y = O(¢/log n) yields a (1+¢) sparsifier.

® Lemma: Can find Hrop with O(y2n log n) memory.

Sparsifier: Algorithm

® Main Idea: Segment stream as Ej, Ez, .. each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

@ Lemma: Hrop is a (1+y)? sparsifier for d=O(log n).
Setting y = O(¢/log n) yields a (1+¢) sparsifier.

® Lemma: Can find Hrop with O(y2n log n) memory.

Sparsifier: Algorithm

® Main Idea: Segment stream as Ej, Ez, .. each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

@ Lemma: Hrop is a (1+y)? sparsifier for d=O(log n).
Setting y = O(¢/log n) yields a (1+¢) sparsifier.

® Lemma: Can find Hrop with O(y2n log n) memory.

Sparsifier: Algorithm

® Main Idea: Segment stream as Ej, Ez, .. each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

@ Lemma: Hrop is a (1+y)? sparsifier for d=O(log n).
Setting y = O(¢/log n) yields a (1+¢) sparsifier.

® Lemma: Can find Hrop with O(y2n log n) memory.

Sparsifier: Algorithm

® Main Idea: Segment stream as Ej, Ez, .. each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

@ Lemma: Hrop is a (1+y)? sparsifier for d=O(log n).
Setting y = O(¢/log n) yields a (1+¢) sparsifier.

® Lemma: Can find Hrop with O(y2n log n) memory.

Sparsifier: Algorithm

® Main Idea: Segment stream as Ej, Ez, .. each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

/RN 7N o AN\

@ Lemma: Hrop is a (1+y)? sparsifier for d=O(log n).
Setting y = O(¢/log n) yields a (1+¢) sparsifier.

® Lemma: Can find Hrop with O(y2n log n) memory.

Sparsifier: Algorithm

® Main Idea: Segment stream as Ej, Ez, .. each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

/ \

e 8 Lt N

/N 2N o AN\

@ Lemma: Hrop is a (1+y)? sparsifier for d=O(log n).
Setting y = O(¢/log n) yields a (1+¢) sparsifier.

® Lemma: Can find Hrop with O(y2n log n) memory.

Sparsifier: Algorithm

® Main Idea: Segment stream as Ej, Ez, .. each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

@ Lemma: Hrop is a (1+y)? sparsifier for d=O(log n).
Setting y = O(¢/log n) yields a (1+¢) sparsifier.

® Lemma: Can find Hrop with O(y2n log n) memory.

Sparsifier: Algorithm

® Main Idea: Segment stream as Ej, Ez, .. each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

@ Lemma: Hrop is a (1+y)? sparsifier for d=O(log n).
Setting y = O(¢/log n) yields a (1+¢) sparsifier.

® Lemma: Can find Hrop with O(y2n log n) memory.

Sparsifier: Algorithm

® Main Idea: Segment stream as Ej, Ez, .. each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

@ Lemma: Hrop is a (1+y)? sparsifier for d=O(log n).
Setting y = O(¢/log n) yields a (1+¢) sparsifier.

® Lemma: Can find Hrop with O(y2n log n) memory.

Sparsifier: Algorithm

® Main Idea: Segment stream as Ej, Ez, .. each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

o

/RN 7N SN TN

&S

@ Lemma: Hrop is a (1+y)? sparsifier for d=O(log n).
Setting y = O(¢/log n) yields a (1+¢) sparsifier.

® Lemma: Can find Hrop with O(y2n log n) memory.

Sparsifier: Algorithm

® Main Idea: Segment stream as Ej, Ez, .. each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

@ Lemma: Hrop is a (1+y)? sparsifier for d=O(log n).
Setting y = O(¢/log n) yields a (1+¢) sparsifier.

® Lemma: Can find Hrop with O(y2n log n) memory.

Sparsifier: Algorithm

® Main Idea: Segment stream as Ej, Ez, .. each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

@ Lemma: Hrop is a (1+y)? sparsifier for d=O(log n).
Setting y = O(¢/log n) yields a (1+¢) sparsifier.

® Lemma: Can find Hrop with O(y2n log n) memory.

Sparsifier: Algorithm

® Main Idea: Segment stream as Ej, Ez, .. each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

@ Lemma: Hrop is a (1+y)? sparsifier for d=O(log n).
Setting y = O(¢/log n) yields a (1+¢) sparsifier.

® Lemma: Can find Hrop with O(y2n log n) memory.

Sparsifier: Algorithm

® Main Idea: Segment stream as Ej, Ez, .. each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

@ Lemma: Hrop is a (1+y)? sparsifier for d=O(log n).
Setting y = O(¢/log n) yields a (1+¢) sparsifier.

® Lemma: Can find Hrop with O(y2n log n) memory.

Sparsifier: Algorithm

® Main Idea: Segment stream as Ej, Ez, .. each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

@ Lemma: Hrop is a (1+y)? sparsifier for d=O(log n).
Setting y = O(¢/log n) yields a (1+¢) sparsifier.

® Lemma: Can find Hrop with O(y2n log n) memory.

Sparsifier: Algorithm

® Main Idea: Segment stream as Ej, Ez, .. each of
size O(e2n). Let H; be (1+y) sparsifier of E;UE; etc.

/\

@ Lemma: Hrop is a (1+y)? sparsifier for d=O(log n).
Setting y = O(¢/log n) yields a (1+¢) sparsifier.

® Lemma: Can find Hrop with O(y2n log n) memory.

Sparsifier Summary

® Thm:A (l+¢g) sparsifier of a graph can be constructed in
O(&2n polylog n) space.

[Ahn, Guha 09], [Goel, Kapralov, Khanna 10], [Sidiropoulos 10]

® Generalizes to spectral sparsification which preserves
properties relating to random walks. [Kelner, Levin 11]

|. Spanners IIl. Sparsifiers Ill. Sketches

Ill. Sketches

Family of Linear Synopses
Distributed & Supports Deletions
Two Connectivity Examples

Linear Sketches

Linear Sketches

Linear Sketches

® Random linear projection: M: R"—=R¥ (where k«n) that

preserves properties of any veR" with high probability.

Linear Sketches

® Random linear projection: M: R"—=R¥ (where k«n) that

preserves properties of any veR" with high probability.

v

Linear Sketches

® Random linear projection: M: R"—=R¥ (where k«n) that

preserves properties of any veR" with high probability.

[’ }M

Linear Sketches

® Random linear projection: M: R"—=R¥ (where k«n) that

preserves properties of any veR" with high probability.

{ M } = |Mv| —— answer

Linear Sketches

® Random linear projection: M: R"—=R¥ (where k«n) that

preserves properties of any veR" with high probability.

B

= [Mv| —— answer

® Many results for numerical statistics and basic geometric
properties... extensive theory with connections to hashing,
compressed sensing, dimensionality reduction, metric
embeddings... widely applicable since embarrassingly
parallelizable and suitable for stream processing.

Linear Sketches

® Random linear projection: M: R"—=R¥ (where k«n) that

preserves properties of any veR" with high probability.

B

= [Mv| —— answer

® Many results for numerical statistics and basic geometric
properties... extensive theory with connections to hashing,
compressed sensing, dimensionality reduction, metric
embeddings... widely applicable since embarrassingly
parallelizable and suitable for stream processing.

? Question: WWhat about analyzing massive graphs via sketches!?

Distributed Data

L
. ‘Jl
oo
"

Distributed Data

t

® [nput: Each player knows neighborhood [(v) for a node v

istributed Data

® |nput: Each player knows neighborhood ['(v) for a node v

® Goal: Simultaneously, each player sends O(polylog n) bits to a
central player who then determines if graph is connected.

® Suppose there’s a bridge (u,v) in the graph, i.e., a friendship that
is essential to ensuring the graph is connected.

® Suppose there’s a bridge (u,v) in the graph, i.e., a friendship that
is essential to ensuring the graph is connected.

® Dubious Claim: At least one player needs to send €)(n) bits.

® Suppose there’s a bridge (u,v) in the graph, i.e., a friendship that
is essential to ensuring the graph is connected.

® Dubious Claim: At least one player needs to send €)(n) bits.

a) Central player needs to know about the special friendship.

This can’t be possible?!

® Suppose there’s a bridge (u,v) in the graph, i.e., a friendship that
is essential to ensuring the graph is connected.

® Dubious Claim: At least one player needs to send €)(n) bits.
a) Central player needs to know about the special friendship.
b) Participant doesn’t know which friendships are special.

This can’t be possible?!

® Suppose there’s a bridge (u,v) in the graph, i.e., a friendship that
is essential to ensuring the graph is connected.

® Dubious Claim: At least one player needs to send €)(n) bits.
a) Central player needs to know about the special friendship.
b) Participant doesn’t know which friendships are special.
c) Participants may have Q(n) friends.

How to do it...

How to do it...

® Players send carefully-designed sketches of address books.

How to do it...

® Players send carefully-designed sketches of address books.

® Main Idea: Exploit homomorphic properties of linear sketches
and emulate a classical algorithm in sketch space.

How to do it...

® Players send carefully-designed sketches of address books.

® Main Idea: Exploit homomorphic properties of linear sketches
and emulate a classical algorithm in sketch space.

How to do it...

® Players send carefully-designed sketches of address books.

® Main Idea: Exploit homomorphic properties of linear sketches
and emulate a classical algorithm in sketch space.

> ANSWER

How to do it...

® Players send carefully-designed sketches of address books.

® Main Idea: Exploit homomorphic properties of linear sketches
and emulate a classical algorithm in sketch space.

1
1
1
1
1
1
1
1
1
1
1
1
1

\ —-—(Sketch)

(Algorithm) > ANSWER

Original Graph

Sketch Space

How to do it...

® Players send carefully-designed sketches of address books.

® Main Idea: Exploit homomorphic properties of linear sketches
and emulate a classical algorithm in sketch space.

%
o)
Q)
=

N

\4

> ANSWER < (" Algorithm)

(Algorithm)
Original Graph

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
L
1
1
1
1
1
|

Sketch Space

Two Examples

First Theorem: Testing Connectivity

a) Dynamic Graph Stream: O(n polylog n) space.
b) Distributed Setting: O(polylog n) length messages.

Ingredient 1: Basic Algorithm

® Algorithm (Spanning Forest):

1. For each node: pick incident edge

Ingredient 1: Basic Algorithm

® Algorithm (Spanning Forest):

1. For each node: pick incident edge

e . ®
"
Fe-Te

Ingredient 1: Basic Algorithm

® Algorithm (Spanning Forest):

1. For each node: pick incident edge

Ingredient 1: Basic Algorithm

® Algorithm (Spanning Forest):
1. For each node: pick incident edge

2.For each connected comp: pick incident edge

Ingredient 1: Basic Algorithm

® Algorithm (Spanning Forest):
1. For each node: pick incident edge

2.For each connected comp: pick incident edge

Ingredient 1: Basic Algorithm

® Algorithm (Spanning Forest):
1. For each node: pick incident edge

2.For each connected comp: pick incident edge

Ingredient 1: Basic Algorithm

® Algorithm (Spanning Forest):

1. For each node: pick incident edge

2.For each connected comp: pick incident edge

Ingredient 1: Basic Algorithm

® Algorithm (Spanning Forest):

1. For each node: pick incident edge

2.For each connected comp: pick incident edge

® Lemma: After O(log n) rounds selected edges
include spanning forest.

Ingredient 2: Sketching Neighborhoods

@ For node i, let aj be vector indexed by node pairs.
Non-zero entries: ai[i,jl=1 if j>i and aili,j]=-1 if j«i.

{1,2} _{1,3}{1:a} - TL5pe 42,3} 124385425} 43,4F *{3,5} {4.5}
ay Sl "0 070" 03'07F0% 009 O

a, = (20 0. 0801 0 0 O 5¥0) °/| |
X
0—0

Ingredient 2: Sketching Neighborhoods

@ For node i, let aj be vector indexed by node pairs.
Non-zero entries: ai[i,jl=1 if j>i and aili,j]=-1 if j«i.

{1,2} {1,3}%¢1a} « Th5hed2,3) (240612,5) 43,47 (3,5} {4,5}
ay SHARRL. FO P07 007808 0 a0

a, = (B0 0FIL. 0 0 0] 0)

Ingredient 2: Sketching Neighborhoods

@ For node i, let aj be vector indexed by node pairs.

Non-zero entries: aili,jl=1 if j>i and Cl[l,J]- 1 |F j<i.

{1,2} _{1,3}{1:a} - TL5pe 42,3} 124385425} 43,4F *{3,5} {4.5}
(1100000000)

(=l 0 0Pl 0 0 OFEEED)
a1+a2 (/OsL g0 % 1 0050 BRI0 ¢ 08

ai

Ingredient 2: Sketching Neighborhoods

@ For node i, let aj be vector indexed by node pairs.

Non-zero entries: aili,jl=1 if j>i and Cl[l,J]- 1 |F j<i.

{1,2} _{1,3}{1:a} - TL5pe 42,3} 124385425} 43,4F *{3,5} {4.5}
(1100000000)

(=l 0 0Pl 0 0 OFEEED)
a1+a2 (/OsL g0 % 1 0050 BRI0 ¢ 08

ai

@ Lemma: For any subset of nodes ScV,
support (Y ~a;) = E(S,V\ S)

€S

Ingredient 2: Sketching Neighborhoods

@ For node i, let aj be vector indexed by node pairs.

Non-zero entries: aili,jl=1 if j>i and a[l,J]- 1 |F j<i.

{1,2} {1,3}%¢1a} « Th5hed2,3) (240612,5) 43,47 (3,5} {4,5}
(1100000000)

(=l 0 0Pl 0 0 OFEEED)
a1+a2 (/OsL g0 % 1 0050 BRI0 ¢ 08

ai

® Lemma: For any subset of nodes ScV,
support (Y ~a;) = E(S,V\ S)
€S
@ Lemma: 3 random M: RN—-Rk with k=O(polylog N)
such that for any aeRN, with high probability

Ma — e € support(a)

i
.f..

ik s e e ™ SRR

ey R g™

Recipe: Sketch & Compute on Sketches

@ Sketfch: Each player sends Ma;
@ Central Player Runs Algorithm in Sketch Space:

@ Use Ma; to get incident edge on each node |

Recipe: Sketch & Compute on Sketches

@ Sketfch: Each player sends Ma;

@ Central Player Runs Algorithm in Sketch Space:
@ Use Ma; to get incident edge on each node |
@ For i=2 to log n:

@ To get incident edge on component ScV use:

Recipe: Sketch & Compute on Sketches

@ Sketfch: Each player sends Ma;

@ Central Player Runs Algorithm in Sketch Space:
@ Use Ma; to get incident edge on each node |
@ For i=2 to log n:

@ To get incident edge on component ScV use:

Y Maj=M() aj)

Jés jES

Recipe: Sketch & Compute on Sketches

@ Sketfch: Each player sends Ma;

@ Central Player Runs Algorithm in Sketch Space:
@ Use Ma; to get incident edge on each node |
@ For i=2 to log n:

@ To get incident edge on component ScV use:

S " Ma; = M(D a;) — e €support() a;) = E(S,V\S)

J&b jES =)

Recipe: Sketch & Compute on Sketches

@ Sketfch: Each player sends Ma;

@ Central Player Runs Algorithm in Sketch Space:
@ Use Ma; to get incident edge on each node |
@ For i=2 to log n:

@ To get incident edge on component ScV use:

S " Ma; = M(D a;) — e €support() a;) = E(S,V\S)

J&b jES =)

Detail: Actually each player sends log n indept sketches Miaj, Mza;, ... and
central player uses Mia; when emulating it" iteration of the algorithm.

Two Examples

First Theorem: Testing Connectivity

a) Dynamic Graph Stream: O(n polylog n) space.
b) Distributed Setting: O(polylog n) length messages.

Two Examples

First Theorem: Testing Connectivity

a) Dynamic Graph Stream: O(n polylog n) space.
b) Distributed Setting: O(polylog n) length messages.

Second Theorem: Checking every cut has size = k

a) Dynamic Graph Stream: O(n k polylog n) space.
b) Distributed Setting: O(k polylog n) length.

Ingredient 1: Basic Algorithm

@ Algorithm (k-Connectivity):
1. Let F; be spanning forest of G(V,E)
2.For i=2 to k:
2.1. Let Fi be spanning forest of G(V,E-Fi-...-Fi.1)

Ingredient 1: Basic Algorithm

@ Algorithm (k-Connectivity):
1. Let Fi be spanning forest of G(V,E)
2.For i=2 to k:
2.1. Let Fi be spanning forest of G(V,E-Fi-...-Fi.1)
@ Lemma: G(V.Fi+...4Fk) is k-connected iff G(V,E) is.

Ingredient 2: Connectivity Sketches

@ Skefch: Simultaneously construct k independent
connectivity sketches {MiG, M,G, ... MG}.

Ingredient 2: Connectivity Sketches

@ Skefch: Simultaneously construct k independent
connectivity sketches {MiG, M,G, ... MG}.

® Run Algorithm in Sketch Space:
@ Use MG to find a spanning forest F; of G

Ingredient 2: Connectivity Sketches

@ Skefch: Simultaneously construct k independent
connectivity sketches {MiG, M,G, ... MG}.

® Run Algorithm in Sketch Space:

@ Use MG to find a spanning forest F; of G
@ Use M2G-M,F1=M,(G-F;) to find F»

Ingredient 2: Connectivity Sketches

@ Skefch: Simultaneously construct k independent
connectivity sketches {MiG, M,G, ... MG}.

® Run Algorithm in Sketch Space:
@ Use MG to find a spanning forest F; of G
@ Use M G-M,F1=M,(G-F;) to find F:
@ Use M3G-M3F1-M3F2=M3(G-Fi-F2) to find F3

Ingredient 2: Connectivity Sketches

@ Skefch: Simultaneously construct k independent
connectivity sketches {MiG, M,G, ... MG}.

® Run Algorithm in Sketch Space:
@ Use MG to find a spanning forest F; of G
@ Use M G-M,F1=M,(G-F;) to find F:
@ Use M3G-M3F1-M3F2=M3(G-Fi-F2) to find F3

@ eftc.

Sketches Summary

Graph Sketches: Linear projections that preserve structural graph
properties. Results parallelizable, streamable, and support deletions.

Ialk Results: Projecting O(n)-dimensional neighborhoods to
O(polylog n) dimensions while preserving connectivity and cuts.

Other Results: Spanners, Bipartiteness, MST, Triangles, Matching, ...

And over to Part ll...

Sag olun!

