
Graph Synopses, Sketches,
and Streams: A Survey

 Andrew McGregor
University of Massachusetts

 Sudipto Guha
University of Pennsylvania

Massive Graphs

• Classic Big Graphs:
Call graph (5x108 nodes), web graph (5x1010 nodes), IP
graph (232 nodes), social networks (109 nodes), ...

Challenge: Can’t use conventional algorithms on graphs this
large. Sometimes can’t even store graph in memory!
Graphs may be dynamic and/or distributed.

Massive Graphs

• Classic Big Graphs:
Call graph (5x108 nodes), web graph (5x1010 nodes), IP
graph (232 nodes), social networks (109 nodes), ...

Challenge: Can’t use conventional algorithms on graphs this
large. Sometimes can’t even store graph in memory!
Graphs may be dynamic and/or distributed.

• Use Abstraction of Structure:
Graphs are a natural way to encode structural information
where we have data about both basic entities and their
relationships. Examples include graphical networks, citation
networks, protein interaction and metabolic networks, ...

Focus of Tutorial

Focus of Tutorial

Question I: What are appropriate synopsis data structures for
massive graphs? How do we trade-off space and accuracy?

Focus of Tutorial

Question I: What are appropriate synopsis data structures for
massive graphs? How do we trade-off space and accuracy?

Question 2: How can we construct these synopses efficiently?
In particular, what is the input is streaming or distributed?

Focus of Tutorial

• Tutorial focuses on the algorithmic and theoretical issues.
Consider arbitrary graphs rather than being domain specific.

• This Talk: Definitions & Basic Building Blocks

• Next Talk: Applications & Extensions

Question I: What are appropriate synopsis data structures for
massive graphs? How do we trade-off space and accuracy?

Question 2: How can we construct these synopses efficiently?
In particular, what is the input is streaming or distributed?

Mark and Erica are now friends.

 Like · Add Friend

Mark and Erica are now friends.

 Like · Add Friend

Mark and Erica are no longer friends.

 Like · Add Friend

Mark and Erica are no longer friends.

 Like · Add Friend

Eduardo and Mark are now friends.

 Like · Add Friend

Eduardo and Mark are now friends.

 Like · Add Friend

Tyler and Cameron are friends with Mark.

 Like · Add Friend

Tyler and Cameron are friends with Mark.

 Like · Add Friend

Sean and Mark are now friends.

 Like · Add Friend

Sean and Mark are now friends.

 Like · Add Friend

Eduardo and Mark are no longer friends.

 Like · Add Friend

Eduardo and Mark are no longer friends.

 Like · Add Friend

Tyler and Cameron are no longer friends with Mark.

 Like · Add Friend

Tyler and Cameron are no longer friends with Mark.

 Like · Add Friend

Lawyers are now friends with everyone.

 Like · Add Friend

Lawyers are now friends with everyone.

 Like · Add Friend

• Input: Observe stream of edges on n nodes added/deleted.

Data Streams

• Input: Observe stream of edges on n nodes added/deleted.

• Example: Using Õ(n) space, maintain connected components.

Data Streams

• Input: Observe stream of edges on n nodes added/deleted.

• Example: Using Õ(n) space, maintain connected components.

• Other Results: Dense subgraphs, matchings, distances,
clustering, partitioning and cuts, diameter, random walks, ...

• e.g., [Feigenbaum, Kannan, McGregor, Suri, Zhang 2004, 2005], [McGregor 2005]

• [Jowhari, Ghodsi 2005], [Zelke 2008], [Sarma, Gollapudi, Panigrahy 2008, 2009]
• [Eggert, Kliemann, Srivastav 2009], [Epstein, Levin, Mestre, Segev 2009]
• [Ahn, Guha 2009, 2011], [Kelner, Levine 2011], [Goel, Kapralov, Khanna 2012]

Data Streams

Input: G=(V,E)

Distributed Processing

G1=(V,E1) G2=(V,E2) G3=(V,E3) G4=(V,E4)

Input: G=(V,E)

Distributed Processing

G1=(V,E1) G2=(V,E2) G3=(V,E3) G4=(V,E4)

Input: G=(V,E)

f(G1) f(G2) f(G3) f(G4)

Distributed Processing

G1=(V,E1) G2=(V,E2) G3=(V,E3) G4=(V,E4)

Input: G=(V,E)

Output: f(G) given f(G1), ... , f(G4)

f(G1) f(G2) f(G3) f(G4)

Distributed Processing

I. Spanners II. Sparsifiers III. SketchesI. Spanners II. Sparsifiers III. Sketches

I. SpannersI. Spanners

Synopsis for Distance Estimation
“Greedy” Stream Algorithm

Extensions

Spanners & Distances

Spanners & Distances
• Measure: The distance dG(u,v) between two nodes u, v is

the length of the shortest path between the nodes.

1 2 3

4 5 6

7 8 9

Original Graph G

Spanners & Distances
• Measure: The distance dG(u,v) between two nodes u, v is

the length of the shortest path between the nodes.

• Synopsis: A subgraph H of G is a k-spanner if

• dG(u,v)≤ dH(u,v)≤k dG(u,v) for all node pairs.

1 2 3

4 5 6

7 8 9

Original Graph G

Spanners & Distances
• Measure: The distance dG(u,v) between two nodes u, v is

the length of the shortest path between the nodes.

• Synopsis: A subgraph H of G is a k-spanner if

• dG(u,v)≤ dH(u,v)≤k dG(u,v) for all node pairs.

1 2 3

4 5 6

7 8 9

Original Graph G

1 2 3

4 5 6

7 8 9

Spanner Graph H

Spanners & Distances
• Measure: The distance dG(u,v) between two nodes u, v is

the length of the shortest path between the nodes.

• Synopsis: A subgraph H of G is a k-spanner if

• dG(u,v)≤ dH(u,v)≤k dG(u,v) for all node pairs.

• Thm: Streaming construction using O(n1+2/(k+1)) space.

1 2 3

4 5 6

7 8 9

Original Graph G

1 2 3

4 5 6

7 8 9

Spanner Graph H

Spanner: Algorithm

Spanner: Algorithm

1 2 3

4 5 6

7 8 9

Spanner: Algorithm

Algorithm: Add new edge (u,v) to H if dH(u,v)>3.

1 2 3

4 5 6

7 8 9

Spanner: Algorithm

Algorithm: Add new edge (u,v) to H if dH(u,v)>3.

1 2 3

4 5 6

7 8 9

Spanner: Algorithm

Algorithm: Add new edge (u,v) to H if dH(u,v)>3.

1 2 3

4 5 6

7 8 9

Spanner: Algorithm

Algorithm: Add new edge (u,v) to H if dH(u,v)>3.

1 2 3

4 5 6

7 8 9

Spanner: Algorithm

Algorithm: Add new edge (u,v) to H if dH(u,v)>3.

1 2 3

4 5 6

7 8 9

Spanner: Algorithm

Algorithm: Add new edge (u,v) to H if dH(u,v)>3.

1 2 3

4 5 6

7 8 9

Spanner: Algorithm

Algorithm: Add new edge (u,v) to H if dH(u,v)>3.

1 2 3

4 5 6

7 8 9

Spanner: Algorithm

Algorithm: Add new edge (u,v) to H if dH(u,v)>3.

1 2 3

4 5 6

7 8 9

Spanner: Algorithm

Algorithm: Add new edge (u,v) to H if dH(u,v)>3.

1 2 3

4 5 6

7 8 9

Spanner: Algorithm

Algorithm: Add new edge (u,v) to H if dH(u,v)>3.

1 2 3

4 5 6

7 8 9

Spanner: Algorithm

Algorithm: Add new edge (u,v) to H if dH(u,v)>3.

1 2 3

4 5 6

7 8 9

Spanner: Algorithm

Algorithm: Add new edge (u,v) to H if dH(u,v)>3.

1 2 3

4 5 6

7 8 9

Spanner: Algorithm

Algorithm: Add new edge (u,v) to H if dH(u,v)>3.

1 2 3

4 5 6

7 8 9

Spanner: Algorithm

Algorithm: Add new edge (u,v) to H if dH(u,v)>3.

1 2 3

4 5 6

7 8 9

Spanner: Algorithm

Algorithm: Add new edge (u,v) to H if dH(u,v)>3.

1 2 3

4 5 6

7 8 9

Spanner: Algorithm

Algorithm: Add new edge (u,v) to H if dH(u,v)>3.

1 2 3

4 5 6

7 8 9

Spanner: Algorithm

Algorithm: Add new edge (u,v) to H if dH(u,v)>3.
Lemma: All distances preserved up to a factor 3.

1 2 3

4 5 6

7 8 9

Spanner: Algorithm

Algorithm: Add new edge (u,v) to H if dH(u,v)>3.
Lemma: All distances preserved up to a factor 3.
Lemma: O(n3/2) edges stored since shortest cycle
among stored edges has length at least 5.

1 2 3

4 5 6

7 8 9

Spanners: Analysis

If H has m edges, average degree is d=2m/n.

Spanners: Analysis

If H has m edges, average degree is d=2m/n.
Claim: H contains a non-empty subgraph H’ with
minimum degree at least d’=d/2

Spanners: Analysis

If H has m edges, average degree is d=2m/n.
Claim: H contains a non-empty subgraph H’ with
minimum degree at least d’=d/2
Proof: Remove all nodes with degree < d’. Can
only remove < nd’=nd/2=m edges so H’ non-empty.

Spanners: Analysis

If H has m edges, average degree is d=2m/n.
Claim: H contains a non-empty subgraph H’ with
minimum degree at least d’=d/2
Proof: Remove all nodes with degree < d’. Can
only remove < nd’=nd/2=m edges so H’ non-empty.
Consider node in H’:

Spanners: Analysis

If H has m edges, average degree is d=2m/n.
Claim: H contains a non-empty subgraph H’ with
minimum degree at least d’=d/2
Proof: Remove all nodes with degree < d’. Can
only remove < nd’=nd/2=m edges so H’ non-empty.
Consider node in H’:

Spanners: Analysis

d’...

If H has m edges, average degree is d=2m/n.
Claim: H contains a non-empty subgraph H’ with
minimum degree at least d’=d/2
Proof: Remove all nodes with degree < d’. Can
only remove < nd’=nd/2=m edges so H’ non-empty.
Consider node in H’:

If length of all cycles is ≥5, the node has at least
d’(d’-1) < n distinct neighbors of neighbors.

Spanners: Analysis

d’...

If H has m edges, average degree is d=2m/n.
Claim: H contains a non-empty subgraph H’ with
minimum degree at least d’=d/2
Proof: Remove all nodes with degree < d’. Can
only remove < nd’=nd/2=m edges so H’ non-empty.
Consider node in H’:

If length of all cycles is ≥5, the node has at least
d’(d’-1) < n distinct neighbors of neighbors.

Spanners: Analysis

d’

......... d’ (d’-1)

...

Spanners Summary

• Thm: There’s a O(n1+1/t)-space stream algorithm returns
a (2t-1)-spanner.	

 [Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

• Extension: Can process weighted graphs by rounding
weights and constructing spanners for each weight class.

I. Spanners II. Sparsifiers III. SketchesI. Spanners II. Sparsifiers III. Sketches

II. SparsifiersII. Sparsifiers

Synopsis for Cut Estimation
Merge-Reduce Stream Algorithm

Extensions

Sparsifiers & Cuts

Sparsifiers & Cuts
• Measure: Given a cut (L,R), the size of a cut cG(L,R) is

the weight of all edges crossing the cut.

Original Graph G

Sparsifiers & Cuts
• Measure: Given a cut (L,R), the size of a cut cG(L,R) is

the weight of all edges crossing the cut.

• Synopsis: A subgraph H of G is a (1+ε) sparsifier if

• cG(L,R)≤ cH(L,R)≤(1+ε) cG(L,R) for all cuts.

Original Graph G

Sparsifiers & Cuts
• Measure: Given a cut (L,R), the size of a cut cG(L,R) is

the weight of all edges crossing the cut.

• Synopsis: A subgraph H of G is a (1+ε) sparsifier if

• cG(L,R)≤ cH(L,R)≤(1+ε) cG(L,R) for all cuts.

Original Graph G Sparsifier Graph H

G
ra

ph
s

co
ur

te
sy

 o
f N

ic
k

H
ar

ve
y

Sparsifiers & Cuts
• Measure: Given a cut (L,R), the size of a cut cG(L,R) is

the weight of all edges crossing the cut.

• Synopsis: A subgraph H of G is a (1+ε) sparsifier if

• cG(L,R)≤ cH(L,R)≤(1+ε) cG(L,R) for all cuts.

• Thm (Benzur-Karger): For any graph G there exists a
(1+ε) sparsifier with only O(ε-2 n) edges.

Original Graph G Sparsifier Graph H

G
ra

ph
s

co
ur

te
sy

 o
f N

ic
k

H
ar

ve
y

Sparsifiers & Cuts
• Measure: Given a cut (L,R), the size of a cut cG(L,R) is

the weight of all edges crossing the cut.

• Synopsis: A subgraph H of G is a (1+ε) sparsifier if

• cG(L,R)≤ cH(L,R)≤(1+ε) cG(L,R) for all cuts.

• Thm (Benzur-Karger): For any graph G there exists a
(1+ε) sparsifier with only O(ε-2 n) edges.

• Thm: Streaming construction in O(ε-2 n log3 n) space.

Original Graph G Sparsifier Graph H

G
ra

ph
s

co
ur

te
sy

 o
f N

ic
k

H
ar

ve
y

Sparsifier: Algorithm

Sparsifier: Algorithm
Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

Sparsifier: Algorithm
Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

E1 E2 E3 E4 E5 E6 E7 E8

Sparsifier: Algorithm
Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

H1 H2 H3 H4

E1 E2 E3 E4 E5 E6 E7 E8

Sparsifier: Algorithm
Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

H5 H6

H1 H2 H3 H4

E1 E2 E3 E4 E5 E6 E7 E8

Sparsifier: Algorithm
Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

HTOP

H5 H6

H1 H2 H3 H4

E1 E2 E3 E4 E5 E6 E7 E8

Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n).
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.

Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

HTOP

H5 H6

H1 H2 H3 H4

E1 E2 E3 E4 E5 E6 E7 E8

Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n).
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

HTOP

H5 H6

H1 H2 H3 H4

E1 E2 E3 E4 E5 E6 E7 E8

Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n).
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

HTOP

H5 H6

H1 H2 H3 H4

E1 E2 E3 E4 E5 E6 E7 E8E1 E2 E3 E4 E5 E6 E7 E8

H1 H2 H3 H4

H5 H6

HTOP

Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n).
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

HTOP

H5 H6

H1 H2 H3 H4

E1 E2 E3 E4 E5 E6 E7 E8E1 E2 E3 E4 E5 E6 E7 E8

H1 H2 H3 H4

H5 H6

HTOP

E1

Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n).
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

HTOP

H5 H6

H1 H2 H3 H4

E1 E2 E3 E4 E5 E6 E7 E8E1 E2 E3 E4 E5 E6 E7 E8

H1 H2 H3 H4

H5 H6

HTOP

E1 E2

Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n).
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

HTOP

H5 H6

H1 H2 H3 H4

E1 E2 E3 E4 E5 E6 E7 E8E1 E2 E3 E4 E5 E6 E7 E8

H1 H2 H3 H4

H5 H6

HTOP

H1

Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n).
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

HTOP

H5 H6

H1 H2 H3 H4

E1 E2 E3 E4 E5 E6 E7 E8E1 E2 E3 E4 E5 E6 E7 E8

H1 H2 H3 H4

H5 H6

HTOP

E3

H1

Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n).
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

HTOP

H5 H6

H1 H2 H3 H4

E1 E2 E3 E4 E5 E6 E7 E8E1 E2 E3 E4 E5 E6 E7 E8

H1 H2 H3 H4

H5 H6

HTOP

E3 E4

H1

Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n).
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

HTOP

H5 H6

H1 H2 H3 H4

E1 E2 E3 E4 E5 E6 E7 E8E1 E2 E3 E4 E5 E6 E7 E8

H1 H2 H3 H4

H5 H6

HTOP

H1 H2

Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n).
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

HTOP

H5 H6

H1 H2 H3 H4

E1 E2 E3 E4 E5 E6 E7 E8E1 E2 E3 E4 E5 E6 E7 E8

H1 H2 H3 H4

H5 H6

HTOP

H5

Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n).
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

HTOP

H5 H6

H1 H2 H3 H4

E1 E2 E3 E4 E5 E6 E7 E8E1 E2 E3 E4 E5 E6 E7 E8

H1 H2 H3 H4

H5 H6

HTOP

E5

H5

Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n).
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

HTOP

H5 H6

H1 H2 H3 H4

E1 E2 E3 E4 E5 E6 E7 E8E1 E2 E3 E4 E5 E6 E7 E8

H1 H2 H3 H4

H5 H6

HTOP

E5 E6

H5

Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n).
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

HTOP

H5 H6

H1 H2 H3 H4

E1 E2 E3 E4 E5 E6 E7 E8E1 E2 E3 E4 E5 E6 E7 E8

H1 H2 H3 H4

H5 H6

HTOP

H3

H5

Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n).
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

HTOP

H5 H6

H1 H2 H3 H4

E1 E2 E3 E4 E5 E6 E7 E8E1 E2 E3 E4 E5 E6 E7 E8

H1 H2 H3 H4

H5 H6

HTOP

E7

H3

H5

Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n).
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

HTOP

H5 H6

H1 H2 H3 H4

E1 E2 E3 E4 E5 E6 E7 E8E1 E2 E3 E4 E5 E6 E7 E8

H1 H2 H3 H4

H5 H6

HTOP

E7

H3

H5

E8

Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n).
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

HTOP

H5 H6

H1 H2 H3 H4

E1 E2 E3 E4 E5 E6 E7 E8E1 E2 E3 E4 E5 E6 E7 E8

H1 H2 H3 H4

H5 H6

HTOP

H3 H4

H5

Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n).
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

HTOP

H5 H6

H1 H2 H3 H4

E1 E2 E3 E4 E5 E6 E7 E8E1 E2 E3 E4 E5 E6 E7 E8

H1 H2 H3 H4

H5 H6

HTOP

H5 H6

Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n).
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc.

HTOP

H5 H6

H1 H2 H3 H4

E1 E2 E3 E4 E5 E6 E7 E8E1 E2 E3 E4 E5 E6 E7 E8

H1 H2 H3 H4

H5 H6

HTOPHTOP

Sparsifier Summary

• Thm: A (1+ε) sparsifier of a graph can be constructed in
O(ε-2 n polylog n) space.

• [Ahn, Guha 09], [Goel, Kapralov, Khanna 10], [Sidiropoulos 10]

• Generalizes to spectral sparsification which preserves
properties relating to random walks.
 [Kelner, Levin 11]

I. Spanners II. Sparsifiers III. SketchesI. Spanners II. Sparsifiers III. Sketches

III. SketchesIII. Sketches
Family of Linear Synopses

Distributed & Supports Deletions
Two Connectivity Examples

Linear Sketches

Linear Sketches

2

666666664

v

3

777777775

• Random linear projection: M: ℝn→ℝk (where k≪n) that
preserves properties of any v∈ℝn with high probability.

Linear Sketches

2

666666664

v

3

777777775

• Random linear projection: M: ℝn→ℝk (where k≪n) that
preserves properties of any v∈ℝn with high probability.

Linear Sketches

2

666666664

v

3

777777775

2

4 M

3

5

• Random linear projection: M: ℝn→ℝk (where k≪n) that
preserves properties of any v∈ℝn with high probability.

Linear Sketches

2

666666664

v

3

777777775

2

4 M

3

5 =

2

4Mv

3

5

• Random linear projection: M: ℝn→ℝk (where k≪n) that
preserves properties of any v∈ℝn with high probability.

Linear Sketches

�! answer

2

666666664

v

3

777777775

2

4 M

3

5 =

2

4Mv

3

5

• Random linear projection: M: ℝn→ℝk (where k≪n) that
preserves properties of any v∈ℝn with high probability.

• Many results for numerical statistics and basic geometric
properties... extensive theory with connections to hashing,
compressed sensing, dimensionality reduction, metric
embeddings... widely applicable since embarrassingly
parallelizable and suitable for stream processing.

Linear Sketches

�! answer

2

666666664

v

3

777777775

2

4 M

3

5 =

2

4Mv

3

5

• Random linear projection: M: ℝn→ℝk (where k≪n) that
preserves properties of any v∈ℝn with high probability.

• Many results for numerical statistics and basic geometric
properties... extensive theory with connections to hashing,
compressed sensing, dimensionality reduction, metric
embeddings... widely applicable since embarrassingly
parallelizable and suitable for stream processing.

? Question: What about analyzing massive graphs via sketches?

Linear Sketches

�! answer

2

666666664

v

3

777777775

2

4 M

3

5 =

2

4Mv

3

5

Distributed Data

...

Distributed Data

...

• Input: Each player knows neighborhood Γ(v) for a node v

Distributed Data

...

• Input: Each player knows neighborhood Γ(v) for a node v

• Goal: Simultaneously, each player sends O(polylog n) bits to a
central player who then determines if graph is connected.

• Suppose there’s a bridge (u,v) in the graph, i.e., a friendship that
is essential to ensuring the graph is connected.

This can’t be possible?!

• Suppose there’s a bridge (u,v) in the graph, i.e., a friendship that
is essential to ensuring the graph is connected.

• Dubious Claim: At least one player needs to send Ω(n) bits.

This can’t be possible?!

• Suppose there’s a bridge (u,v) in the graph, i.e., a friendship that
is essential to ensuring the graph is connected.

• Dubious Claim: At least one player needs to send Ω(n) bits.
a) Central player needs to know about the special friendship.

This can’t be possible?!

• Suppose there’s a bridge (u,v) in the graph, i.e., a friendship that
is essential to ensuring the graph is connected.

• Dubious Claim: At least one player needs to send Ω(n) bits.
a) Central player needs to know about the special friendship.
b) Participant doesn’t know which friendships are special.

This can’t be possible?!

• Suppose there’s a bridge (u,v) in the graph, i.e., a friendship that
is essential to ensuring the graph is connected.

• Dubious Claim: At least one player needs to send Ω(n) bits.
a) Central player needs to know about the special friendship.
b) Participant doesn’t know which friendships are special.
c) Participants may have Ω(n) friends.

This can’t be possible?!

How to do it...

How to do it...
• Players send carefully-designed sketches of address books.

How to do it...
• Players send carefully-designed sketches of address books.

• Main Idea: Exploit homomorphic properties of linear sketches
and emulate a classical algorithm in sketch space.

How to do it...
• Players send carefully-designed sketches of address books.

• Main Idea: Exploit homomorphic properties of linear sketches
and emulate a classical algorithm in sketch space.

How to do it...
• Players send carefully-designed sketches of address books.

• Main Idea: Exploit homomorphic properties of linear sketches
and emulate a classical algorithm in sketch space.

Algorithm ANSWER

How to do it...
• Players send carefully-designed sketches of address books.

• Main Idea: Exploit homomorphic properties of linear sketches
and emulate a classical algorithm in sketch space.

Original Graph Sketch Space

Algorithm ANSWER

Sketch

How to do it...
• Players send carefully-designed sketches of address books.

• Main Idea: Exploit homomorphic properties of linear sketches
and emulate a classical algorithm in sketch space.

Original Graph Sketch Space

AlgorithmAlgorithm ANSWER

Sketch

Two Examples

First Theorem: Testing Connectivity
a) Dynamic Graph Stream: O(n polylog n) space.
b) Distributed Setting: O(polylog n) length messages.

Second Theorem: Checking every cut has size ≥ k
a) Dynamic Graph Stream: O(n k polylog n) space.
b) Distributed Setting: O(k polylog n) length.

Ingredient 1: Basic Algorithm

Algorithm (Spanning Forest):

Ingredient 1: Basic Algorithm

Algorithm (Spanning Forest):
1. For each node: pick incident edge

Ingredient 1: Basic Algorithm

Algorithm (Spanning Forest):
1. For each node: pick incident edge

Ingredient 1: Basic Algorithm

Algorithm (Spanning Forest):
1. For each node: pick incident edge

Ingredient 1: Basic Algorithm

Algorithm (Spanning Forest):
1. For each node: pick incident edge

Ingredient 1: Basic Algorithm

Algorithm (Spanning Forest):
1. For each node: pick incident edge
2.For each connected comp: pick incident edge

Ingredient 1: Basic Algorithm

Algorithm (Spanning Forest):
1. For each node: pick incident edge
2.For each connected comp: pick incident edge

Ingredient 1: Basic Algorithm

Algorithm (Spanning Forest):
1. For each node: pick incident edge
2.For each connected comp: pick incident edge

Ingredient 1: Basic Algorithm

Algorithm (Spanning Forest):
1. For each node: pick incident edge
2.For each connected comp: pick incident edge
3.Repeat until no edges between connected comp.

Ingredient 1: Basic Algorithm

Algorithm (Spanning Forest):
1. For each node: pick incident edge
2.For each connected comp: pick incident edge
3.Repeat until no edges between connected comp.

Lemma: After O(log n) rounds selected edges
include spanning forest.

Ingredient 1: Basic Algorithm

Ingredient 2: Sketching Neighborhoods

For node i, let ai be vector indexed by node pairs.
Non-zero entries: ai[i,j]=1 if j>i and ai[i,j]=-1 if j<i.

Ingredient 2: Sketching Neighborhoods

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

For node i, let ai be vector indexed by node pairs.
Non-zero entries: ai[i,j]=1 if j>i and ai[i,j]=-1 if j<i.

Ingredient 2: Sketching Neighborhoods

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

For node i, let ai be vector indexed by node pairs.
Non-zero entries: ai[i,j]=1 if j>i and ai[i,j]=-1 if j<i.

Ingredient 2: Sketching Neighborhoods

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

a1 + a2 =
�
0 1 0 0 1 0 0 0 0 0

�

For node i, let ai be vector indexed by node pairs.
Non-zero entries: ai[i,j]=1 if j>i and ai[i,j]=-1 if j<i.

Lemma: For any subset of nodes S⊂V,

Ingredient 2: Sketching Neighborhoods

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

support (

X

i2S

ai) = E (S ,V \ S)

a1 + a2 =
�
0 1 0 0 1 0 0 0 0 0

�

For node i, let ai be vector indexed by node pairs.
Non-zero entries: ai[i,j]=1 if j>i and ai[i,j]=-1 if j<i.

Lemma: For any subset of nodes S⊂V,

Lemma: ∃ random M: ℝN→ℝk with k=O(polylog N)
such that for any a∈ℝN, with high probability

Ingredient 2: Sketching Neighborhoods

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

Ma �! e 2 support(a)

support (

X

i2S

ai) = E (S ,V \ S)

a1 + a2 =
�
0 1 0 0 1 0 0 0 0 0

�

Recipe: Sketch & Compute on Sketches

Sketch: Each player sends Maj

Recipe: Sketch & Compute on Sketches

Sketch: Each player sends Maj

Central Player Runs Algorithm in Sketch Space:

Recipe: Sketch & Compute on Sketches

Sketch: Each player sends Maj

Central Player Runs Algorithm in Sketch Space:
Use Maj to get incident edge on each node j

Recipe: Sketch & Compute on Sketches

Sketch: Each player sends Maj

Central Player Runs Algorithm in Sketch Space:
Use Maj to get incident edge on each node j
For i=2 to log n:

To get incident edge on component S⊂V use:

Recipe: Sketch & Compute on Sketches

Sketch: Each player sends Maj

Central Player Runs Algorithm in Sketch Space:
Use Maj to get incident edge on each node j
For i=2 to log n:

To get incident edge on component S⊂V use:

Recipe: Sketch & Compute on Sketches

X

j2S

Maj = M(
X

j2S

aj)

Sketch: Each player sends Maj

Central Player Runs Algorithm in Sketch Space:
Use Maj to get incident edge on each node j
For i=2 to log n:

To get incident edge on component S⊂V use:

Recipe: Sketch & Compute on Sketches

�! e 2 support(

X

j2S

aj) = E (S ,V \ S)
X

j2S

Maj = M(
X

j2S

aj)

Sketch: Each player sends Maj

Central Player Runs Algorithm in Sketch Space:
Use Maj to get incident edge on each node j
For i=2 to log n:

To get incident edge on component S⊂V use:

Recipe: Sketch & Compute on Sketches

�! e 2 support(

X

j2S

aj) = E (S ,V \ S)
X

j2S

Maj = M(
X

j2S

aj)

Detail: Actually each player sends log n indept sketches M1aj, M2aj, ... and
central player uses Miaj when emulating ith iteration of the algorithm.

Two Examples

First Theorem: Testing Connectivity
a) Dynamic Graph Stream: O(n polylog n) space.
b) Distributed Setting: O(polylog n) length messages.

Second Theorem: Checking every cut has size ≥ k
a) Dynamic Graph Stream: O(n k polylog n) space.
b) Distributed Setting: O(k polylog n) length.

Two Examples

First Theorem: Testing Connectivity
a) Dynamic Graph Stream: O(n polylog n) space.
b) Distributed Setting: O(polylog n) length messages.

Second Theorem: Checking every cut has size ≥ k
a) Dynamic Graph Stream: O(n k polylog n) space.
b) Distributed Setting: O(k polylog n) length.

Ingredient 1: Basic Algorithm

Algorithm (k-Connectivity):

Ingredient 1: Basic Algorithm

Algorithm (k-Connectivity):
1. Let F1 be spanning forest of G(V,E)

Ingredient 1: Basic Algorithm

Algorithm (k-Connectivity):
1. Let F1 be spanning forest of G(V,E)
2.For i=2 to k:

2.1. Let Fi be spanning forest of G(V,E-F1-...-Fi-1)

Ingredient 1: Basic Algorithm

Algorithm (k-Connectivity):
1. Let F1 be spanning forest of G(V,E)
2.For i=2 to k:

2.1. Let Fi be spanning forest of G(V,E-F1-...-Fi-1)
Lemma: G(V,F1+...+Fk) is k-connected iff G(V,E) is.

Ingredient 1: Basic Algorithm

Ingredient 2: Connectivity Sketches

Ingredient 2: Connectivity Sketches

Sketch: Simultaneously construct k independent
connectivity sketches {M1G, M2G, ... MkG}.

Ingredient 2: Connectivity Sketches

Sketch: Simultaneously construct k independent
connectivity sketches {M1G, M2G, ... MkG}.
Run Algorithm in Sketch Space:

Use M1G to find a spanning forest F1 of G

Ingredient 2: Connectivity Sketches

Sketch: Simultaneously construct k independent
connectivity sketches {M1G, M2G, ... MkG}.
Run Algorithm in Sketch Space:

Use M1G to find a spanning forest F1 of G
Use M2G-M2F1=M2(G-F1) to find F2

Ingredient 2: Connectivity Sketches

Sketch: Simultaneously construct k independent
connectivity sketches {M1G, M2G, ... MkG}.
Run Algorithm in Sketch Space:

Use M1G to find a spanning forest F1 of G
Use M2G-M2F1=M2(G-F1) to find F2

Use M3G-M3F1-M3F2=M3(G-F1-F2) to find F3

Ingredient 2: Connectivity Sketches

Sketch: Simultaneously construct k independent
connectivity sketches {M1G, M2G, ... MkG}.
Run Algorithm in Sketch Space:

Use M1G to find a spanning forest F1 of G
Use M2G-M2F1=M2(G-F1) to find F2

Use M3G-M3F1-M3F2=M3(G-F1-F2) to find F3
etc.

Sketches Summary

• Graph Sketches: Linear projections that preserve structural graph
properties. Results parallelizable, streamable, and support deletions.

• Talk Results: Projecting O(n)-dimensional neighborhoods to
O(polylog n) dimensions while preserving connectivity and cuts.

• Other Results: Spanners, Bipartiteness, MST, Triangles, Matching, ...

Sağ	
 olun!

And over to Part II...

