

Graph Synopses, Sketches, and Streams: A Survey

Sudipto Guha

University of Pennsylvania

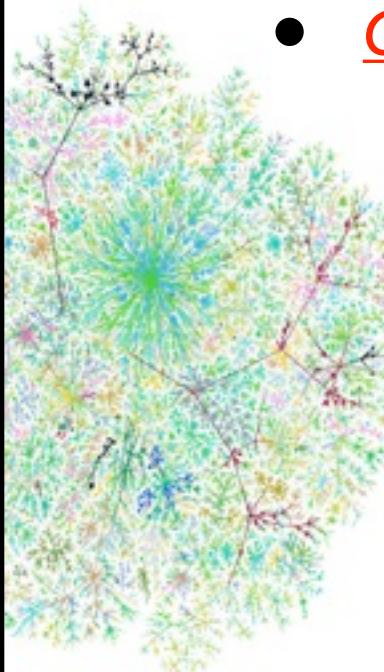
Andrew McGregor

University of Massachusetts

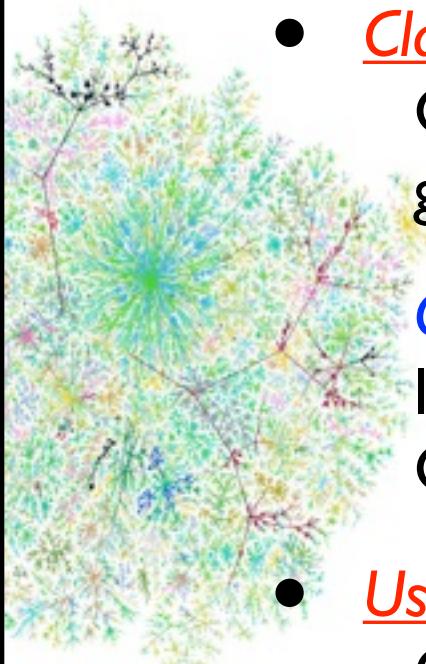
Massive Graphs

- Classic Big Graphs:
Call graph (5×10^8 nodes), web graph (5×10^{10} nodes), IP graph (2^{32} nodes), social networks (10^9 nodes), ...

Challenge: Can't use conventional algorithms on graphs this large. Sometimes can't even store graph in memory!
Graphs may be dynamic and/or distributed.



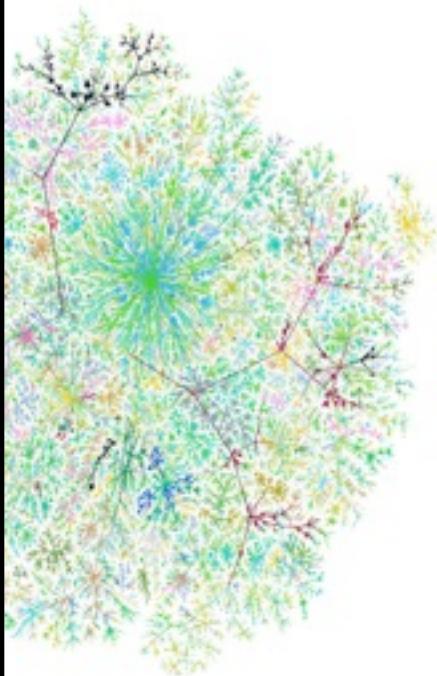
Massive Graphs



- *Classic Big Graphs:*
Call graph (5×10^8 nodes), web graph (5×10^{10} nodes), IP graph (2^{32} nodes), social networks (10^9 nodes), ...

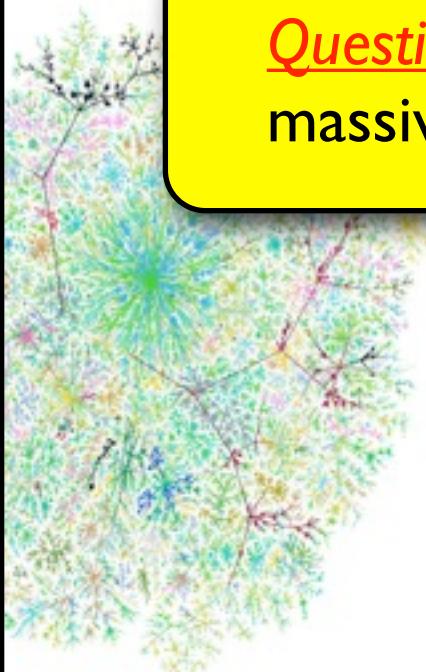
Challenge: Can't use conventional algorithms on graphs this large. Sometimes can't even store graph in memory!
Graphs may be dynamic and/or distributed.
- *Use Abstraction of Structure:*
Graphs are a natural way to encode structural information where we have data about both **basic entities** and their **relationships**. Examples include graphical networks, citation networks, protein interaction and metabolic networks, ...

Focus of Tutorial



Focus of Tutorial

Question 1: What are appropriate **synopsis data structures** for massive graphs? How do we trade-off space and accuracy?



Focus of Tutorial

Question 1: What are appropriate **synopsis data structures** for massive graphs? How do we trade-off space and accuracy?

Question 2: How can we construct these synopses **efficiently**? In particular, what is the input is **streaming** or **distributed**?

Focus of Tutorial

Question 1: What are appropriate **synopsis data structures** for massive graphs? How do we trade-off space and accuracy?

Question 2: How can we construct these synopses **efficiently**? In particular, what is the input is **streaming** or **distributed**?

- Tutorial focuses on the algorithmic and theoretical issues.
Consider arbitrary graphs rather than being domain specific.

[**This Talk:**](#) Definitions & Basic Building Blocks

[**Next Talk:**](#) Applications & Extensions

Mark and Erica are now friends.

 Like · Add Friend

Mark and Erica are no longer friends.

 Like · Add Friend

Eduardo and Mark are now friends.

 Like · Add Friend

Tyler and Cameron are friends with Mark.

 Like · Add Friend

Sean and Mark are now friends.

 Like · Add Friend

Eduardo and Mark are no longer friends.

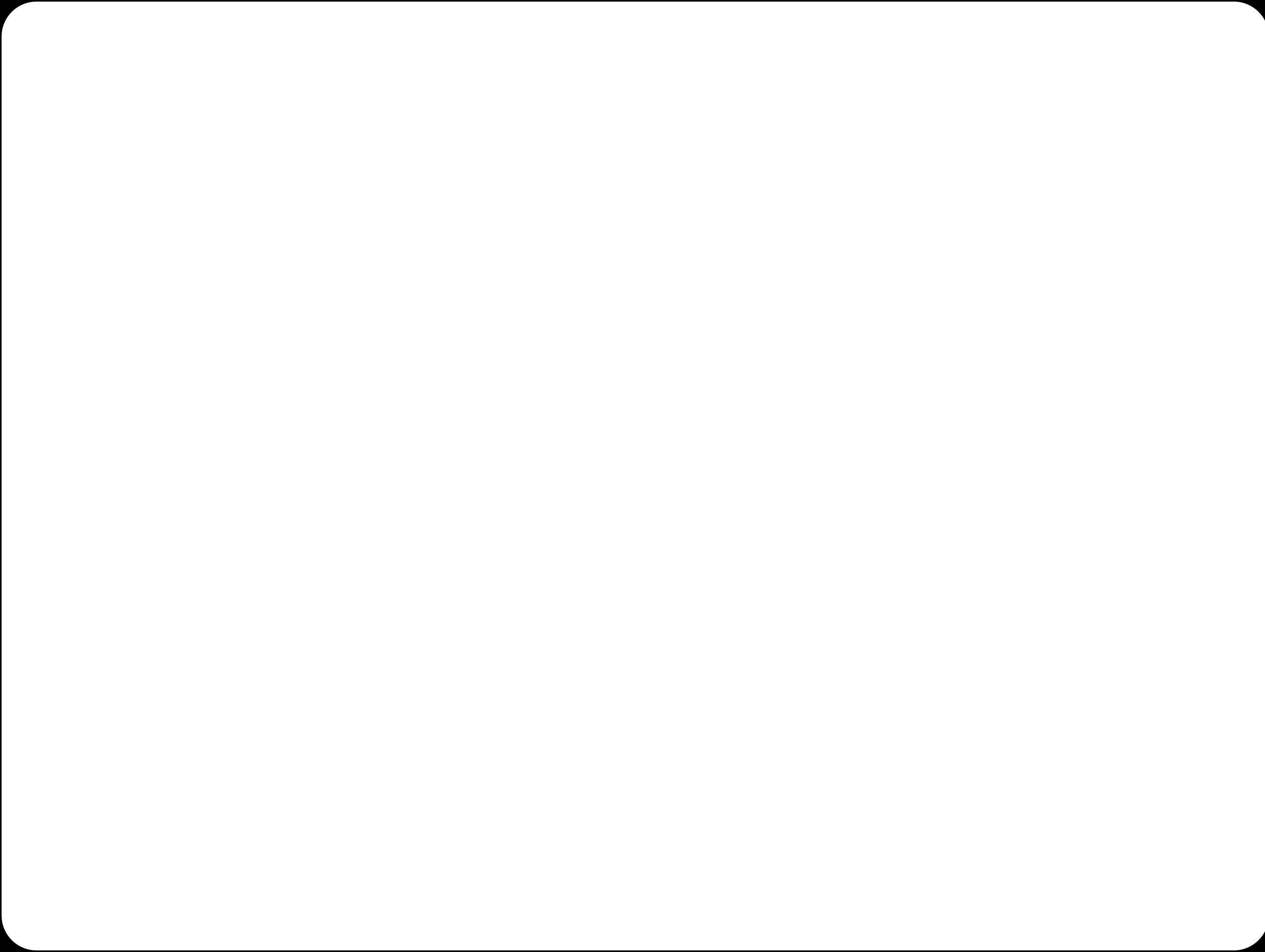
 Like · Add Friend

Tyler and Cameron are no longer friends with Mark.

 Like · Add Friend

Lawyers are now friends with everyone.

 Like · Add Friend



Data Streams

- *Input:* Observe stream of edges on n nodes added/deleted.

Data Streams

- *Input:* Observe stream of edges on n nodes added/deleted.
- *Example:* Using $\tilde{O}(n)$ space, maintain connected components.

Data Streams

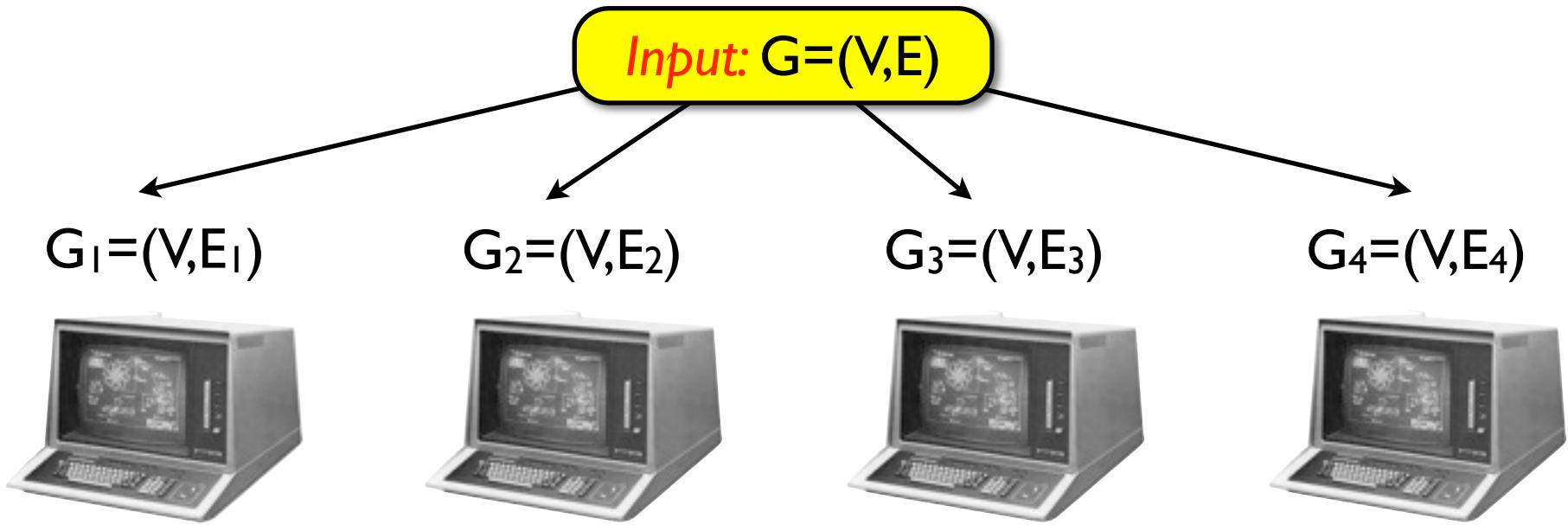
- *Input:* Observe stream of edges on n nodes added/deleted.
- *Example:* Using $\tilde{O}(n)$ space, maintain connected components.
- *Other Results:* Dense subgraphs, matchings, distances, clustering, partitioning and cuts, diameter, random walks, ...

e.g., [Feigenbaum, Kannan, McGregor, Suri, Zhang 2004, 2005], [McGregor 2005]
[Jowhari, Ghodsi 2005], [Zelke 2008], [Sarma, Gollapudi, Panigrahy 2008, 2009]
[Eggert, Kliemann, Srivastav 2009], [Epstein, Levin, Mestre, Segev 2009]
[Ahn, Guha 2009, 2011], [Kelner, Levine 2011], [Goel, Kapralov, Khanna 2012]

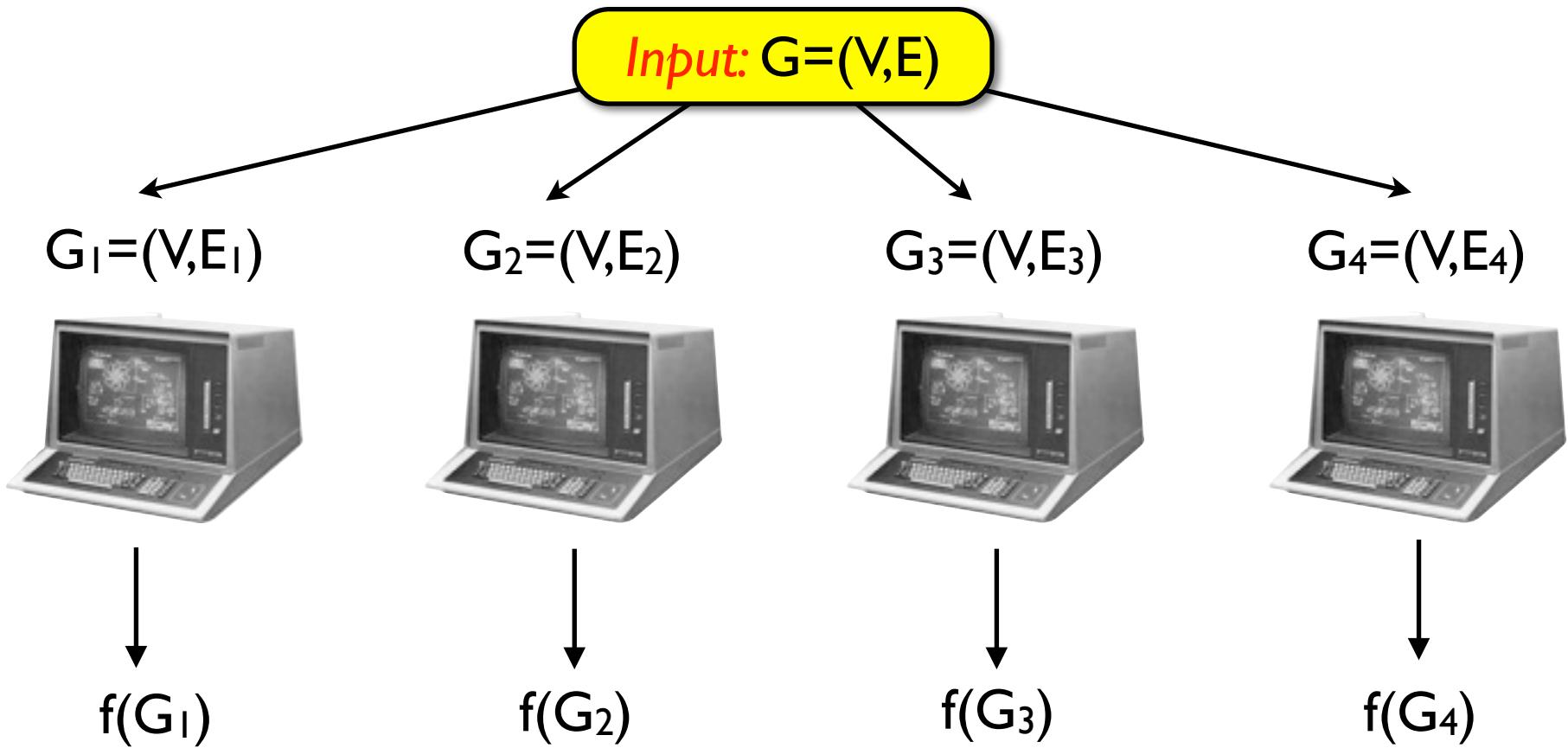
Distributed Processing

Input: $G=(V,E)$

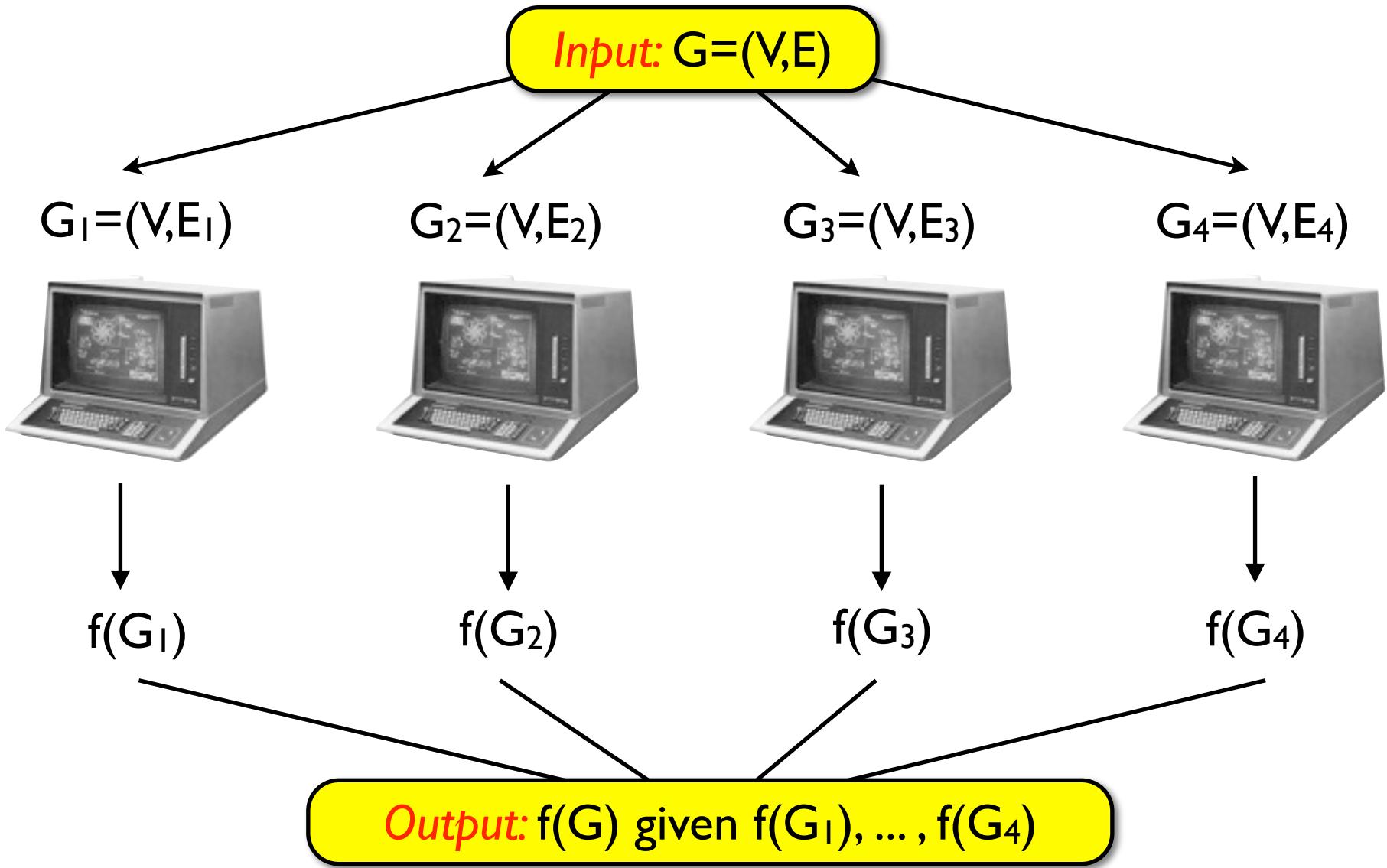
Distributed Processing



Distributed Processing



Distributed Processing



I. Spanners



II. Sparsifiers

III. Sketches

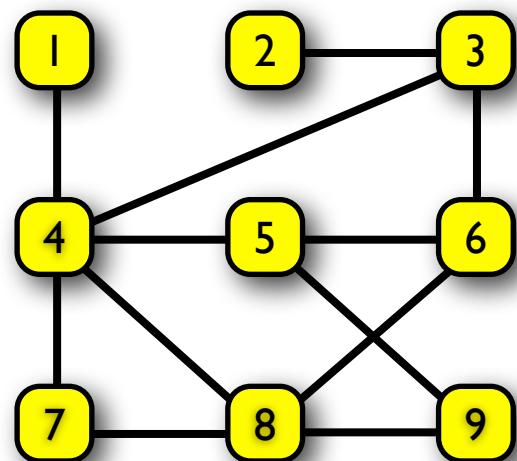
I. Spanners

*Synopsis for Distance Estimation
“Greedy” Stream Algorithm
Extensions*

Spanners & Distances

Spanners & Distances

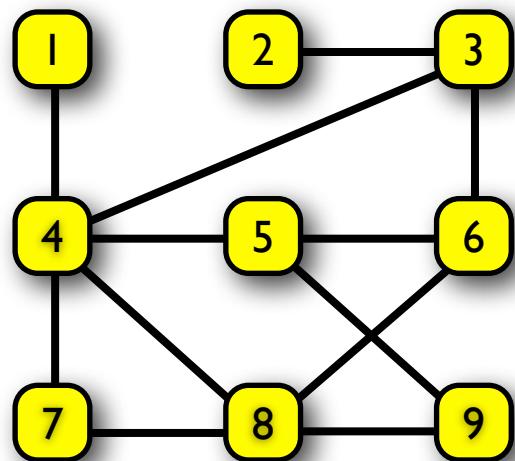
- Measure: The distance $d_G(u,v)$ between two nodes u, v is the length of the shortest path between the nodes.



Original Graph G

Spanners & Distances

- Measure: The distance $d_G(u,v)$ between two nodes u, v is the length of the shortest path between the nodes.

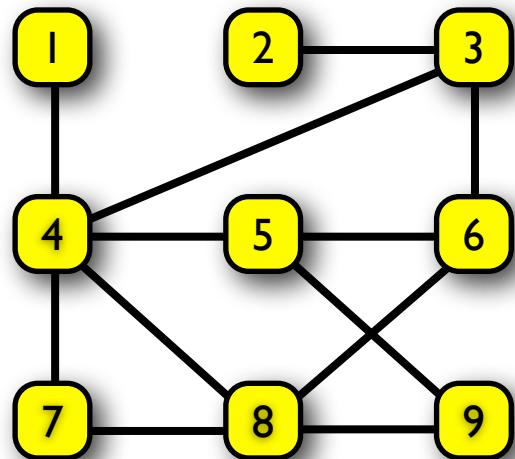


Original Graph G

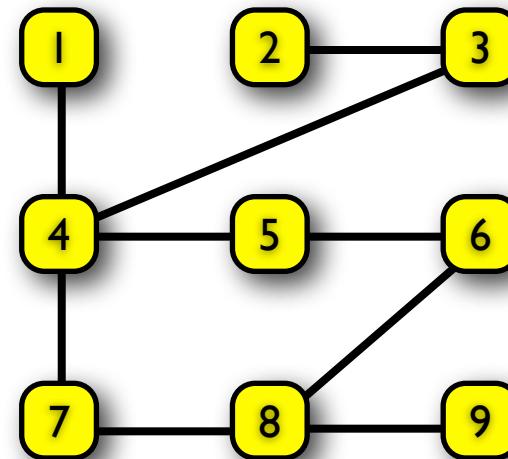
- Synopsis: A subgraph H of G is a k -spanner if
$$d_G(u,v) \leq d_H(u,v) \leq k d_G(u,v) \quad \text{for all node pairs.}$$

Spanners & Distances

- Measure: The distance $d_G(u,v)$ between two nodes u, v is the length of the shortest path between the nodes.



Original Graph G

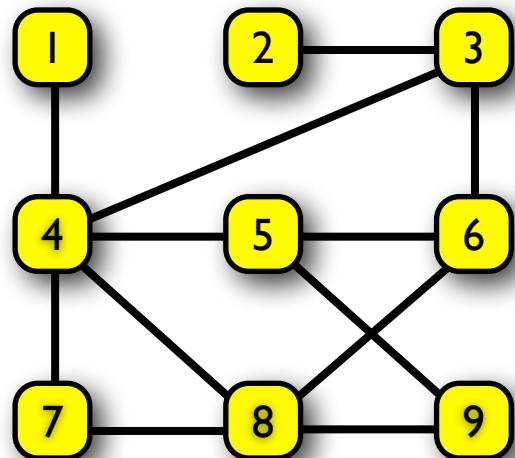


Spanner Graph H

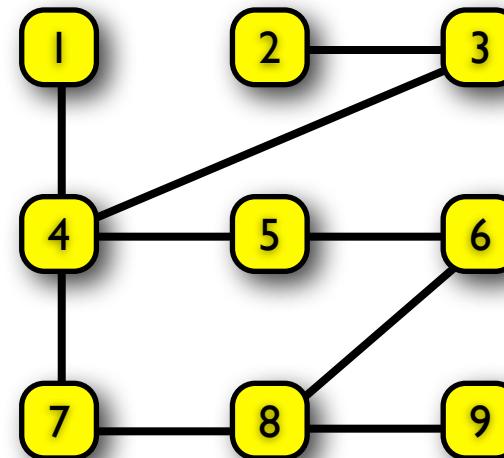
- Synopsis: A subgraph H of G is a k -spanner if
$$d_G(u,v) \leq d_H(u,v) \leq k d_G(u,v) \quad \text{for all node pairs.}$$

Spanners & Distances

- Measure: The distance $d_G(u,v)$ between two nodes u, v is the length of the shortest path between the nodes.



Original Graph G



Spanner Graph H

- Synopsis: A subgraph H of G is a k -spanner if
$$d_G(u,v) \leq d_H(u,v) \leq k d_G(u,v) \quad \text{for all node pairs.}$$
- Thm: Streaming construction using $O(n^{1+2/(k+1)})$ space.

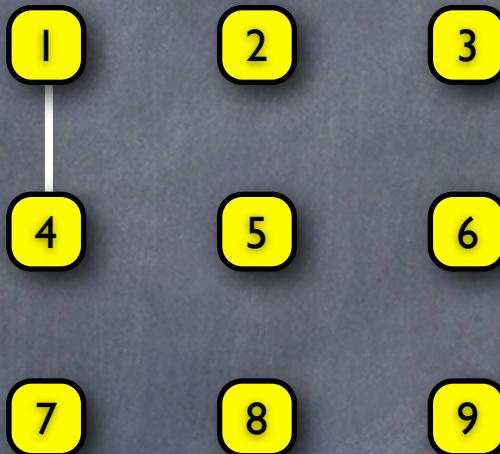
Spanner: Algorithm

Spanner: Algorithm

Spanner: Algorithm

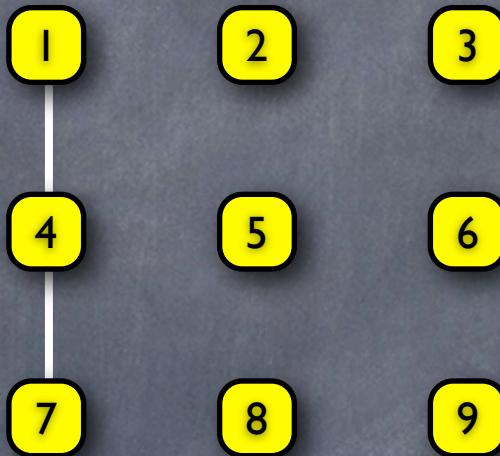
- Algorithm: Add new edge (u,v) to H if $d_H(u,v) > 3$.

Spanner: Algorithm



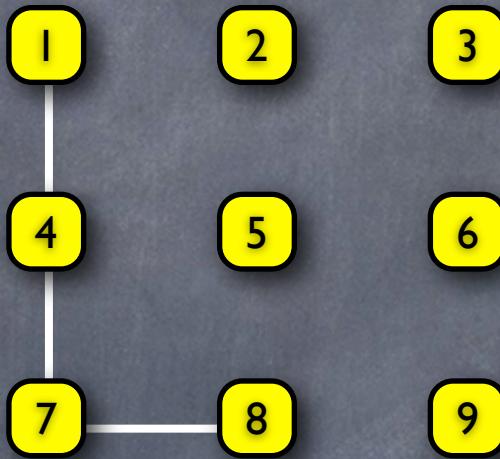
- Algorithm: Add new edge (u,v) to H if $d_H(u,v) > 3$.

Spanner: Algorithm



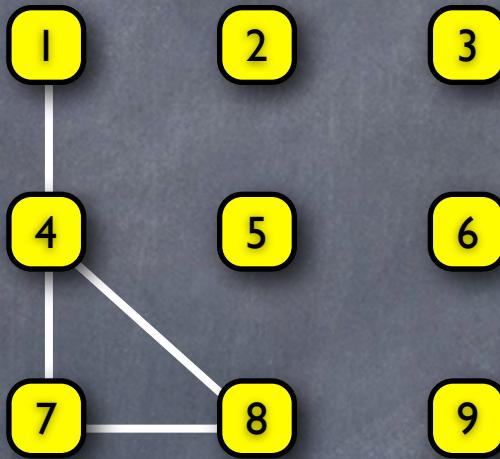
- Algorithm: Add new edge (u,v) to H if $d_H(u,v) > 3$.

Spanner: Algorithm



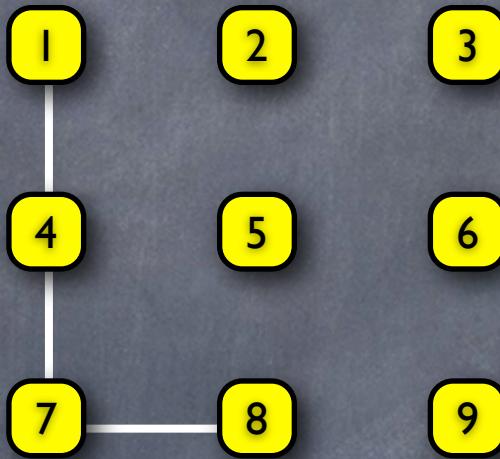
- Algorithm: Add new edge (u,v) to H if $d_H(u,v) > 3$.

Spanner: Algorithm



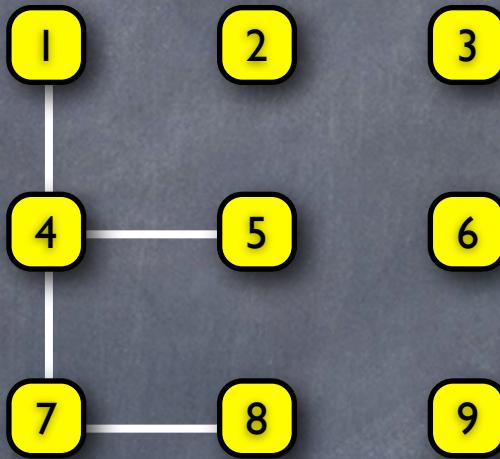
- Algorithm: Add new edge (u,v) to H if $d_H(u,v) > 3$.

Spanner: Algorithm



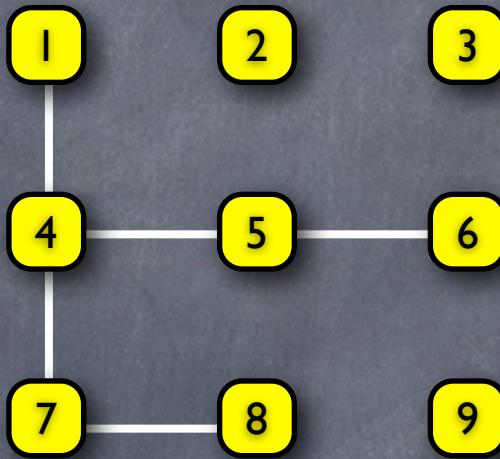
- Algorithm: Add new edge (u,v) to H if $d_H(u,v) > 3$.

Spanner: Algorithm



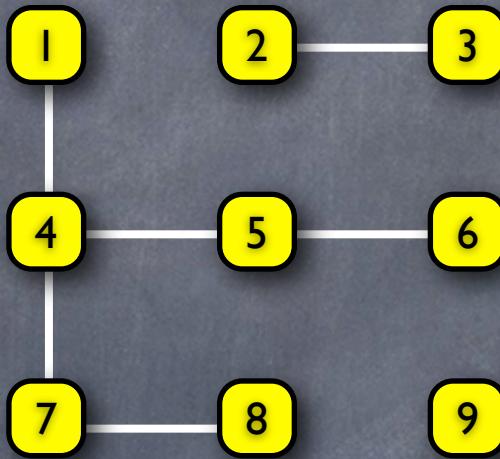
- Algorithm: Add new edge (u,v) to H if $d_H(u,v) > 3$.

Spanner: Algorithm



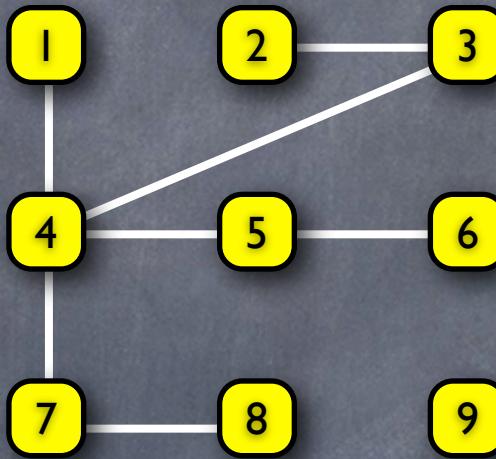
- Algorithm: Add new edge (u,v) to H if $d_H(u,v) > 3$.

Spanner: Algorithm



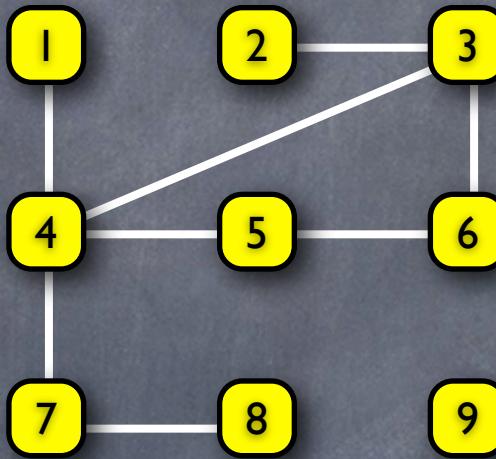
- Algorithm: Add new edge (u,v) to H if $d_H(u,v) > 3$.

Spanner: Algorithm



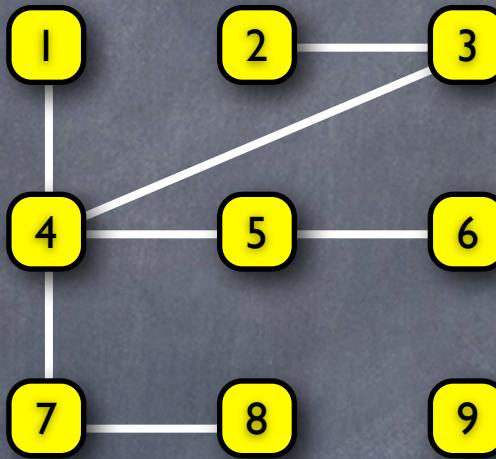
- Algorithm: Add new edge (u,v) to H if $d_H(u,v) > 3$.

Spanner: Algorithm



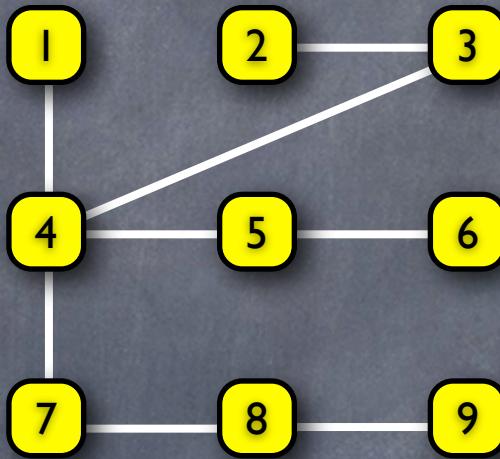
- Algorithm: Add new edge (u,v) to H if $d_H(u,v) > 3$.

Spanner: Algorithm



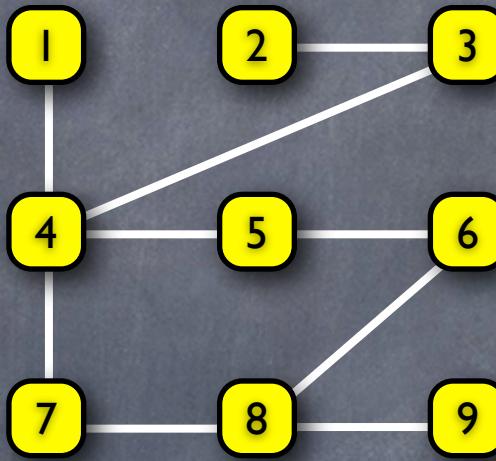
- Algorithm: Add new edge (u,v) to H if $d_H(u,v) > 3$.

Spanner: Algorithm



- Algorithm: Add new edge (u,v) to H if $d_H(u,v) > 3$.

Spanner: Algorithm



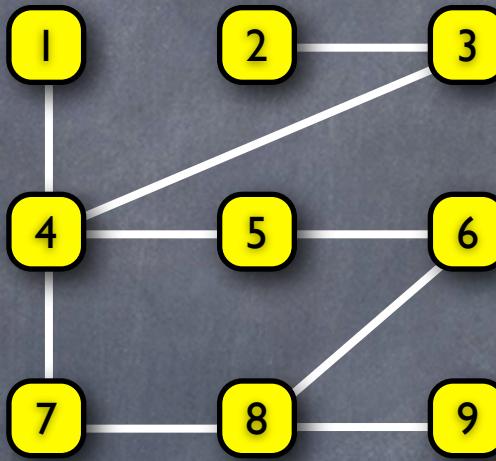
- Algorithm: Add new edge (u,v) to H if $d_H(u,v) > 3$.

Spanner: Algorithm



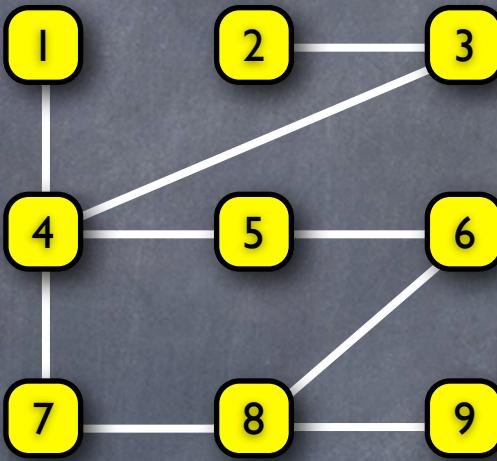
- Algorithm: Add new edge (u,v) to H if $d_H(u,v) > 3$.

Spanner: Algorithm



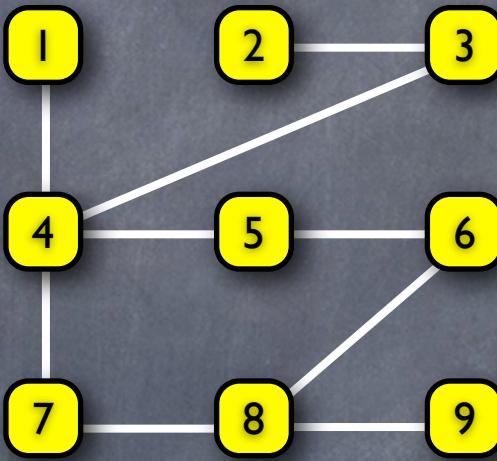
- Algorithm: Add new edge (u,v) to H if $d_H(u,v) > 3$.

Spanner: Algorithm



- Algorithm: Add new edge (u,v) to H if $d_H(u,v) > 3$.
- Lemma: All distances preserved up to a factor 3.

Spanner: Algorithm



- Algorithm: Add new edge (u,v) to H if $d_H(u,v) > 3$.
- Lemma: All distances preserved up to a factor 3.
- Lemma: $O(n^{3/2})$ edges stored since shortest cycle among stored edges has length at least 5.

Spanners: Analysis

Spanners: Analysis

- If H has m edges, average degree is $d=2m/n$.

Spanners: Analysis

- If H has m edges, average degree is $d=2m/n$.
- **Claim:** H contains a non-empty subgraph H' with minimum degree at least $d'=d/2$

Spanners: Analysis

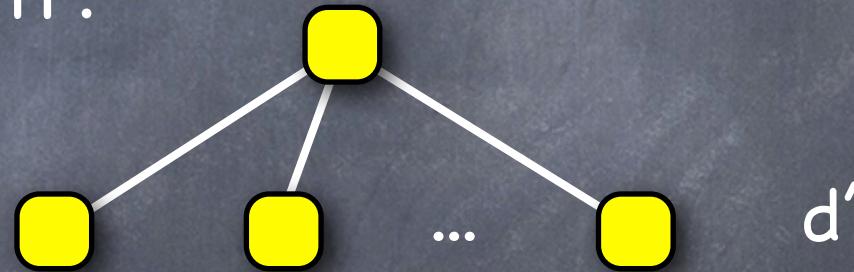
- If H has m edges, average degree is $d=2m/n$.
- **Claim:** H contains a non-empty subgraph H' with minimum degree at least $d'=d/2$
- **Proof:** Remove all nodes with degree $< d'$. Can only remove $< nd'=nd/2=m$ edges so H' non-empty.

Spanners: Analysis

- If H has m edges, average degree is $d=2m/n$.
- **Claim:** H contains a non-empty subgraph H' with minimum degree at least $d'=d/2$
- **Proof:** Remove all nodes with degree $< d'$. Can only remove $< nd'=nd/2=m$ edges so H' non-empty.
- Consider node in H' :

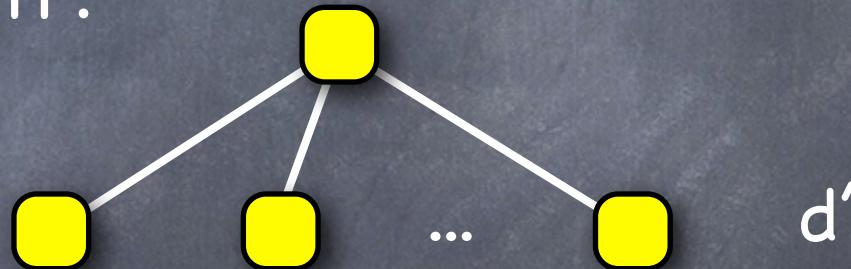
Spanners: Analysis

- If H has m edges, average degree is $d=2m/n$.
- **Claim:** H contains a non-empty subgraph H' with minimum degree at least $d'=d/2$
- **Proof:** Remove all nodes with degree $< d'$. Can only remove $< nd'=nd/2=m$ edges so H' non-empty.
- Consider node in H' :



Spanners: Analysis

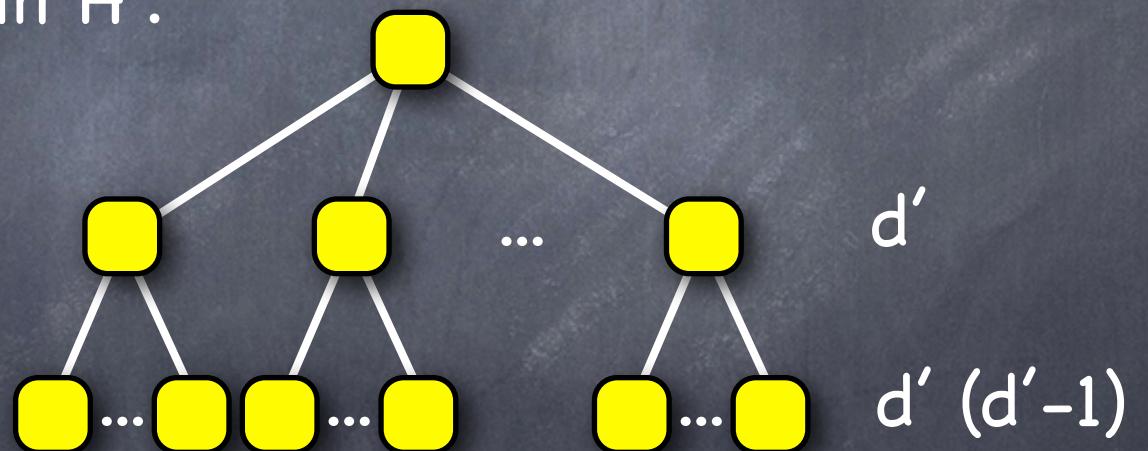
- If H has m edges, average degree is $d=2m/n$.
- **Claim:** H contains a non-empty subgraph H' with minimum degree at least $d'=d/2$
- **Proof:** Remove all nodes with degree $< d'$. Can only remove $< nd'=nd/2=m$ edges so H' non-empty.
- Consider node in H' :



- If length of all cycles is ≥ 5 , the node has at least $d'(d'-1) < n$ distinct neighbors of neighbors.

Spanners: Analysis

- If H has m edges, average degree is $d=2m/n$.
- **Claim:** H contains a non-empty subgraph H' with minimum degree at least $d'=d/2$
- **Proof:** Remove all nodes with degree $< d'$. Can only remove $< nd'=nd/2=m$ edges so H' non-empty.
- Consider node in H' :



- If length of all cycles is ≥ 5 , the node has at least $d'(d'-1) < n$ distinct neighbors of neighbors.

Spanners Summary

- Thm: There's a $O(n^{1+1/t})$ -space stream algorithm returns a $(2t-1)$ -spanner. [Feigenbaum, Kannan, McGregor, Suri, Zhang 05]
- Extension: Can process weighted graphs by rounding weights and constructing spanners for each weight class.

I. Spanners

II. Sparsifiers

III. Sketches

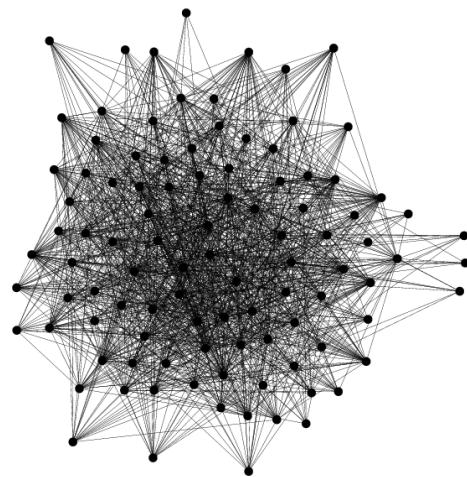
II. Sparsifiers

*Synopsis for Cut Estimation
Merge-Reduce Stream Algorithm
Extensions*

Sparsifiers & Cuts

Sparsifiers & Cuts

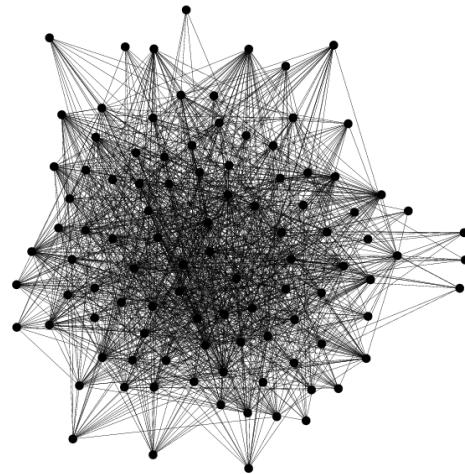
- Measure: Given a cut (L, R) , the size of a cut $c_G(L, R)$ is the weight of all edges crossing the cut.



Original Graph G

Sparsifiers & Cuts

- Measure: Given a cut (L, R) , the size of a cut $c_G(L, R)$ is the weight of all edges crossing the cut.

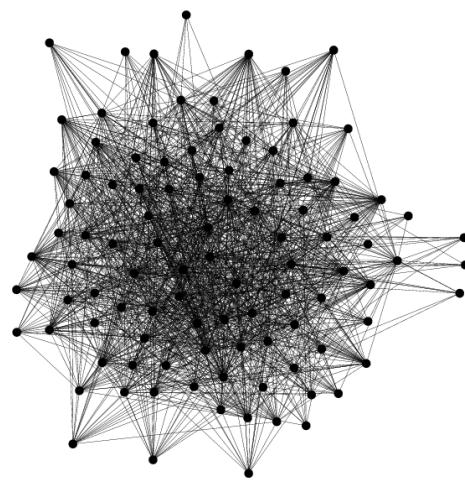


Original Graph G

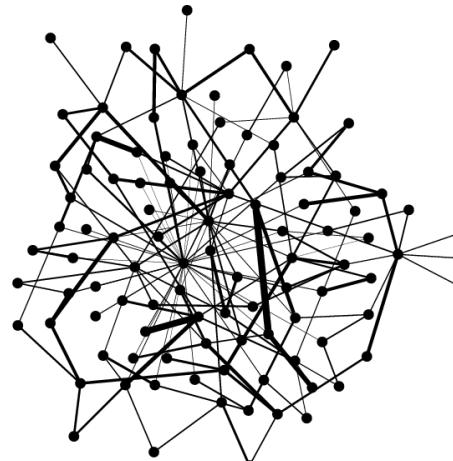
- Synopsis: A subgraph H of G is a $(1+\varepsilon)$ sparsifier if
$$c_G(L, R) \leq c_H(L, R) \leq (1+\varepsilon) c_G(L, R) \quad \text{for all cuts.}$$

Sparsifiers & Cuts

- Measure: Given a cut (L, R) , the size of a cut $c_G(L, R)$ is the weight of all edges crossing the cut.



Original Graph G



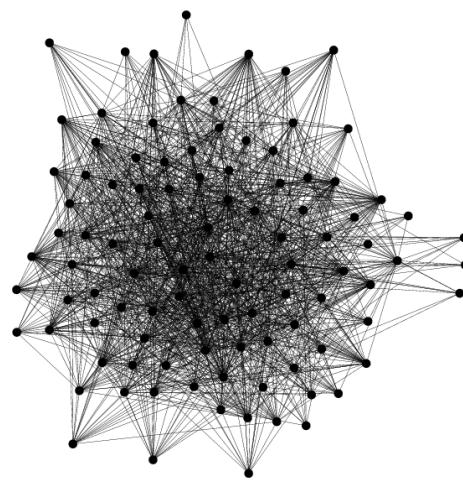
Sparsifier Graph H

- Synopsis: A subgraph H of G is a $(1+\varepsilon)$ sparsifier if

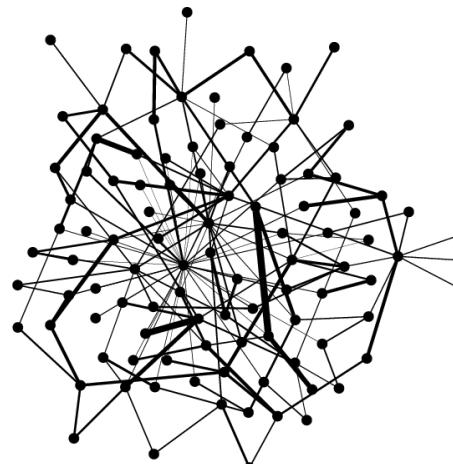
$$c_G(L, R) \leq c_H(L, R) \leq (1+\varepsilon) c_G(L, R) \quad \text{for all cuts.}$$

Sparsifiers & Cuts

- Measure: Given a cut (L, R) , the size of a cut $c_G(L, R)$ is the weight of all edges crossing the cut.



Original Graph G

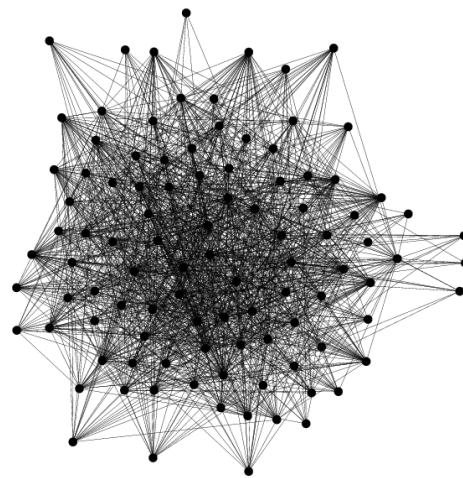


Sparsifier Graph H

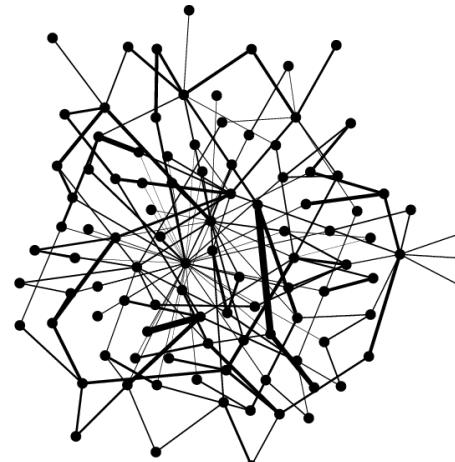
- Synopsis: A subgraph H of G is a $(1+\varepsilon)$ sparsifier if
$$c_G(L, R) \leq c_H(L, R) \leq (1+\varepsilon) c_G(L, R) \quad \text{for all cuts.}$$
- Thm (Benzur-Karger): For any graph G there exists a $(1+\varepsilon)$ sparsifier with only $O(\varepsilon^{-2} n)$ edges.

Sparsifiers & Cuts

- Measure: Given a cut (L, R) , the size of a cut $c_G(L, R)$ is the weight of all edges crossing the cut.



Original Graph G



Sparsifier Graph H

- Synopsis: A subgraph H of G is a $(1+\varepsilon)$ sparsifier if
$$c_G(L, R) \leq c_H(L, R) \leq (1+\varepsilon) c_G(L, R) \quad \text{for all cuts.}$$
- Thm (Benzur-Karger): For any graph G there exists a $(1+\varepsilon)$ sparsifier with only $O(\varepsilon^{-2} n)$ edges.
- Thm: Streaming construction in $O(\varepsilon^{-2} n \log^3 n)$ space.

Sparsifier: Algorithm

Sparsifier: Algorithm

- ⦿ **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\epsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.

Sparsifier: Algorithm

- **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\epsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.

E_1

E_2

E_3

E_4

E_5

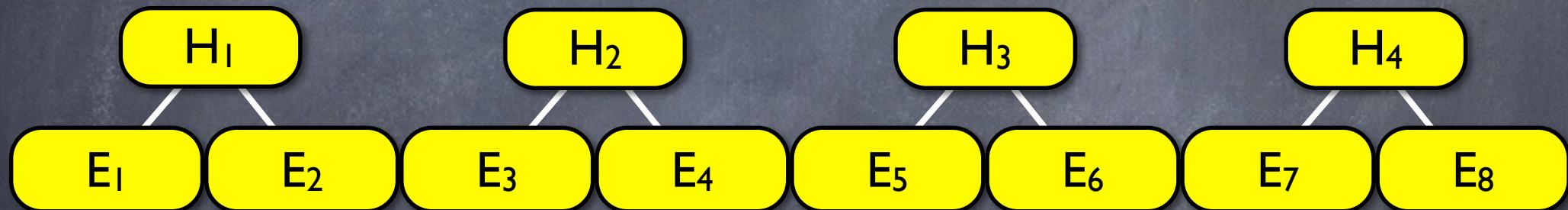
E_6

E_7

E_8

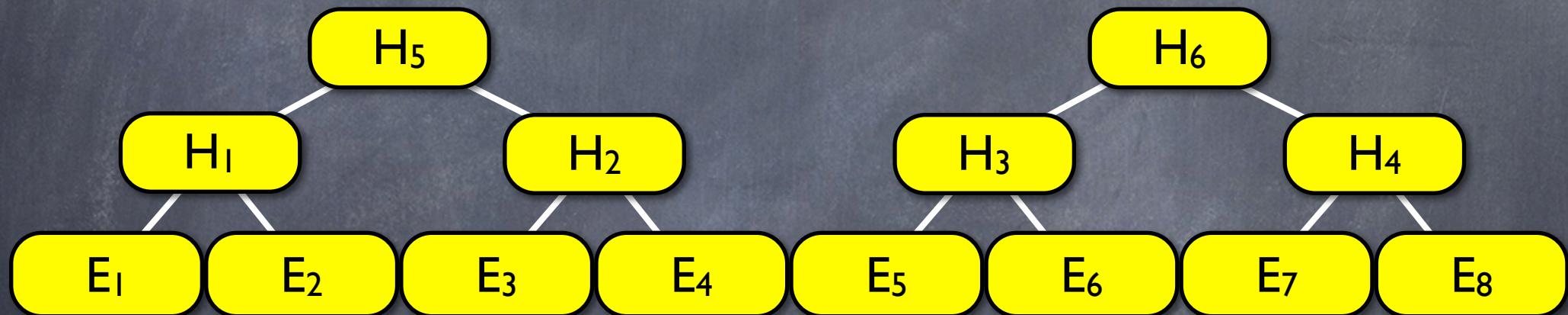
Sparsifier: Algorithm

- **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\epsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.



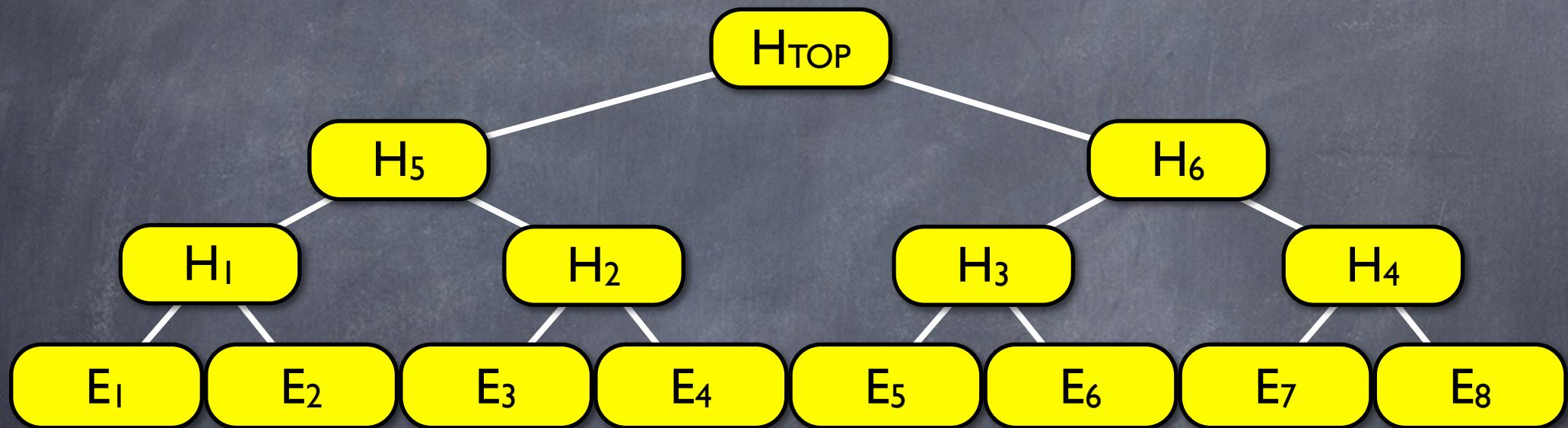
Sparsifier: Algorithm

- **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\epsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.



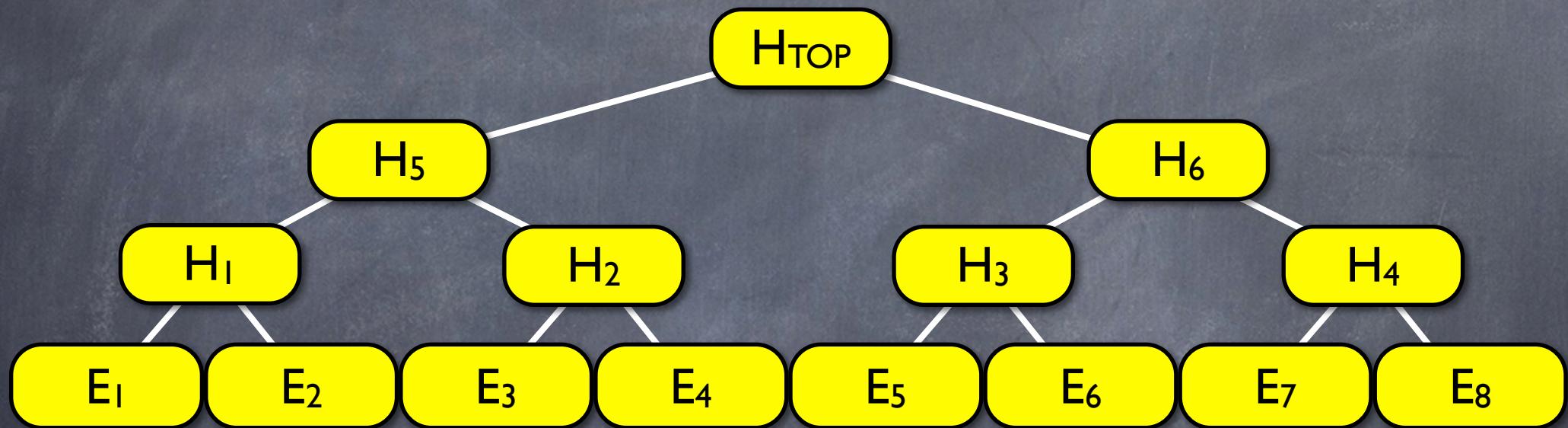
Sparsifier: Algorithm

- **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\epsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.



Sparsifier: Algorithm

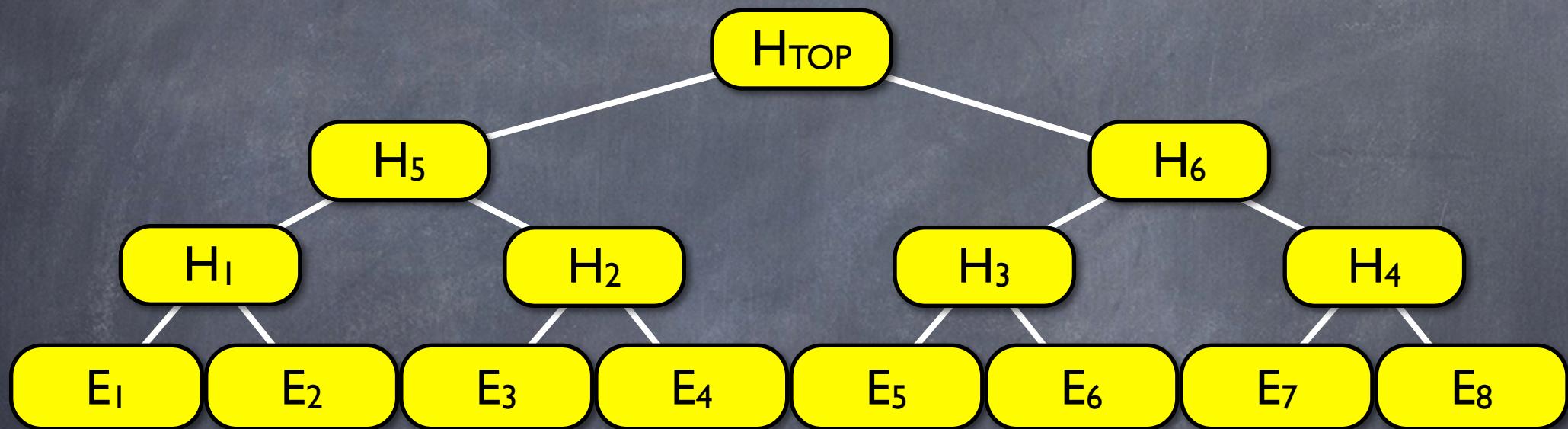
- **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\varepsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.



- **Lemma:** H_{TOP} is a $(1+\gamma)^d$ sparsifier for $d=O(\log n)$. Setting $\gamma = O(\varepsilon/\log n)$ yields a $(1+\varepsilon)$ sparsifier.

Sparsifier: Algorithm

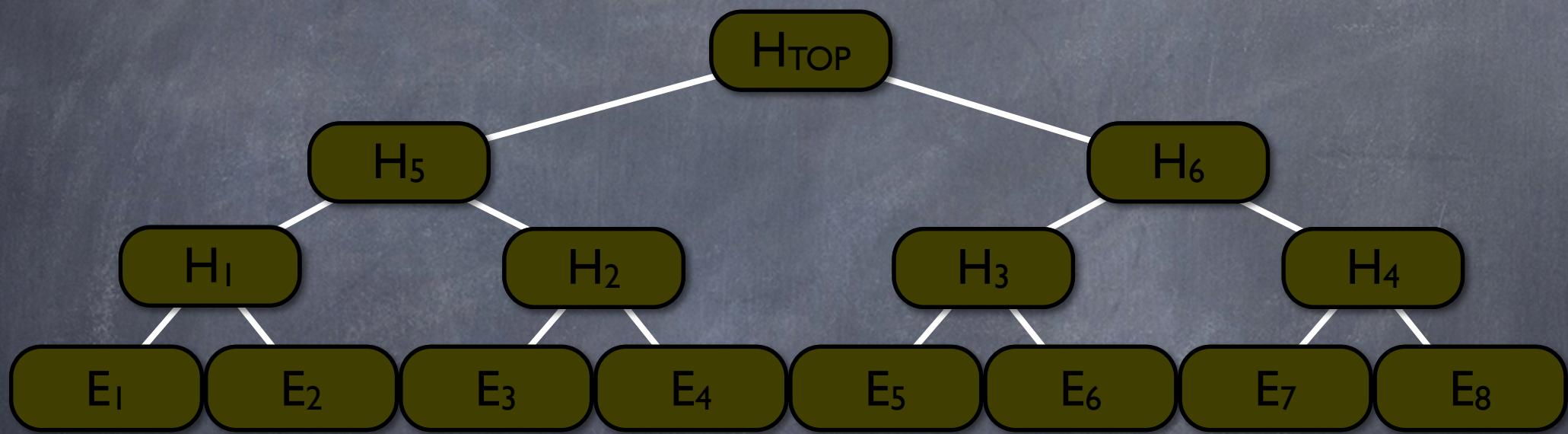
- **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\varepsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.



- **Lemma:** H_{TOP} is a $(1+\gamma)^d$ sparsifier for $d=O(\log n)$. Setting $\gamma = O(\varepsilon/\log n)$ yields a $(1+\varepsilon)$ sparsifier.
- **Lemma:** Can find H_{TOP} with $O(\gamma^{-2} n \log n)$ memory.

Sparsifier: Algorithm

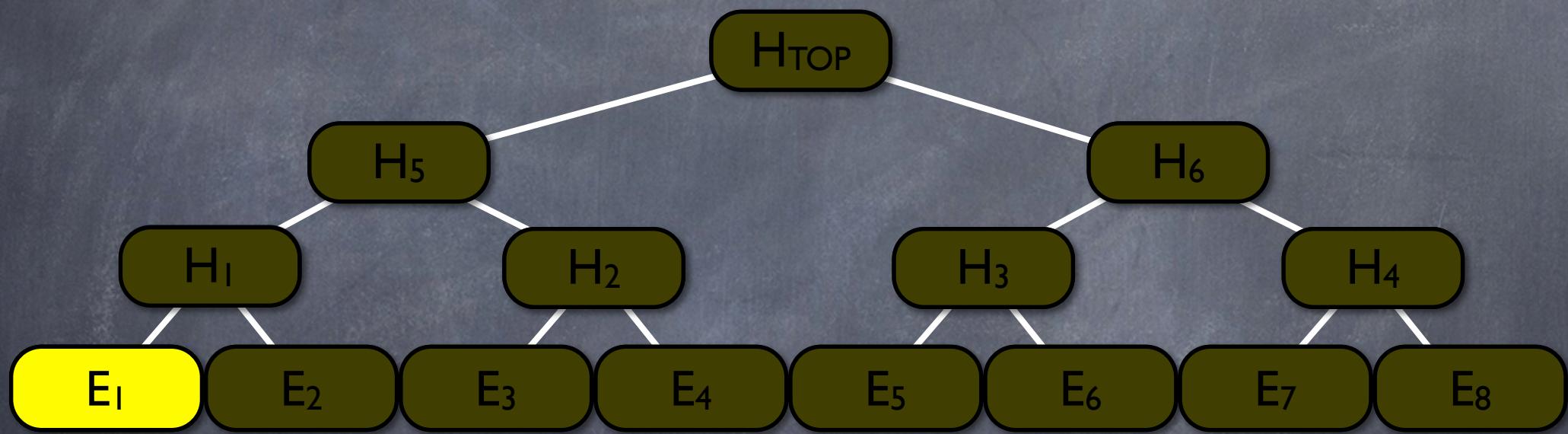
- **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\varepsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.



- **Lemma:** H_{TOP} is a $(1+\gamma)^d$ sparsifier for $d=O(\log n)$. Setting $\gamma = O(\varepsilon/\log n)$ yields a $(1+\varepsilon)$ sparsifier.
- **Lemma:** Can find H_{TOP} with $O(\gamma^{-2} n \log n)$ memory.

Sparsifier: Algorithm

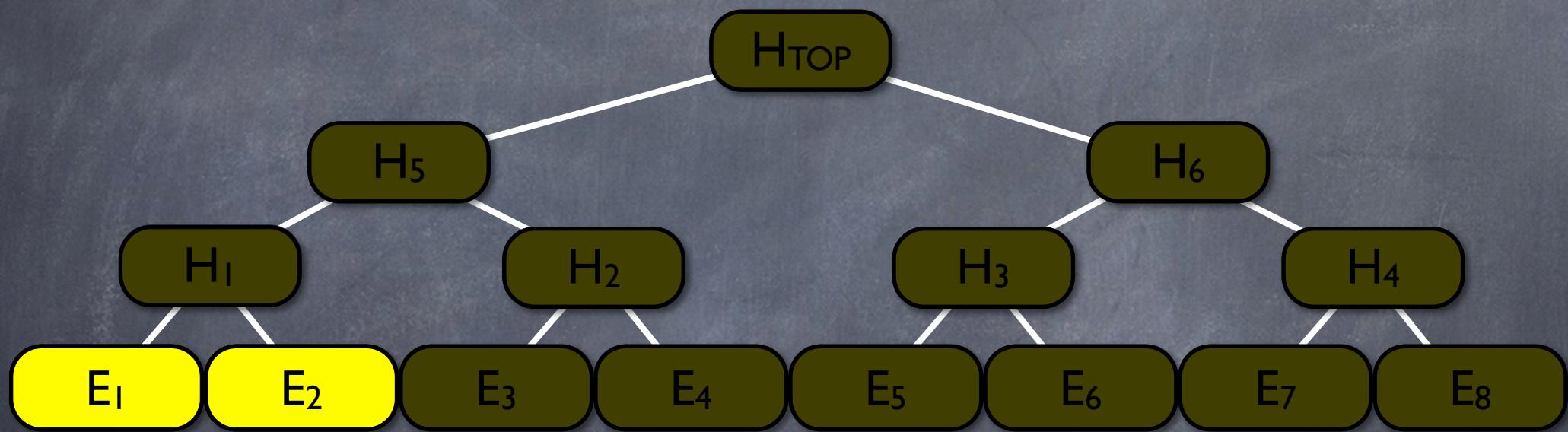
- **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\varepsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.



- **Lemma:** H_{TOP} is a $(1+\gamma)^d$ sparsifier for $d=O(\log n)$. Setting $\gamma = O(\varepsilon/\log n)$ yields a $(1+\varepsilon)$ sparsifier.
- **Lemma:** Can find H_{TOP} with $O(\gamma^{-2} n \log n)$ memory.

Sparsifier: Algorithm

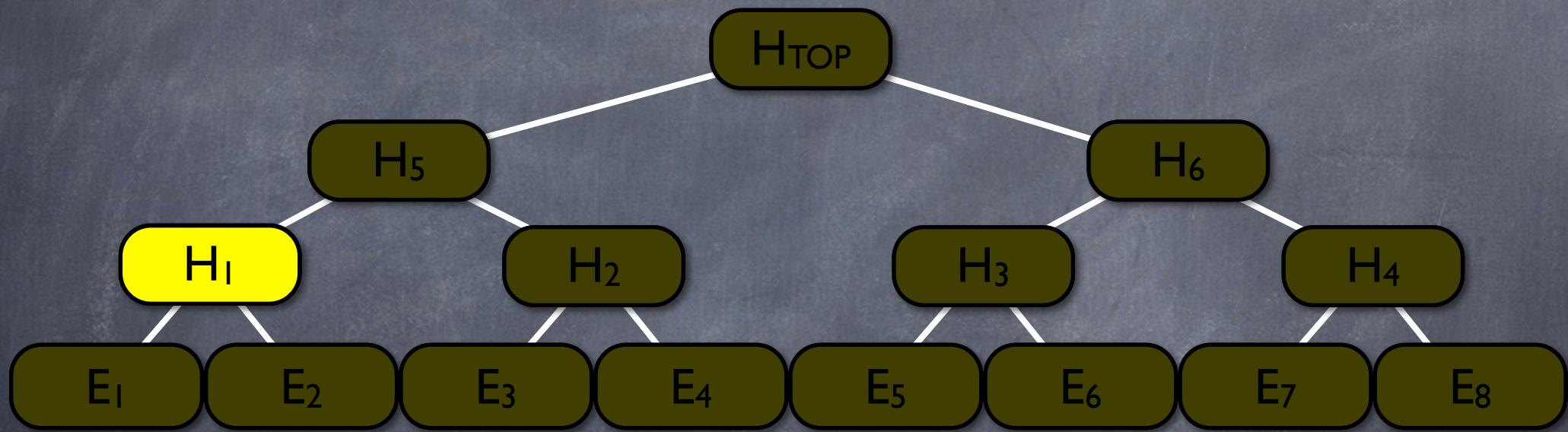
- **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\varepsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.



- **Lemma:** H_{TOP} is a $(1+\gamma)^d$ sparsifier for $d=O(\log n)$. Setting $\gamma = O(\varepsilon/\log n)$ yields a $(1+\varepsilon)$ sparsifier.
- **Lemma:** Can find H_{TOP} with $O(\gamma^{-2} n \log n)$ memory.

Sparsifier: Algorithm

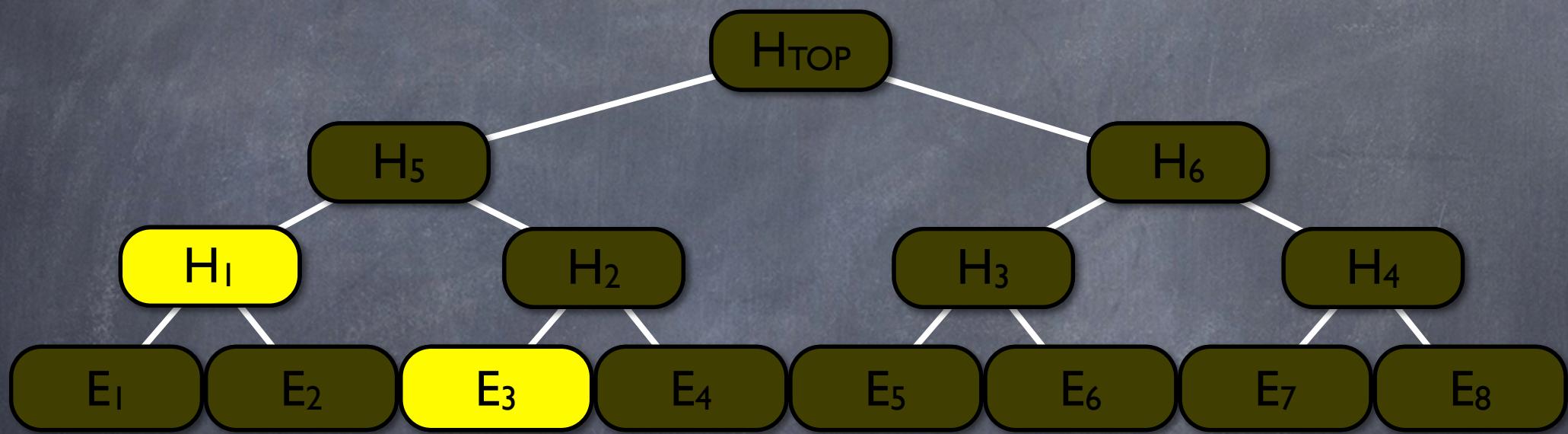
- **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\varepsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.



- **Lemma:** H_{TOP} is a $(1+\gamma)^d$ sparsifier for $d=O(\log n)$. Setting $\gamma = O(\varepsilon/\log n)$ yields a $(1+\varepsilon)$ sparsifier.
- **Lemma:** Can find H_{TOP} with $O(\gamma^{-2} n \log n)$ memory.

Sparsifier: Algorithm

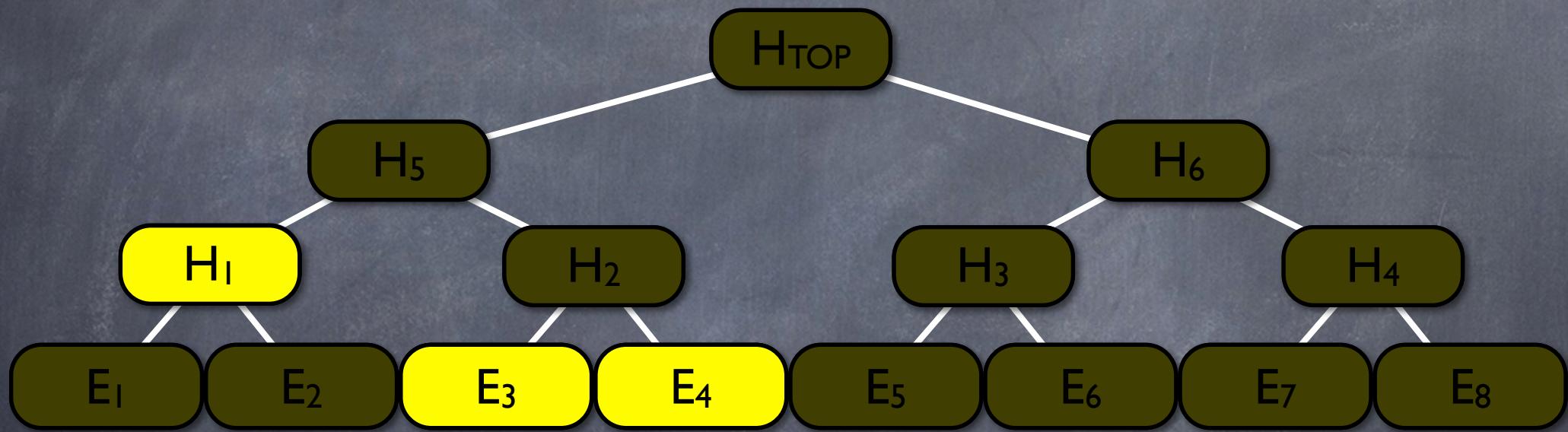
- **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\varepsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.



- **Lemma:** H_{TOP} is a $(1+\gamma)^d$ sparsifier for $d=O(\log n)$. Setting $\gamma = O(\varepsilon/\log n)$ yields a $(1+\varepsilon)$ sparsifier.
- **Lemma:** Can find H_{TOP} with $O(\gamma^{-2} n \log n)$ memory.

Sparsifier: Algorithm

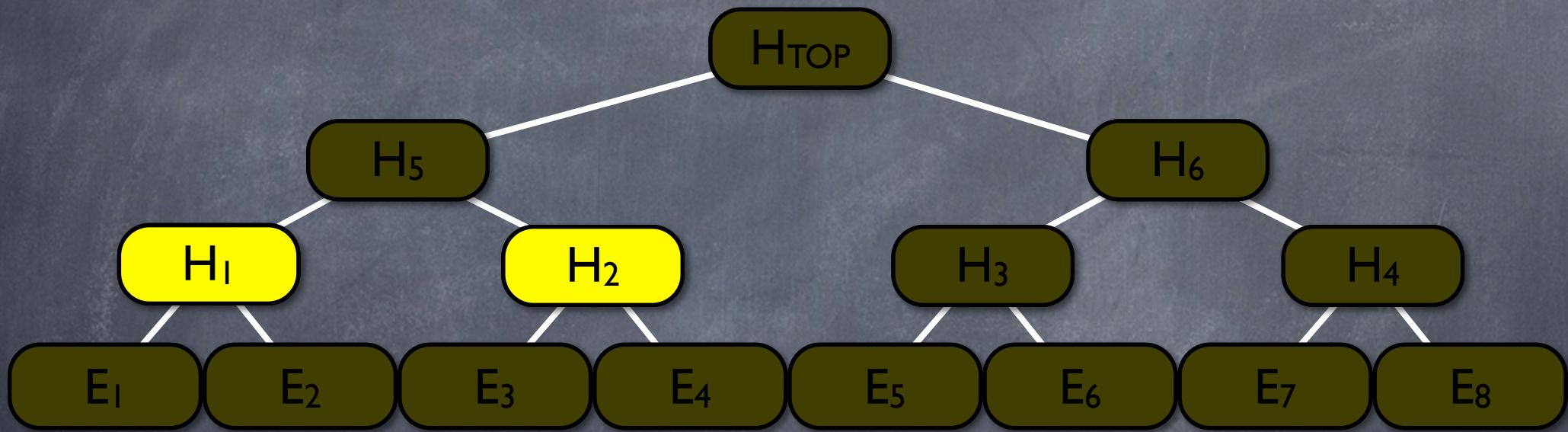
- **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\varepsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.



- **Lemma:** H_{TOP} is a $(1+\gamma)^d$ sparsifier for $d=O(\log n)$. Setting $\gamma = O(\varepsilon/\log n)$ yields a $(1+\varepsilon)$ sparsifier.
- **Lemma:** Can find H_{TOP} with $O(\gamma^{-2} n \log n)$ memory.

Sparsifier: Algorithm

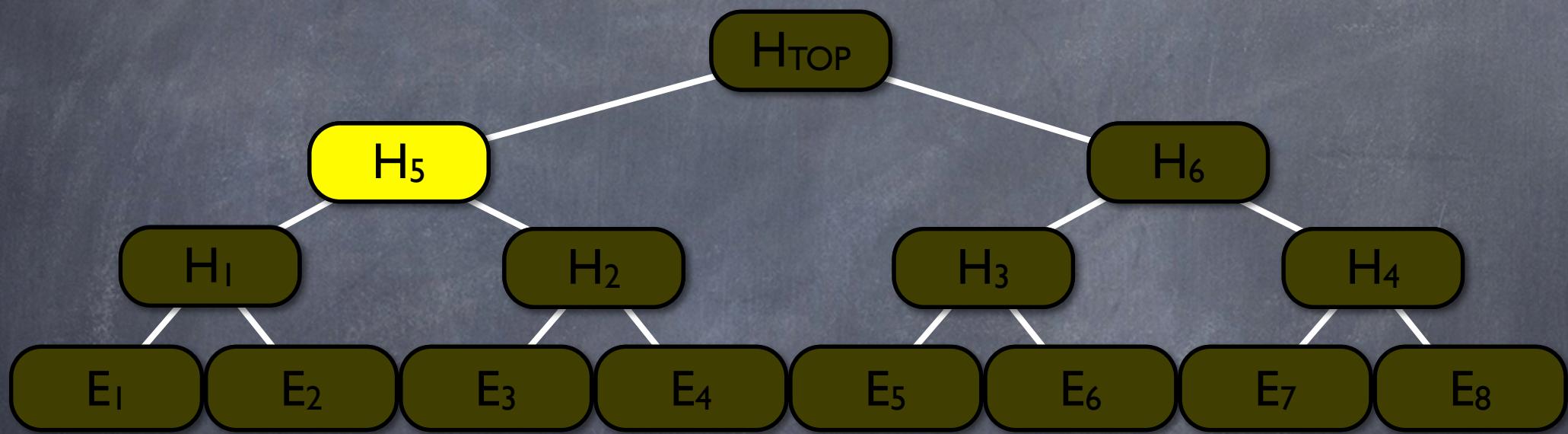
- **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\varepsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.



- **Lemma:** H_{TOP} is a $(1+\gamma)^d$ sparsifier for $d=O(\log n)$. Setting $\gamma = O(\varepsilon/\log n)$ yields a $(1+\varepsilon)$ sparsifier.
- **Lemma:** Can find H_{TOP} with $O(\gamma^{-2} n \log n)$ memory.

Sparsifier: Algorithm

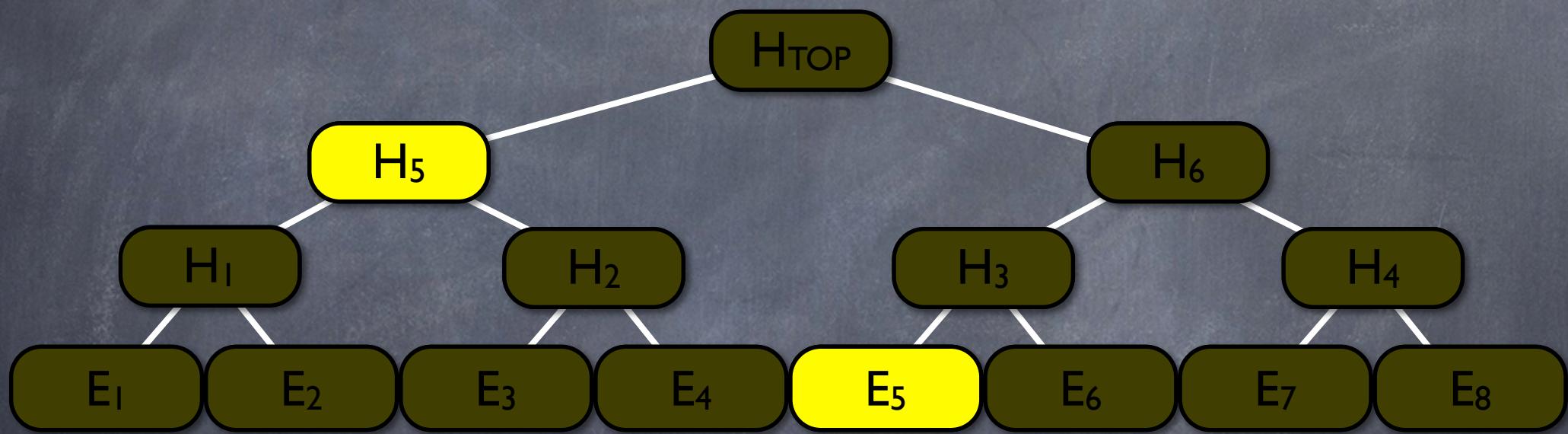
- **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\varepsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.



- **Lemma:** H_{TOP} is a $(1+\gamma)^d$ sparsifier for $d=O(\log n)$. Setting $\gamma = O(\varepsilon/\log n)$ yields a $(1+\varepsilon)$ sparsifier.
- **Lemma:** Can find H_{TOP} with $O(\gamma^{-2} n \log n)$ memory.

Sparsifier: Algorithm

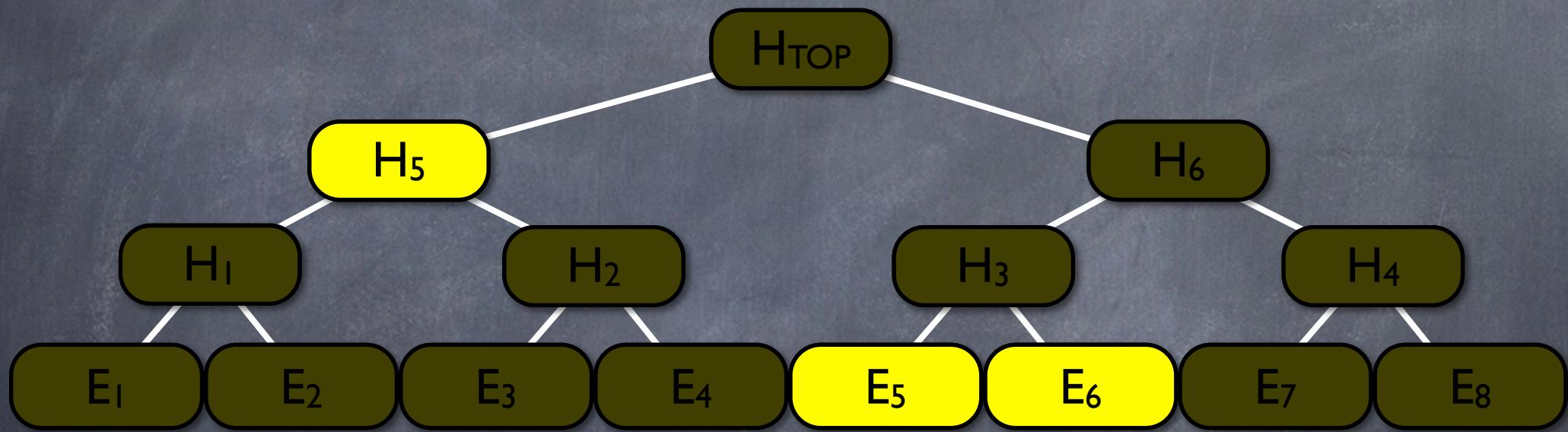
- **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\varepsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.



- **Lemma:** H_{TOP} is a $(1+\gamma)^d$ sparsifier for $d=O(\log n)$. Setting $\gamma = O(\varepsilon/\log n)$ yields a $(1+\varepsilon)$ sparsifier.
- **Lemma:** Can find H_{TOP} with $O(\gamma^{-2} n \log n)$ memory.

Sparsifier: Algorithm

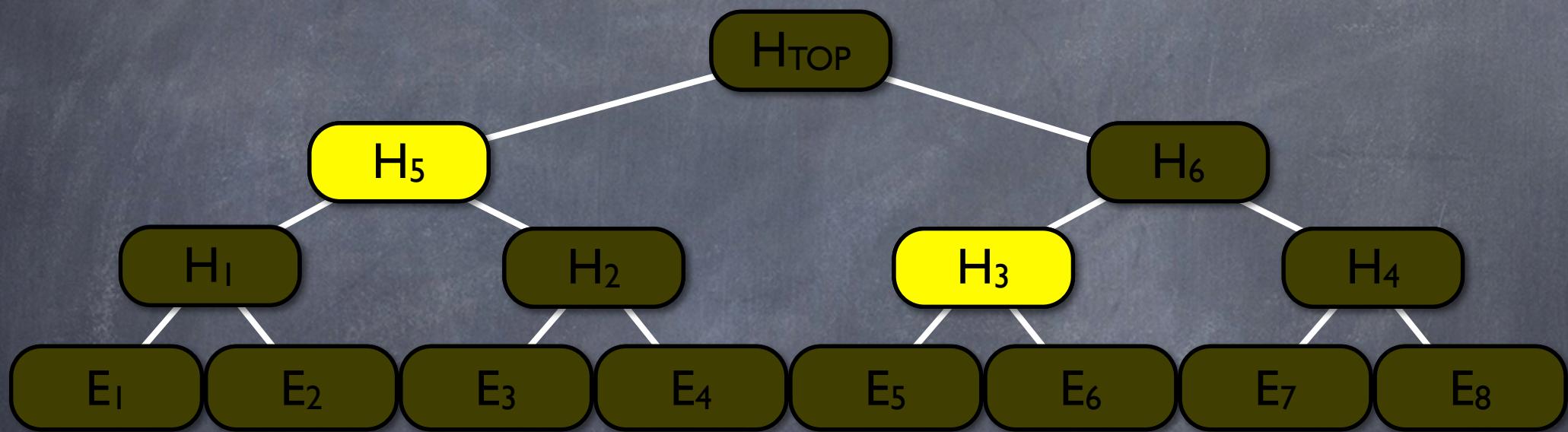
- **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\varepsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.



- **Lemma:** H_{TOP} is a $(1+\gamma)^d$ sparsifier for $d=O(\log n)$. Setting $\gamma = O(\varepsilon/\log n)$ yields a $(1+\varepsilon)$ sparsifier.
- **Lemma:** Can find H_{TOP} with $O(\gamma^{-2} n \log n)$ memory.

Sparsifier: Algorithm

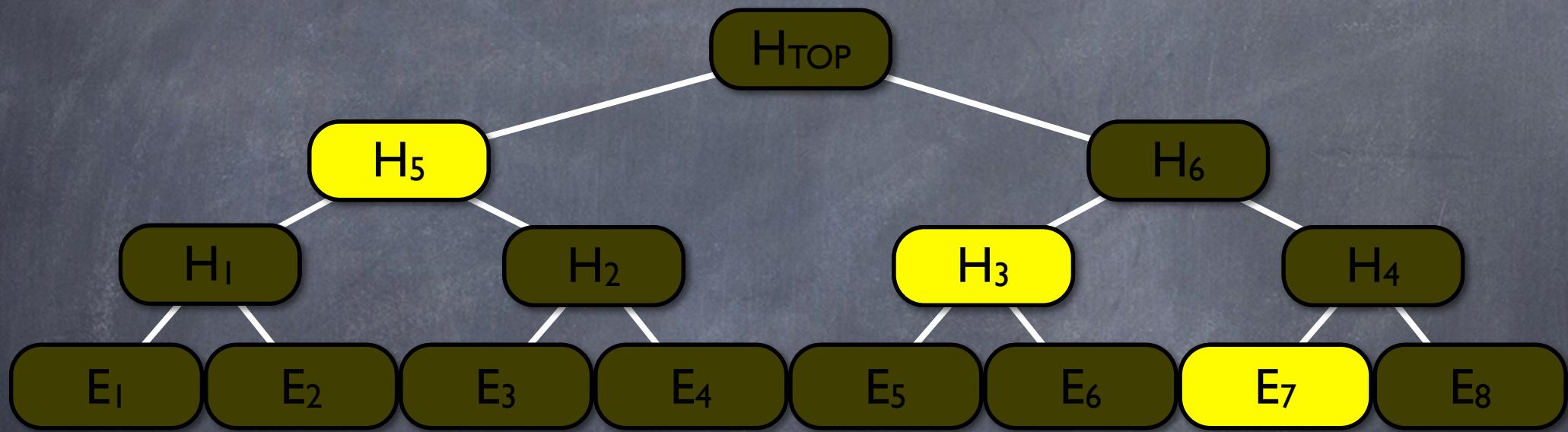
- **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\varepsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.



- **Lemma:** H_{TOP} is a $(1+\gamma)^d$ sparsifier for $d=O(\log n)$. Setting $\gamma = O(\varepsilon/\log n)$ yields a $(1+\varepsilon)$ sparsifier.
- **Lemma:** Can find H_{TOP} with $O(\gamma^{-2} n \log n)$ memory.

Sparsifier: Algorithm

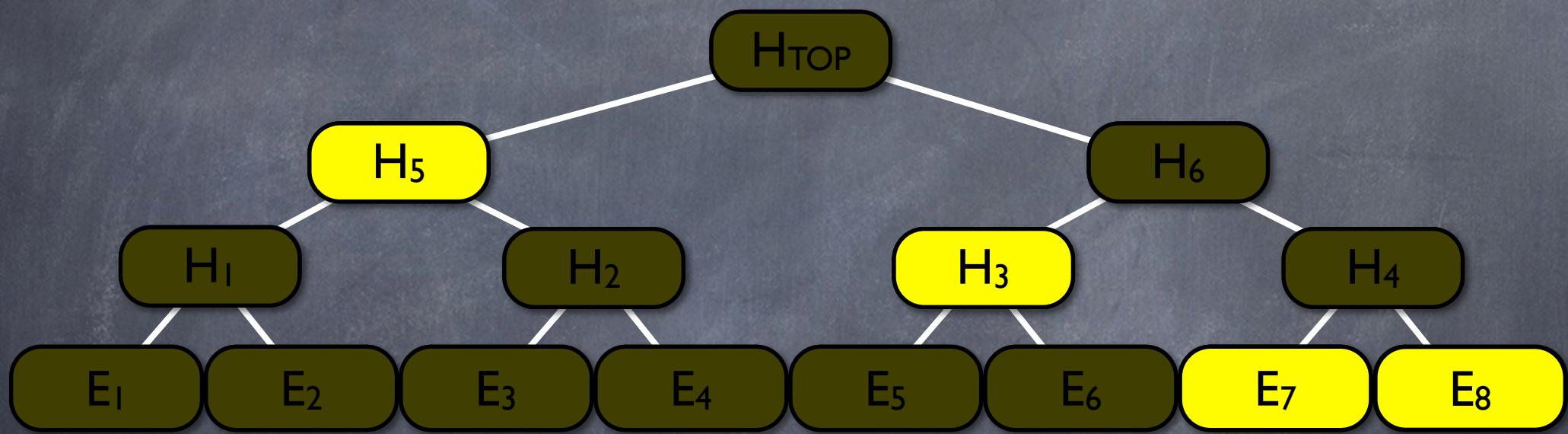
- **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\varepsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.



- **Lemma:** H_{TOP} is a $(1+\gamma)^d$ sparsifier for $d=O(\log n)$. Setting $\gamma = O(\varepsilon/\log n)$ yields a $(1+\varepsilon)$ sparsifier.
- **Lemma:** Can find H_{TOP} with $O(\gamma^{-2} n \log n)$ memory.

Sparsifier: Algorithm

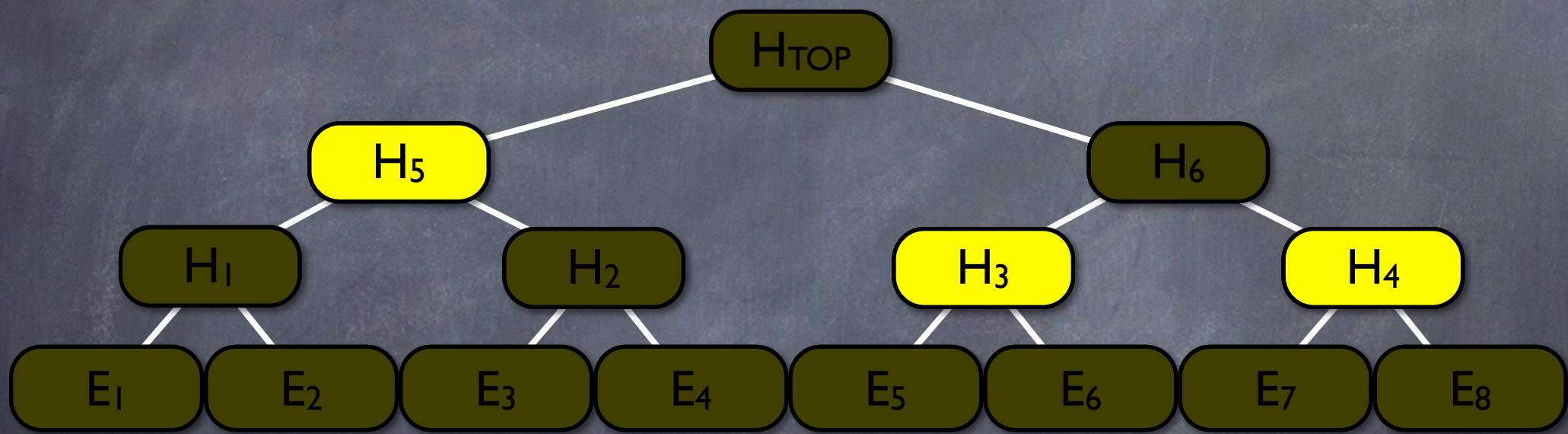
- **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\varepsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.



- **Lemma:** H_{TOP} is a $(1+\gamma)^d$ sparsifier for $d=O(\log n)$. Setting $\gamma = O(\varepsilon/\log n)$ yields a $(1+\varepsilon)$ sparsifier.
- **Lemma:** Can find H_{TOP} with $O(\gamma^{-2} n \log n)$ memory.

Sparsifier: Algorithm

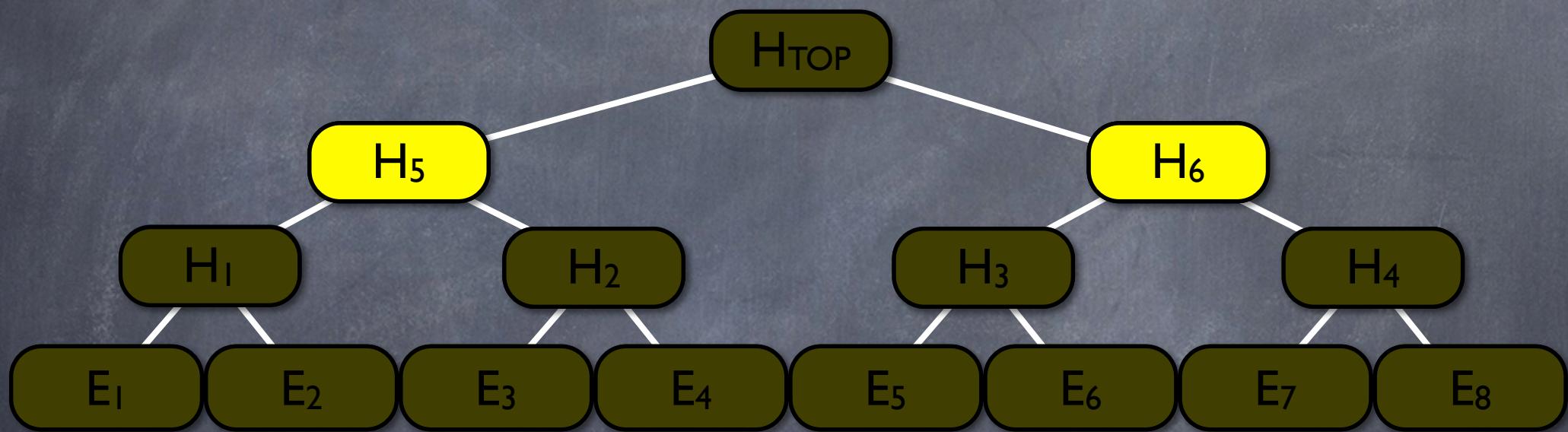
- **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\varepsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.



- **Lemma:** H_{TOP} is a $(1+\gamma)^d$ sparsifier for $d=O(\log n)$. Setting $\gamma = O(\varepsilon/\log n)$ yields a $(1+\varepsilon)$ sparsifier.
- **Lemma:** Can find H_{TOP} with $O(\gamma^{-2} n \log n)$ memory.

Sparsifier: Algorithm

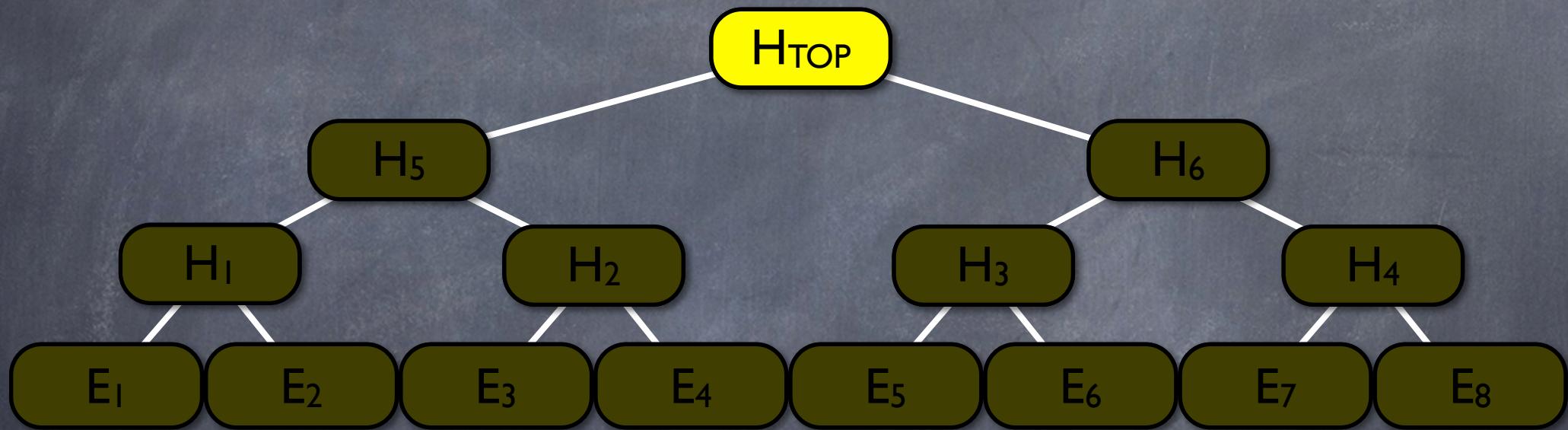
- **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\varepsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.



- **Lemma:** H_{TOP} is a $(1+\gamma)^d$ sparsifier for $d=O(\log n)$. Setting $\gamma = O(\varepsilon/\log n)$ yields a $(1+\varepsilon)$ sparsifier.
- **Lemma:** Can find H_{TOP} with $O(\gamma^{-2} n \log n)$ memory.

Sparsifier: Algorithm

- **Main Idea:** Segment stream as E_1, E_2, \dots each of size $O(\varepsilon^{-2}n)$. Let H_1 be $(1+\gamma)$ sparsifier of $E_1 \cup E_2$ etc.



- **Lemma:** H_{TOP} is a $(1+\gamma)^d$ sparsifier for $d=O(\log n)$. Setting $\gamma = O(\varepsilon/\log n)$ yields a $(1+\varepsilon)$ sparsifier.
- **Lemma:** Can find H_{TOP} with $O(\gamma^{-2} n \log n)$ memory.

Sparsifier Summary

- *Thm:* A $(1+\varepsilon)$ sparsifier of a graph can be constructed in $O(\varepsilon^{-2} n \text{ polylog } n)$ space.
[Ahn, Guha 09], [Goel, Kapralov, Khanna 10], [Sidiropoulos 10]
- Generalizes to spectral sparsification which preserves properties relating to random walks. [Kelner, Levin 11]

I. Spanners

II. Sparsifiers

III. Sketches

III. **Sketches**

*Family of Linear Synopses
Distributed & Supports Deletions
Two Connectivity Examples*

Linear Sketches

Linear Sketches

$$\begin{bmatrix} v \end{bmatrix}$$

Linear Sketches

- Random linear projection: $M: \mathbb{R}^n \rightarrow \mathbb{R}^k$ (where $k \ll n$) that preserves properties of any $v \in \mathbb{R}^n$ with high probability.

$$\begin{bmatrix} v \end{bmatrix}$$

Linear Sketches

- Random linear projection: $M: \mathbb{R}^n \rightarrow \mathbb{R}^k$ (where $k \ll n$) that preserves properties of any $v \in \mathbb{R}^n$ with high probability.

$$M \begin{bmatrix} v \end{bmatrix}$$

Linear Sketches

- Random linear projection: $M: \mathbb{R}^n \rightarrow \mathbb{R}^k$ (where $k \ll n$) that preserves properties of any $v \in \mathbb{R}^n$ with high probability.

$$\begin{bmatrix} M \\ v \end{bmatrix} = \begin{bmatrix} Mv \end{bmatrix}$$

Linear Sketches

- Random linear projection: $M: \mathbb{R}^n \rightarrow \mathbb{R}^k$ (where $k \ll n$) that preserves properties of any $v \in \mathbb{R}^n$ with high probability.

$$\begin{bmatrix} M \\ v \end{bmatrix} = \begin{bmatrix} Mv \end{bmatrix} \rightarrow \text{answer}$$

Linear Sketches

- Random linear projection: $M: \mathbb{R}^n \rightarrow \mathbb{R}^k$ (where $k \ll n$) that preserves properties of any $v \in \mathbb{R}^n$ with high probability.

$$\begin{bmatrix} M \\ v \end{bmatrix} = \begin{bmatrix} Mv \end{bmatrix} \rightarrow \text{answer}$$

- *Many results* for numerical statistics and basic geometric properties... *extensive theory* with connections to hashing, compressed sensing, dimensionality reduction, metric embeddings... *widely applicable* since embarrassingly parallelizable and suitable for stream processing.

Linear Sketches

- Random linear projection: $M: \mathbb{R}^n \rightarrow \mathbb{R}^k$ (where $k \ll n$) that preserves properties of any $v \in \mathbb{R}^n$ with high probability.

$$\begin{bmatrix} M \\ v \end{bmatrix} = \begin{bmatrix} Mv \end{bmatrix} \rightarrow \text{answer}$$

- *Many results* for numerical statistics and basic geometric properties... *extensive theory* with connections to hashing, compressed sensing, dimensionality reduction, metric embeddings... *widely applicable* since embarrassingly parallelizable and suitable for stream processing.

? Question: What about analyzing massive graphs via sketches?

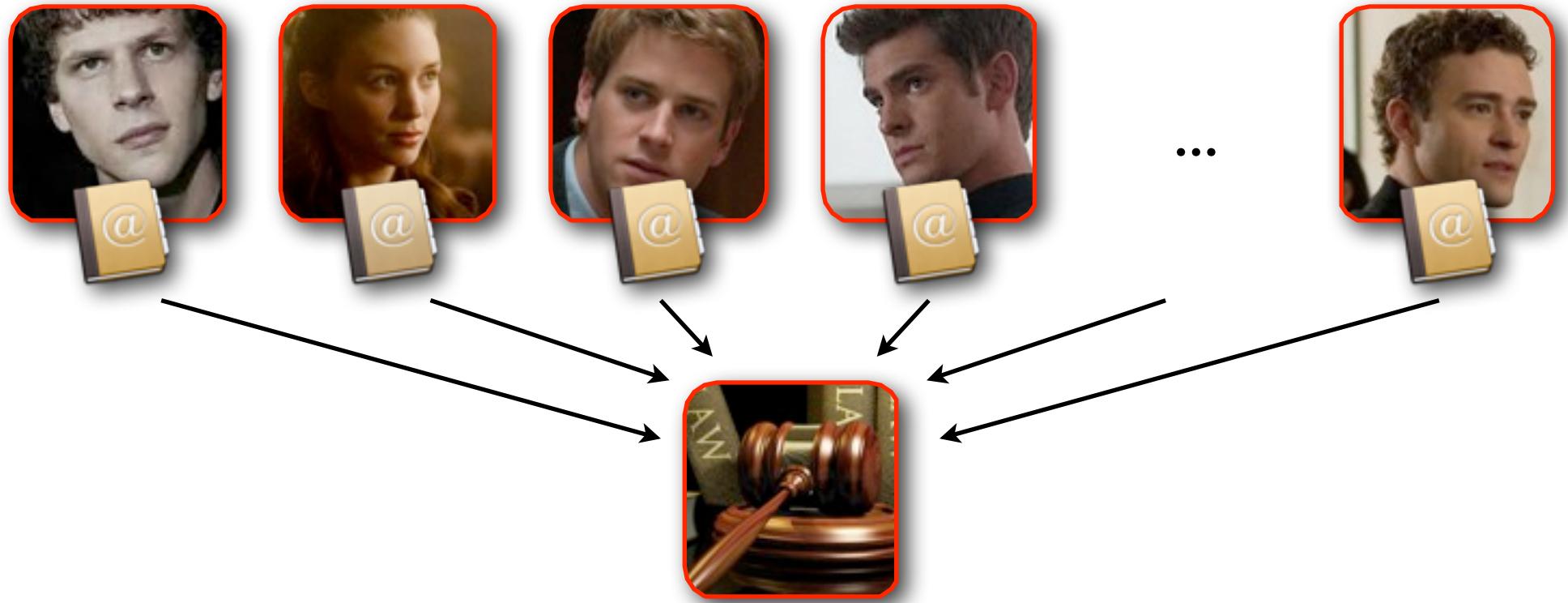
Distributed Data

...

Distributed Data

- Input: Each player knows neighborhood $\Gamma(v)$ for a node v

Distributed Data



- ***Input:*** Each player knows neighborhood $\Gamma(v)$ for a node v
- ***Goal:*** Simultaneously, each player sends $O(\text{polylog } n)$ bits to a central player who then determines if graph is connected.

This can't be possible?!



- Suppose there's a *bridge* (u, v) in the graph, i.e., a friendship that is essential to ensuring the graph is connected.

This can't be possible?!

- Suppose there's a *bridge* (u, v) in the graph, i.e., a friendship that is essential to ensuring the graph is connected.
- *Dubious Claim:* At least one player needs to send $\Omega(n)$ bits.

This can't be possible?!

- Suppose there's a *bridge* (u, v) in the graph, i.e., a friendship that is essential to ensuring the graph is connected.
- *Dubious Claim:* At least one player needs to send $\Omega(n)$ bits.
 - a) Central player needs to know about the special friendship.

This can't be possible?!



- Suppose there's a *bridge* (u, v) in the graph, i.e., a friendship that is essential to ensuring the graph is connected.
- *Dubious Claim:* At least one player needs to send $\Omega(n)$ bits.
 - a) Central player needs to know about the special friendship.
 - b) Participant doesn't know which friendships are special.

This can't be possible?!

- Suppose there's a *bridge* (u, v) in the graph, i.e., a friendship that is essential to ensuring the graph is connected.
- *Dubious Claim:* At least one player needs to send $\Omega(n)$ bits.
 - a) Central player needs to know about the special friendship.
 - b) Participant doesn't know which friendships are special.
 - c) Participants may have $\Omega(n)$ friends.

How to do it...

How to do it...

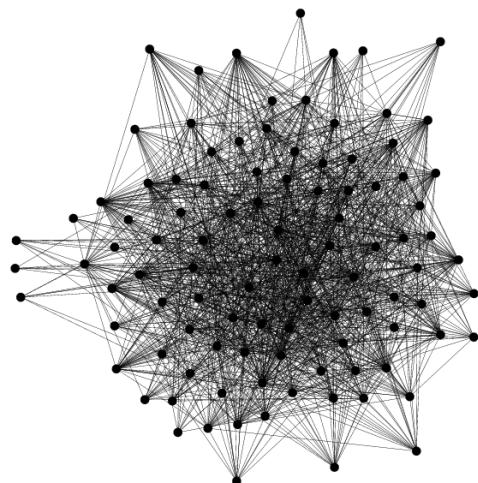
- Players send carefully-designed sketches of address books.

How to do it...

- Players send carefully-designed sketches of address books.
- Main Idea: Exploit homomorphic properties of linear sketches and emulate a classical algorithm in *sketch space*.

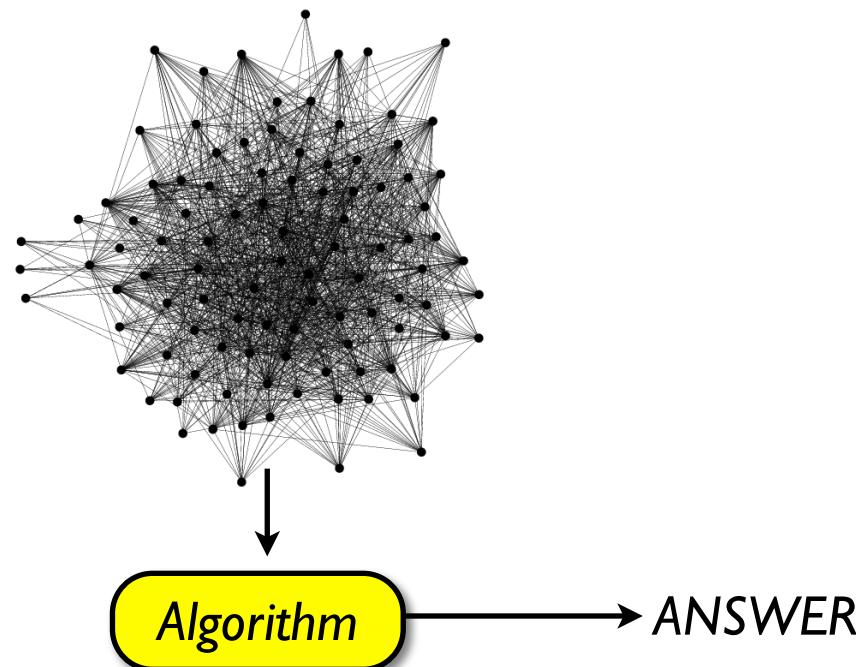
How to do it...

- Players send carefully-designed sketches of address books.
- Main Idea: Exploit homomorphic properties of linear sketches and emulate a classical algorithm in *sketch space*.



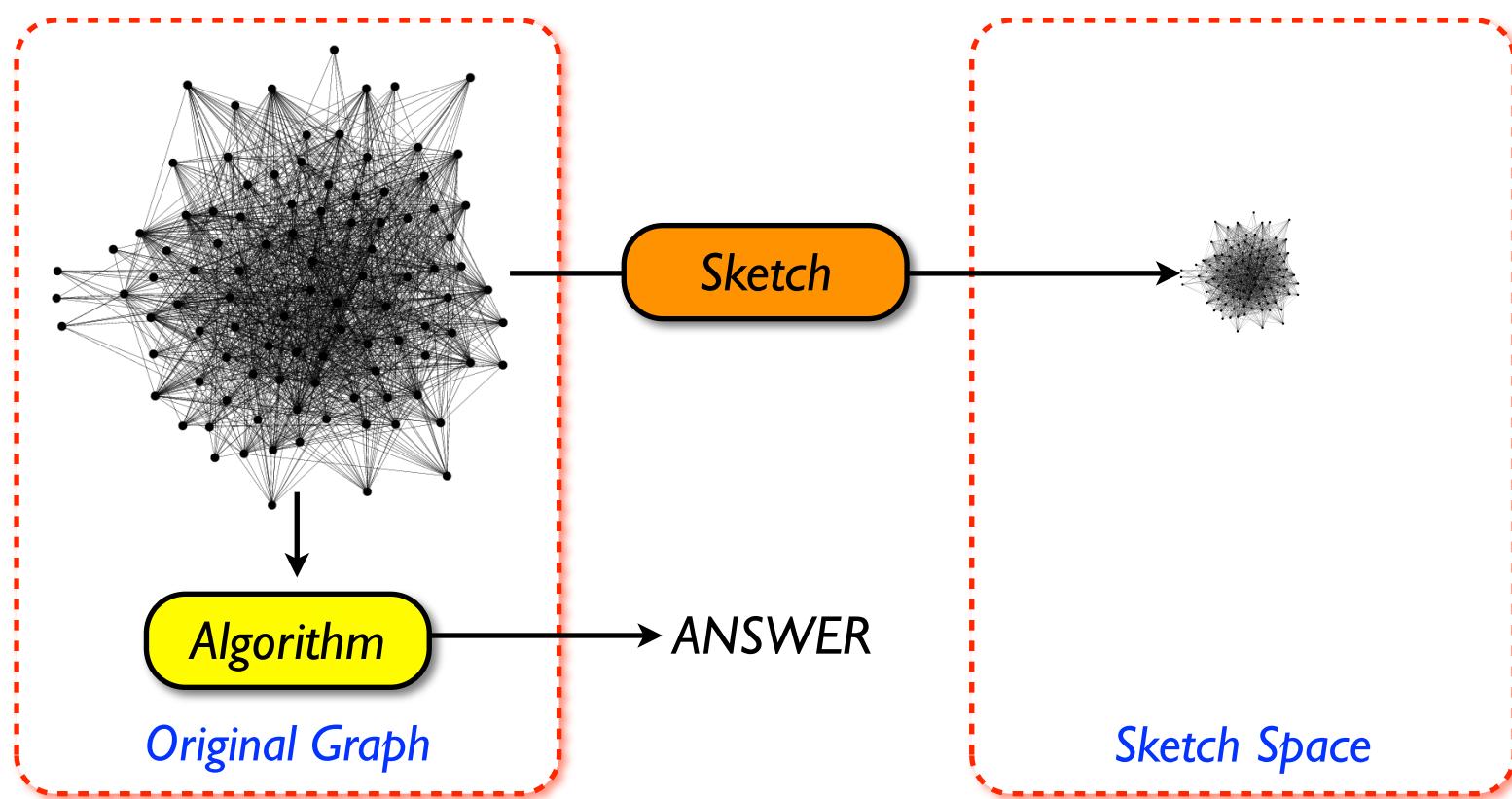
How to do it...

- Players send carefully-designed sketches of address books.
- Main Idea: Exploit homomorphic properties of linear sketches and emulate a classical algorithm in *sketch space*.



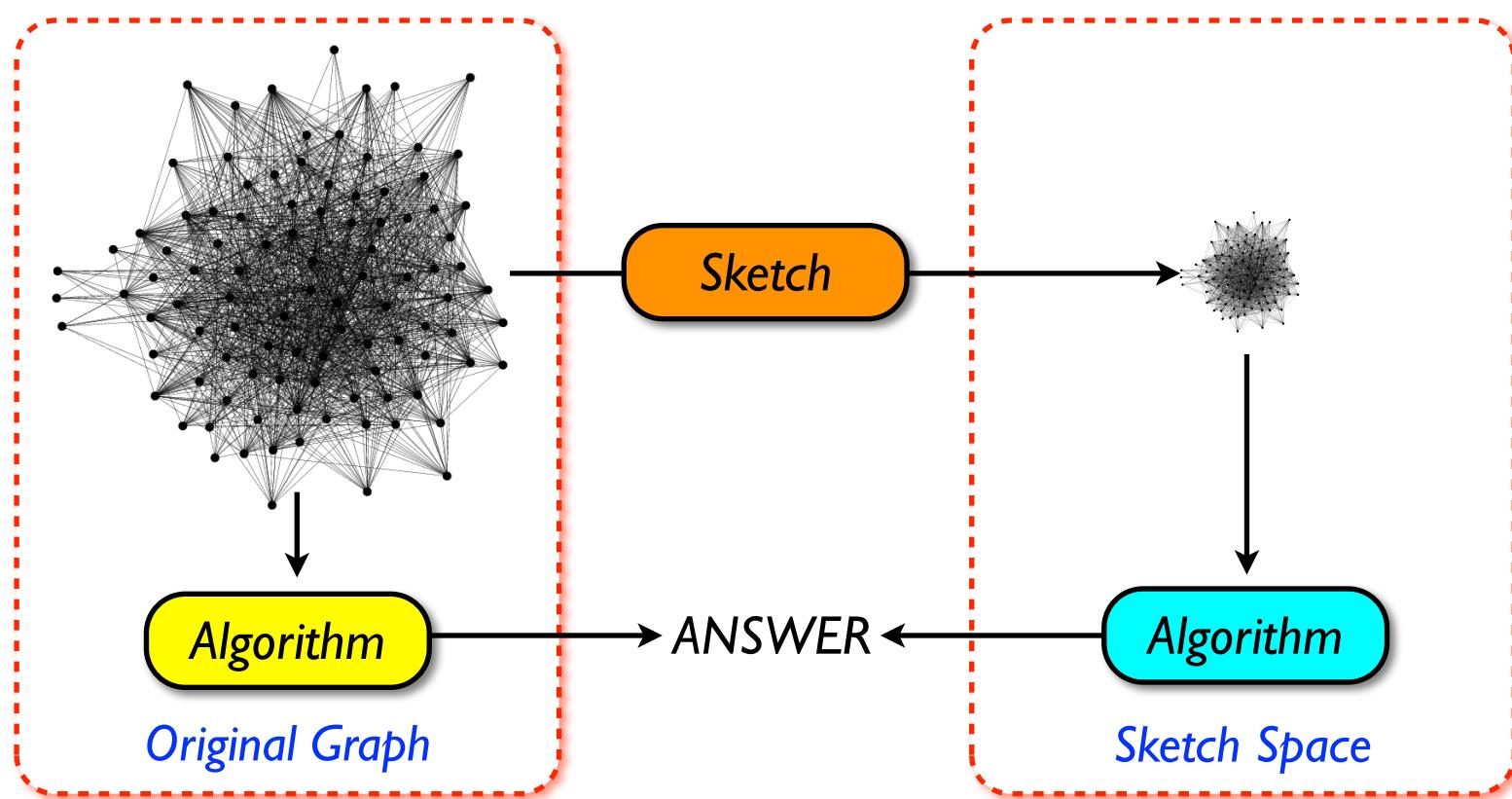
How to do it...

- Players send carefully-designed sketches of address books.
- Main Idea: Exploit homomorphic properties of linear sketches and emulate a classical algorithm in *sketch space*.



How to do it...

- Players send carefully-designed sketches of address books.
- Main Idea: Exploit homomorphic properties of linear sketches and emulate a classical algorithm in *sketch space*.



Two Examples

First Theorem: Testing Connectivity

- a) *Dynamic Graph Stream:* $O(n \text{ polylog } n)$ space.
- b) *Distributed Setting:* $O(\text{polylog } n)$ length messages.

Second Theorem: Checking every cut has size $\geq k$

- a) *Dynamic Graph Stream:* $O(n k \text{ polylog } n)$ space.
- b) *Distributed Setting:* $O(k \text{ polylog } n)$ length.

Ingredient 1: Basic Algorithm

Ingredient 1: Basic Algorithm

- Algorithm (Spanning Forest):

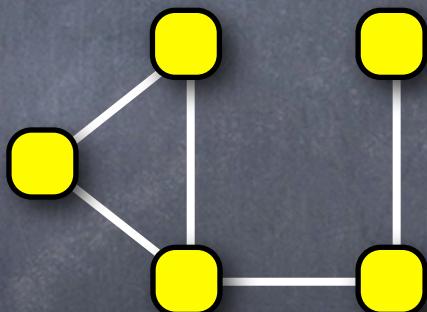
Ingredient 1: Basic Algorithm

- Algorithm (Spanning Forest):
 1. For each node: pick incident edge

Ingredient 1: Basic Algorithm

- Algorithm (Spanning Forest):

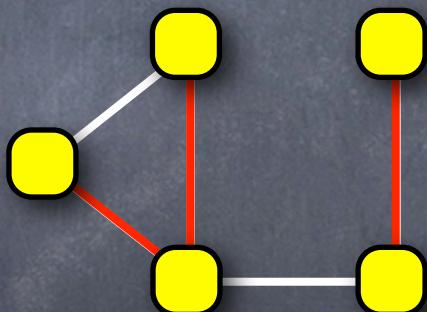
1. For each node: pick incident edge



Ingredient 1: Basic Algorithm

- Algorithm (Spanning Forest):

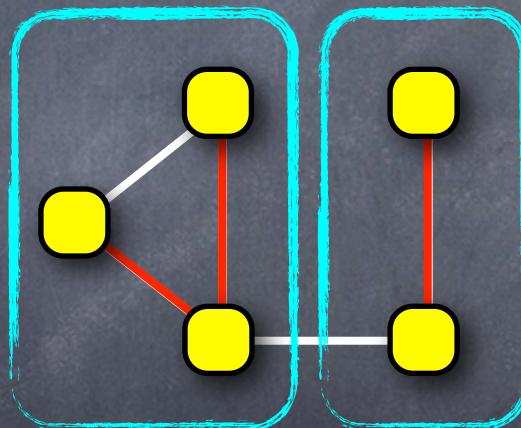
1. For each node: pick incident edge



Ingredient 1: Basic Algorithm

- Algorithm (Spanning Forest):

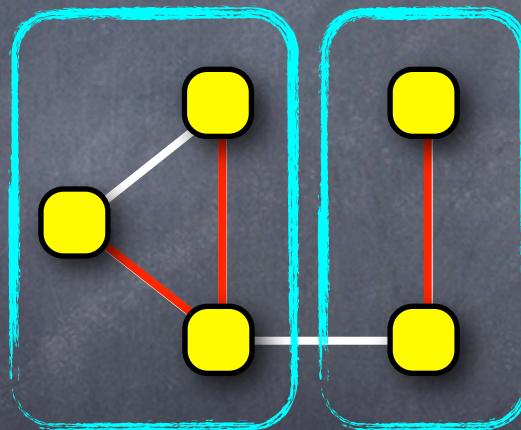
1. For each node: pick incident edge



Ingredient 1: Basic Algorithm

Algorithm (Spanning Forest):

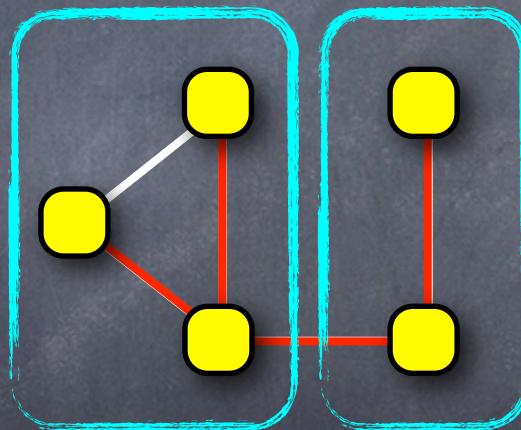
1. For each node: pick incident edge
2. For each connected comp: pick incident edge



Ingredient 1: Basic Algorithm

- Algorithm (Spanning Forest):

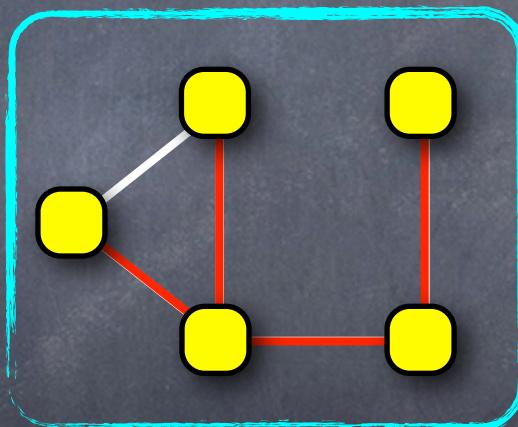
1. For each node: pick incident edge
2. For each connected comp: pick incident edge



Ingredient 1: Basic Algorithm

Algorithm (Spanning Forest):

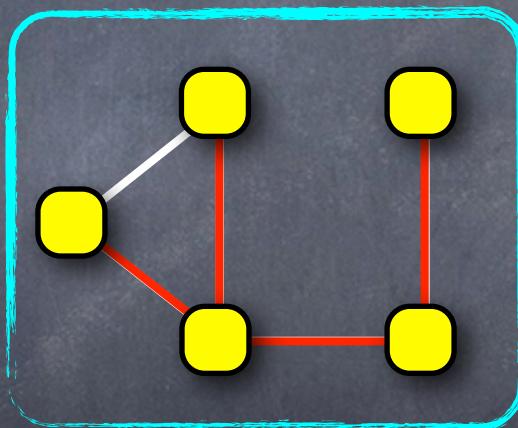
1. For each node: pick incident edge
2. For each connected comp: pick incident edge



Ingredient 1: Basic Algorithm

Algorithm (Spanning Forest):

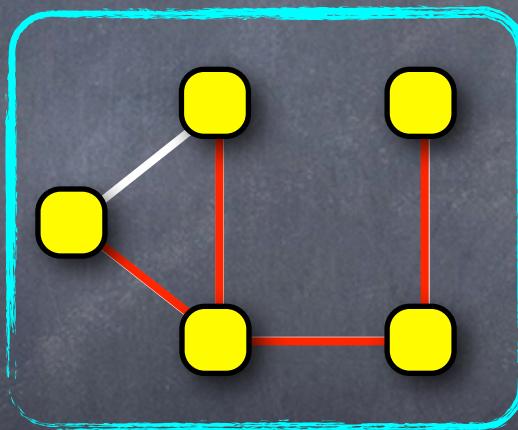
1. For each node: pick incident edge
2. For each connected comp: pick incident edge
3. Repeat until no edges between connected comp.



Ingredient 1: Basic Algorithm

- Algorithm (Spanning Forest):

1. For each node: pick incident edge
2. For each connected comp: pick incident edge
3. Repeat until no edges between connected comp.



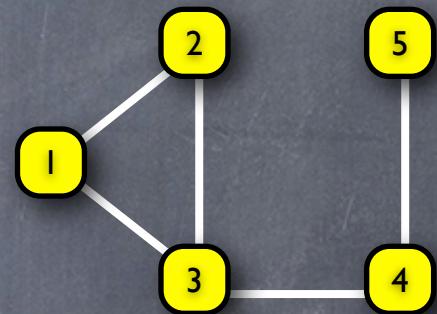
- Lemma: After $O(\log n)$ rounds selected edges include spanning forest.

Ingredient 2: Sketching Neighborhoods

Ingredient 2: Sketching Neighborhoods

- For node i , let a_i be vector indexed by node pairs.
Non-zero entries: $a_i[i,j]=1$ if $j>i$ and $a_i[i,j]=-1$ if $j<i$.

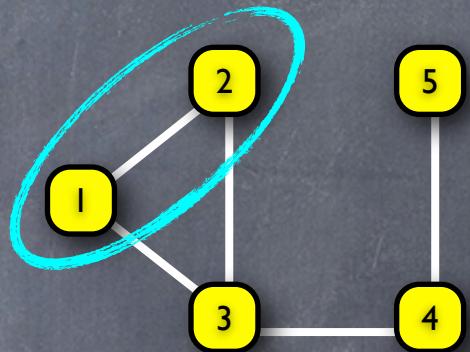
$$\mathbf{a}_1 = \begin{pmatrix} \{1,2\} & \{1,3\} & \{1,4\} & \{1,5\} & \{2,3\} & \{2,4\} & \{2,5\} & \{3,4\} & \{3,5\} & \{4,5\} \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
$$\mathbf{a}_2 = \begin{pmatrix} -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$



Ingredient 2: Sketching Neighborhoods

- For node i , let a_i be vector indexed by node pairs.
Non-zero entries: $a_i[i,j]=1$ if $j>i$ and $a_i[i,j]=-1$ if $j<i$.

$$\mathbf{a}_1 = \begin{pmatrix} \{1,2\} & \{1,3\} & \{1,4\} & \{1,5\} & \{2,3\} & \{2,4\} & \{2,5\} & \{3,4\} & \{3,5\} & \{4,5\} \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
$$\mathbf{a}_2 = \begin{pmatrix} -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$



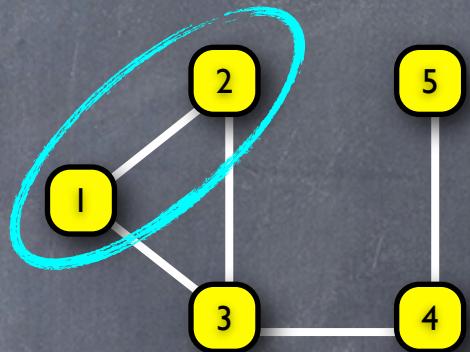
Ingredient 2: Sketching Neighborhoods

- For node i , let a_i be vector indexed by node pairs.
Non-zero entries: $a_i[i,j]=1$ if $j>i$ and $a_i[i,j]=-1$ if $j<i$.

$$a_1 = \begin{pmatrix} \{1,2\} & \{1,3\} & \{1,4\} & \{1,5\} & \{2,3\} & \{2,4\} & \{2,5\} & \{3,4\} & \{3,5\} & \{4,5\} \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$a_1 + a_2 = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$



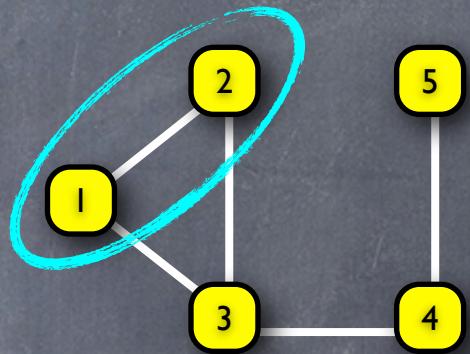
Ingredient 2: Sketching Neighborhoods

- For node i , let a_i be vector indexed by node pairs.
Non-zero entries: $a_i[i,j]=1$ if $j>i$ and $a_i[i,j]=-1$ if $j<i$.

$$a_1 = \begin{pmatrix} \{1,2\} & \{1,3\} & \{1,4\} & \{1,5\} & \{2,3\} & \{2,4\} & \{2,5\} & \{3,4\} & \{3,5\} & \{4,5\} \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$a_1 + a_2 = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$



- Lemma:** For any subset of nodes $S \subset V$,

$$\text{support} \left(\sum_{i \in S} a_i \right) = E(S, V \setminus S)$$

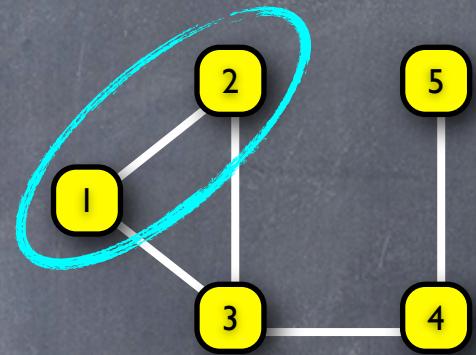
Ingredient 2: Sketching Neighborhoods

- For node i , let a_i be vector indexed by node pairs.
Non-zero entries: $a_i[i,j]=1$ if $j>i$ and $a_i[i,j]=-1$ if $j<i$.

$$a_1 = \begin{pmatrix} \{1,2\} & \{1,3\} & \{1,4\} & \{1,5\} & \{2,3\} & \{2,4\} & \{2,5\} & \{3,4\} & \{3,5\} & \{4,5\} \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$a_1 + a_2 = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$



- Lemma:** For any subset of nodes $S \subset V$,

$$\text{support} \left(\sum_{i \in S} a_i \right) = E(S, V \setminus S)$$

- Lemma:** \exists random $M: \mathbb{R}^N \rightarrow \mathbb{R}^k$ with $k = O(\text{polylog } N)$ such that for any $a \in \mathbb{R}^N$, with high probability

$$Ma \rightarrow e \in \text{support}(a)$$

Recipe: Sketch & Compute on Sketches

Recipe: Sketch & Compute on Sketches

- Sketch: Each player sends Maj

Recipe: Sketch & Compute on Sketches

- Sketch: Each player sends Maj_k
- Central Player Runs Algorithm in Sketch Space:

Recipe: Sketch & Compute on Sketches

- Sketch: Each player sends M_{aj}
- Central Player Runs Algorithm in Sketch Space:
 - Use M_{aj} to get incident edge on each node j

Recipe: Sketch & Compute on Sketches

- Sketch: Each player sends M_{A_j}
- Central Player Runs Algorithm in Sketch Space:
 - Use M_{A_j} to get incident edge on each node j
 - For $i=2$ to $\log n$:
 - To get incident edge on component $S \subset V$ use:

Recipe: Sketch & Compute on Sketches

- Sketch: Each player sends Ma_j
- Central Player Runs Algorithm in Sketch Space:
 - Use Ma_j to get incident edge on each node j
 - For $i=2$ to $\log n$:
 - To get incident edge on component $S \subset V$ use:

$$\sum_{j \in S} Ma_j = M \left(\sum_{j \in S} a_j \right)$$

Recipe: Sketch & Compute on Sketches

- Sketch: Each player sends Ma_j
- Central Player Runs Algorithm in Sketch Space:
 - Use Ma_j to get incident edge on each node j
 - For $i=2$ to $\log n$:
 - To get incident edge on component $S \subset V$ use:

$$\sum_{j \in S} Ma_j = M \left(\sum_{j \in S} a_j \right) \rightarrow e \in \text{support} \left(\sum_{j \in S} a_j \right) = E(S, V \setminus S)$$

Recipe: Sketch & Compute on Sketches

- Sketch: Each player sends Ma_j
- Central Player Runs Algorithm in Sketch Space:
 - Use Ma_j to get incident edge on each node j
 - For $i=2$ to $\log n$:
 - To get incident edge on component $S \subset V$ use:

$$\sum_{j \in S} Ma_j = M \left(\sum_{j \in S} a_j \right) \rightarrow e \in \text{support} \left(\sum_{j \in S} a_j \right) = E(S, V \setminus S)$$

Detail: Actually each player sends $\log n$ indept sketches $M_1 a_j, M_2 a_j, \dots$ and central player uses $M_i a_j$ when emulating i^{th} iteration of the algorithm.

Two Examples

First Theorem: Testing Connectivity

- a) *Dynamic Graph Stream:* $O(n \text{ polylog } n)$ space.
- b) *Distributed Setting:* $O(\text{polylog } n)$ length messages.

Second Theorem: Checking every cut has size $\geq k$

- a) *Dynamic Graph Stream:* $O(n k \text{ polylog } n)$ space.
- b) *Distributed Setting:* $O(k \text{ polylog } n)$ length.

Two Examples

First Theorem: Testing Connectivity

- a) *Dynamic Graph Stream:* $O(n \text{ polylog } n)$ space.
- b) *Distributed Setting:* $O(\text{polylog } n)$ length messages.



Second Theorem: Checking every cut has size $\geq k$

- a) *Dynamic Graph Stream:* $O(n k \text{ polylog } n)$ space.
- b) *Distributed Setting:* $O(k \text{ polylog } n)$ length.

Ingredient 1: Basic Algorithm

Ingredient 1: Basic Algorithm

- Algorithm (k-Connectivity):

Ingredient 1: Basic Algorithm

- Algorithm (k-Connectivity):
 1. Let F_1 be spanning forest of $G(V,E)$

Ingredient 1: Basic Algorithm

- Algorithm (k -Connectivity):
 1. Let F_1 be spanning forest of $G(V, E)$
 2. For $i=2$ to k :
 - 2.1. Let F_i be spanning forest of $G(V, E - F_1 - \dots - F_{i-1})$

Ingredient 1: Basic Algorithm

- ⦿ **Algorithm (k-Connectivity):**
 1. Let F_1 be spanning forest of $G(V, E)$
 2. For $i=2$ to k :
 - 2.1. Let F_i be spanning forest of $G(V, E - F_1 - \dots - F_{i-1})$
- ⦿ **Lemma:** $G(V, F_1 + \dots + F_k)$ is k -connected iff $G(V, E)$ is.

Ingredient 2: Connectivity Sketches

Ingredient 2: Connectivity Sketches

- Sketch: Simultaneously construct k independent connectivity sketches $\{M_1G, M_2G, \dots, M_kG\}$.

Ingredient 2: Connectivity Sketches

- Sketch: Simultaneously construct k independent connectivity sketches $\{M_1G, M_2G, \dots, M_kG\}$.
- Run Algorithm in Sketch Space:
 - Use M_1G to find a spanning forest F_1 of G

Ingredient 2: Connectivity Sketches

- Sketch: Simultaneously construct k independent connectivity sketches $\{M_1G, M_2G, \dots, M_kG\}$.
- Run Algorithm in Sketch Space:
 - Use M_1G to find a spanning forest F_1 of G
 - Use $M_2G - M_2F_1 = M_2(G - F_1)$ to find F_2

Ingredient 2: Connectivity Sketches

- Sketch: Simultaneously construct k independent connectivity sketches $\{M_1G, M_2G, \dots, M_kG\}$.
- Run Algorithm in Sketch Space:
 - Use M_1G to find a spanning forest F_1 of G
 - Use $M_2G - M_2F_1 = M_2(G - F_1)$ to find F_2
 - Use $M_3G - M_3F_1 - M_3F_2 = M_3(G - F_1 - F_2)$ to find F_3

Ingredient 2: Connectivity Sketches

- Sketch: Simultaneously construct k independent connectivity sketches $\{M_1G, M_2G, \dots, M_kG\}$.
- Run Algorithm in Sketch Space:
 - Use M_1G to find a spanning forest F_1 of G
 - Use $M_2G - M_2F_1 = M_2(G - F_1)$ to find F_2
 - Use $M_3G - M_3F_1 - M_3F_2 = M_3(G - F_1 - F_2)$ to find F_3
 - etc.

Sketches Summary

- Graph Sketches: Linear projections that preserve structural graph properties. Results *parallelizable*, *streamable*, and *support deletions*.
- Talk Results: Projecting $O(n)$ -dimensional neighborhoods to $O(\text{polylog } n)$ dimensions while preserving connectivity and cuts.
- Other Results: Spanners, Bipartiteness, MST, Triangles, Matching, ...

And over to Part II...

Sağ olun!

