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Massive Graphs

• Classic Big Graphs:
Call graph (5x108 nodes), web graph (5x1010 nodes), IP 
graph (232 nodes), social networks (109 nodes), ...

Challenge: Can’t use conventional algorithms on graphs this 
large. Sometimes can’t even store graph in memory! 
Graphs may be dynamic and/or distributed. 



Massive Graphs

• Classic Big Graphs:
Call graph (5x108 nodes), web graph (5x1010 nodes), IP 
graph (232 nodes), social networks (109 nodes), ...

Challenge: Can’t use conventional algorithms on graphs this 
large. Sometimes can’t even store graph in memory! 
Graphs may be dynamic and/or distributed. 

• Use Abstraction of Structure:
Graphs are a natural way to encode structural information 
where we have data about both basic entities and their 
relationships. Examples include graphical networks, citation 
networks, protein interaction and metabolic networks, ...
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Focus of Tutorial

• Tutorial focuses on the algorithmic and theoretical issues. 
Consider arbitrary graphs rather than being domain specific. 

• This Talk: Definitions & Basic Building Blocks

• Next Talk: Applications & Extensions

Question I:  What are appropriate synopsis data structures for 
massive graphs? How do we trade-off space and accuracy?

Question 2:  How can we construct these synopses efficiently? 
In particular, what is the input is streaming or distributed? 
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Eduardo and Mark are no longer friends.
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Tyler and Cameron are no longer friends with Mark.

        Like · Add Friend 

Tyler and Cameron are no longer friends with Mark.
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Lawyers are now friends with everyone.

        Like · Add Friend 

Lawyers are now friends with everyone.

        Like · Add Friend 





• Input: Observe stream of edges on n nodes added/deleted.
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• Input: Observe stream of edges on n nodes added/deleted.

• Example: Using Õ(n) space, maintain connected components.

• Other Results: Dense subgraphs, matchings, distances, 
clustering, partitioning and cuts, diameter, random walks, ...

• e.g., [Feigenbaum, Kannan, McGregor, Suri, Zhang 2004, 2005], [McGregor 2005]

• [Jowhari, Ghodsi 2005], [Zelke 2008], [Sarma, Gollapudi, Panigrahy 2008, 2009]
• [Eggert, Kliemann, Srivastav 2009], [Epstein, Levin, Mestre, Segev 2009]
• [Ahn, Guha 2009, 2011], [Kelner, Levine 2011], [Goel, Kapralov, Khanna 2012]

Data Streams



Input: G=(V,E)

Distributed Processing
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Distributed Processing



G1=(V,E1) G2=(V,E2) G3=(V,E3) G4=(V,E4)

Input: G=(V,E)

Output: f(G) given f(G1), ... , f(G4)

f(G1) f(G2) f(G3) f(G4)

Distributed Processing
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I. SpannersI. Spanners

Synopsis for Distance Estimation
“Greedy” Stream Algorithm

Extensions  



Spanners & Distances
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Spanners & Distances
• Measure: The distance dG(u,v) between two nodes u, v is 

the length of the shortest path between the nodes. 

• Synopsis: A subgraph H of G is a k-spanner if 

• dG(u,v)≤ dH(u,v)≤k dG(u,v)    for all node pairs. 

• Thm: Streaming construction using O(n1+2/(k+1)) space.
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Spanner: Algorithm

Algorithm: Add new edge (u,v) to H if dH(u,v)>3. 
Lemma: All distances preserved up to a factor 3.
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Spanner: Algorithm

Algorithm: Add new edge (u,v) to H if dH(u,v)>3. 
Lemma: All distances preserved up to a factor 3.
Lemma: O(n3/2) edges stored since shortest cycle 
among stored edges has length at least 5.
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If H has m edges, average degree is d=2m/n.
Claim: H contains a non-empty subgraph H’ with 
minimum degree at least d’=d/2 
Proof: Remove all nodes with degree < d’. Can 
only remove < nd’=nd/2=m edges so H’ non-empty.
Consider node in H’:

If length of all cycles is ≥5, the node has at least 
d’(d’-1) < n distinct neighbors of neighbors. 
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If H has m edges, average degree is d=2m/n.
Claim: H contains a non-empty subgraph H’ with 
minimum degree at least d’=d/2 
Proof: Remove all nodes with degree < d’. Can 
only remove < nd’=nd/2=m edges so H’ non-empty.
Consider node in H’:

If length of all cycles is ≥5, the node has at least 
d’(d’-1) < n distinct neighbors of neighbors. 

Spanners: Analysis

d’

......... d’ (d’-1)

...



Spanners Summary

• Thm: There’s a O(n1+1/t)-space stream algorithm returns 
a (2t-1)-spanner.	

 [Feigenbaum, Kannan, McGregor, Suri, Zhang 05]

• Extension: Can process weighted graphs by rounding 
weights and constructing spanners for each weight class. 
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II. SparsifiersII. Sparsifiers

Synopsis for Cut Estimation
Merge-Reduce Stream Algorithm

Extensions  
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Sparsifiers & Cuts
• Measure: Given a cut (L,R), the size of a cut cG(L,R) is 

the weight of all edges crossing the cut.

• Synopsis:  A subgraph H of G is a (1+ε) sparsifier if 

• cG(L,R)≤ cH(L,R)≤(1+ε) cG(L,R)    for all cuts. 

• Thm (Benzur-Karger): For any graph G there exists a 
(1+ε) sparsifier with only O(ε-2 n) edges.
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Sparsifiers & Cuts
• Measure: Given a cut (L,R), the size of a cut cG(L,R) is 

the weight of all edges crossing the cut.

• Synopsis:  A subgraph H of G is a (1+ε) sparsifier if 

• cG(L,R)≤ cH(L,R)≤(1+ε) cG(L,R)    for all cuts. 

• Thm (Benzur-Karger): For any graph G there exists a 
(1+ε) sparsifier with only O(ε-2 n) edges.

• Thm: Streaming construction in O(ε-2 n log3 n) space.

Original Graph G Sparsifier Graph H
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Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n). 
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
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Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n). 
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Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n). 
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.
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Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n). 
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of 
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Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n). 
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of 
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc. 
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Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n). 
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of 
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc. 
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Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n). 
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
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Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n). 
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of 
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc. 
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Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n). 
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of 
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc. 
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Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n). 
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of 
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc. 

HTOP
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Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n). 
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of 
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc. 
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Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n). 
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of 
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc. 
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Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n). 
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of 
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc. 
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Sparsifier: Algorithm

Lemma: HTOP is a (1+ɣ)d sparsifier for d=O(log n). 
Setting ɣ = O(ε/log n) yields a (1+ε) sparsifier.
Lemma: Can find HTOP with O(ɣ-2 n log n) memory.

Main Idea: Segment stream as E1, E2, ... each of 
size O(ε-2n). Let H1 be (1+ɣ) sparsifier of E1∪E2 etc. 

HTOP

H5 H6

H1 H2 H3 H4

E1 E2 E3 E4 E5 E6 E7 E8E1 E2 E3 E4 E5 E6 E7 E8

H1 H2 H3 H4

H5 H6

HTOPHTOP



Sparsifier Summary

• Thm: A (1+ε) sparsifier of a graph can be constructed in 
O(ε-2 n polylog n) space. 

• [Ahn, Guha 09], [Goel, Kapralov, Khanna 10], [Sidiropoulos 10]

• Generalizes to spectral sparsification which preserves 
properties relating to random walks.
 [Kelner, Levin 11]
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III. SketchesIII. Sketches
Family of Linear Synopses

Distributed & Supports Deletions 
Two Connectivity Examples  



Linear Sketches
 



Linear Sketches
 

2

666666664

v

3

777777775



• Random linear projection: M: ℝn→ℝk (where k≪n) that 
preserves properties of any v∈ℝn with high probability.   
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• Random linear projection: M: ℝn→ℝk (where k≪n) that 
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• Random linear projection: M: ℝn→ℝk (where k≪n) that 
preserves properties of any v∈ℝn with high probability.   

• Many results for numerical statistics and basic geometric 
properties... extensive theory with connections to hashing, 
compressed sensing, dimensionality reduction, metric 
embeddings...  widely applicable since embarrassingly 
parallelizable and suitable for stream processing. 
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• Random linear projection: M: ℝn→ℝk (where k≪n) that 
preserves properties of any v∈ℝn with high probability.   

• Many results for numerical statistics and basic geometric 
properties... extensive theory with connections to hashing, 
compressed sensing, dimensionality reduction, metric 
embeddings...  widely applicable since embarrassingly 
parallelizable and suitable for stream processing. 

? Question: What about analyzing massive graphs via sketches? 
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Distributed Data

...

• Input: Each player knows neighborhood Γ(v) for a node v

• Goal: Simultaneously, each player sends O(polylog n) bits to a 
central player who then determines if graph is connected.



• Suppose there’s a bridge (u,v) in the graph, i.e., a friendship that 
is essential to ensuring the graph is connected.

This can’t be possible?!



• Suppose there’s a bridge (u,v) in the graph, i.e., a friendship that 
is essential to ensuring the graph is connected.

• Dubious Claim: At least one player needs to send Ω(n) bits.

This can’t be possible?!



• Suppose there’s a bridge (u,v) in the graph, i.e., a friendship that 
is essential to ensuring the graph is connected.

• Dubious Claim: At least one player needs to send Ω(n) bits.
a) Central player needs to know about the special friendship.

This can’t be possible?!



• Suppose there’s a bridge (u,v) in the graph, i.e., a friendship that 
is essential to ensuring the graph is connected.

• Dubious Claim: At least one player needs to send Ω(n) bits.
a) Central player needs to know about the special friendship.
b) Participant doesn’t know which friendships are special.

This can’t be possible?!



• Suppose there’s a bridge (u,v) in the graph, i.e., a friendship that 
is essential to ensuring the graph is connected.

• Dubious Claim: At least one player needs to send Ω(n) bits.
a) Central player needs to know about the special friendship.
b) Participant doesn’t know which friendships are special.
c) Participants may have Ω(n) friends. 

This can’t be possible?!
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How to do it...
• Players send carefully-designed sketches of address books.

• Main Idea: Exploit homomorphic properties of linear sketches 
and emulate a classical algorithm in sketch space. 

Original Graph Sketch Space

AlgorithmAlgorithm ANSWER

Sketch



Two Examples
 

First Theorem: Testing Connectivity
a) Dynamic Graph Stream: O(n polylog n) space.
b) Distributed Setting: O(polylog n) length messages.

Second Theorem: Checking every cut has size ≥ k
a) Dynamic Graph Stream: O(n k polylog n) space.
b) Distributed Setting: O(k polylog n) length.
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Algorithm (Spanning Forest): 
1. For each node: pick incident edge
2.For each connected comp: pick incident edge
3.Repeat until no edges between connected comp.

Lemma: After O(log n) rounds selected edges 
include spanning forest.

Ingredient 1: Basic Algorithm
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For node i, let ai be vector indexed by node pairs. 
Non-zero entries: ai[i,j]=1 if j>i and ai[i,j]=-1 if j<i.
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For node i, let ai be vector indexed by node pairs. 
Non-zero entries: ai[i,j]=1 if j>i and ai[i,j]=-1 if j<i.

Lemma: For any subset of nodes S⊂V,

Ingredient 2: Sketching Neighborhoods

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

support (

X

i2S

ai ) = E (S ,V \ S)

a1 + a2 =
�
0 1 0 0 1 0 0 0 0 0

�



For node i, let ai be vector indexed by node pairs. 
Non-zero entries: ai[i,j]=1 if j>i and ai[i,j]=-1 if j<i.

Lemma: For any subset of nodes S⊂V,

Lemma: ∃ random M: ℝN→ℝk with k=O(polylog N) 
such that for any a∈ℝN, with high probability

Ingredient 2: Sketching Neighborhoods
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Recipe: Sketch & Compute on Sketches
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Central Player Runs Algorithm in Sketch Space:
Use Maj to get incident edge on each node j
For i=2 to log n:

To get incident edge on component S⊂V use:
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Sketch: Each player sends Maj

Central Player Runs Algorithm in Sketch Space:
Use Maj to get incident edge on each node j
For i=2 to log n:

To get incident edge on component S⊂V use:

Recipe: Sketch & Compute on Sketches

�! e 2 support(

X

j2S

aj) = E (S ,V \ S)
X

j2S

Maj = M(
X

j2S

aj)

Detail: Actually each player sends log n indept sketches M1aj, M2aj, ... and 
central player uses Miaj when emulating ith iteration of the algorithm.  
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a) Dynamic Graph Stream: O(n polylog n) space.
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Algorithm (k-Connectivity): 
1. Let F1 be spanning forest of G(V,E)
2.For i=2 to k: 

2.1. Let Fi be spanning forest of G(V,E-F1-...-Fi-1)
Lemma: G(V,F1+...+Fk) is k-connected iff G(V,E) is.

Ingredient 1: Basic Algorithm



Ingredient 2: Connectivity Sketches



Ingredient 2: Connectivity Sketches

Sketch: Simultaneously construct k independent 
connectivity sketches {M1G, M2G, ... MkG}.



Ingredient 2: Connectivity Sketches

Sketch: Simultaneously construct k independent 
connectivity sketches {M1G, M2G, ... MkG}.
Run Algorithm in Sketch Space:

Use M1G to find a spanning forest F1 of G 



Ingredient 2: Connectivity Sketches

Sketch: Simultaneously construct k independent 
connectivity sketches {M1G, M2G, ... MkG}.
Run Algorithm in Sketch Space:

Use M1G to find a spanning forest F1 of G 
Use M2G-M2F1=M2(G-F1) to find F2



Ingredient 2: Connectivity Sketches

Sketch: Simultaneously construct k independent 
connectivity sketches {M1G, M2G, ... MkG}.
Run Algorithm in Sketch Space:

Use M1G to find a spanning forest F1 of G 
Use M2G-M2F1=M2(G-F1) to find F2

Use M3G-M3F1-M3F2=M3(G-F1-F2) to find F3 



Ingredient 2: Connectivity Sketches

Sketch: Simultaneously construct k independent 
connectivity sketches {M1G, M2G, ... MkG}.
Run Algorithm in Sketch Space:

Use M1G to find a spanning forest F1 of G 
Use M2G-M2F1=M2(G-F1) to find F2

Use M3G-M3F1-M3F2=M3(G-F1-F2) to find F3 
etc.



Sketches Summary

• Graph Sketches: Linear projections that preserve structural graph 
properties. Results parallelizable, streamable, and support deletions.

• Talk Results: Projecting O(n)-dimensional neighborhoods to 
O(polylog n) dimensions while preserving connectivity and cuts.

• Other Results: Spanners, Bipartiteness, MST, Triangles, Matching, ...



Sağ	
  olun!

And over to Part II...




