Data Streams, Dyck Languages, and Detecting Dubious Data Structures

Amit Chakrabarti
Dartmouth College

Graham Cormode
AT&T Research Labs

Ranganath Kondapally
Dartmouth College

Andrew McGregor
University of Massachusetts, Amherst
• At each step, user inserts a value into the memory or asks that the smallest currently stored value is extracted.
At each step, user inserts a value into the memory or asks that the smallest currently stored value is extracted.

\[\text{ins}(5) \]
• At each step, user inserts a value into the memory or asks that the smallest currently stored value is extracted.

ins(5) ins(3)
At each step, user inserts a value into the memory or asks that the smallest currently stored value is extracted.

ins(5) ins(3)
• At each step, user inserts a value into the memory or asks that the smallest currently stored value is extracted.

\[\text{ins}(5) \ \text{ins}(3) \ \text{ext}(3)\]
At each step, user inserts a value into the memory or asks that the smallest currently stored value is extracted.

ins(5) ins(3) ext(3) ins(6)
At each step, user inserts a value into the memory or asks that the smallest currently stored value is extracted.

ins(5) ins(3) ext(3) ins(6) ins(7)
• At each step, user \textit{inserts} a value into the memory or asks that the smallest currently stored value is \textit{extracted}.

\[\text{ins}(5) \quad \text{ins}(3) \quad \text{ext}(3) \quad \text{ins}(6) \quad \text{ins}(7) \]
• At each step, user **inserts** a value into the memory or asks that the smallest currently stored value is **extracted**

\[\text{ins}(5) \ \text{ins}(3) \ \text{ext}(3) \ \text{ins}(6) \ \text{ins}(7) \ \text{ext}(5)\]
• At each step, user **inserts** a value into the memory or asks that the smallest currently stored value is **extracted**

```
ins(5)  ins(3)  ext(3)  ins(6)  ins(7)  ext(5)
```
• At each step, user **inserts** a value into the memory or asks that the smallest currently stored value is **extracted**

 ins(5) ins(3) ext(3) ins(6) ins(7) ext(5) ext(6)
At each step, user inserts a value into the memory or asks that the smallest currently stored value is extracted.

ins(5) ins(3) ext(3) ins(6) ins(7) ext(5) ext(6)
At each step, user inserts a value into the memory or asks that the smallest currently stored value is extracted.

\begin{verbatim}
ins(5) ins(3) ext(3) ins(6) ins(7) ext(5) ext(6) ext(7)
\end{verbatim}
• At each step, user inserts a value into the memory or asks that the smallest currently stored value is extracted.

\[
\text{ins}(5) \text{ ins}(3) \text{ ext}(3) \text{ ins}(6) \text{ ins}(7) \text{ ext}(5) \text{ ext}(6) \text{ ext}(7)
\]

? Challenge: Without remembering all the interaction, can you verify the priority queue performed correctly?
At each step, user inserts a value into the memory or asks that the smallest currently stored value is extracted.

\[
\text{ins}(5) \quad \text{ins}(3) \quad \text{ext}(3) \quad \text{ins}(6) \quad \text{ins}(7) \quad \text{ext}(5) \quad \text{ext}(6) \quad \text{ext}(7)
\]

\textbf{Challenge:} Without remembering all the interaction, can you verify the priority queue performed correctly?

\textbf{Motivation:} Memory checking useful when using cheap commodity hardware. [Blum, Evans, Gemmell, Kannan, Naor ’94]
PQ Language Problem
PQ Language Problem

• Let PQ be set of legitimate transcripts of a priority queue that starts and ends empty.
PQ Language Problem

- Let PQ be the set of legitimate transcripts of a priority queue that starts and ends empty.

 \[\text{ins}(5), \text{ins}(3), \text{ext}(3), \text{ins}(7), \text{ext}(5), \text{ext}(7) \in \text{PQ} \]
PQ Language Problem

- Let PQ be set of legitimate transcripts of a priority queue that starts and ends empty.

 \[
 \text{ins}(5), \text{ins}(3), \text{ext}(3), \text{ins}(7), \text{ext}(5), \text{ext}(7) \in \text{PQ}
 \]

 \[
 \text{ins}(5), \text{ext}(3), \text{ins}(5), \text{ins}(7), \text{ext}(7), \text{ext}(5) \notin \text{PQ}
 \]
PQ Language Problem

- Let PQ be set of legitimate transcripts of a priority queue that starts and ends empty.

 \[
 \text{ins}(5), \text{ins}(3), \text{ext}(3), \text{ins}(7), \text{ext}(5), \text{ext}(7) \in \text{PQ}
 \]

 \[
 \text{ins}(5), \text{ext}(3), \text{ins}(5), \text{ins}(7), \text{ext}(7), \text{ext}(5) \not\in \text{PQ}
 \]

- **PQ Problem:** Given streaming access to length N transcript, determine if it’s in PQ using o(N) space.
PQ Language Problem

• Let PQ be set of legitimate transcripts of a priority queue that starts and ends empty.

 \[
 \text{ins}(5), \text{ins}(3), \text{ext}(3), \text{ins}(7), \text{ext}(5), \text{ext}(7) \in PQ
 \]

 \[
 \text{ins}(5), \text{ext}(3), \text{ins}(5), \text{ins}(7), \text{ext}(7), \text{ext}(5) \notin PQ
 \]

• **PQ Problem:** Given streaming access to length N transcript, determine if it’s in PQ using \(o(N)\) space.

• **Previous results:** If each extract is annotated with insert time, \(\tilde{O}(\sqrt{N})\) space suffices. \[\text{Chu, Kannan, McGregor '07}\]

 \[
 \text{ins}(5), \text{ins}(3), \text{ext}(3,2), \text{ins}(7), \text{ext}(5,1), \text{ext}(7,4) \in PQ^+
 \]
PQ Language Problem

• Let PQ be set of legitimate transcripts of a priority queue that starts and ends empty.

 \[
 \text{ins}(5), \text{ins}(3), \text{ext}(3), \text{ins}(7), \text{ext}(5), \text{ext}(7) \in PQ
 \]

 \[
 \text{ins}(5), \text{ext}(3), \text{ins}(5), \text{ins}(7), \text{ext}(7), \text{ext}(5) \notin PQ
 \]

• PQ Problem: Given streaming access to length N transcript, determine if it’s in PQ using o(N) space.

• Previous results: If each extract is annotated with insert time, \(\tilde{O}(\sqrt{N})\) space suffices. [Chu, Kannan, McGregor ’07]

 \[
 \text{ins}(5), \text{ins}(3), \text{ext}(3,2), \text{ins}(7), \text{ext}(5,1), \text{ext}(7,4) \in PQ^+
 \]

? Big Question: Is annotation necessary for sub-linear space?
Dyck Language Problem

[Magniez, Mathieu, Nayak ’10]
Dyck Language Problem

[Magniez, Mathieu, Nayak ’10]

• DYCK_2 is the set of strings of balanced brackets when there are two different types of brackets:

$((([])([]))) \in \text{DYCK}_2$

$([[]][])) \notin \text{DYCK}_2$
Dyck Language Problem

[Magniez, Mathieu, Nayak ’10]

• DYCK_2 is the set of strings of balanced brackets when there are two different types of brackets:

$$((([])([]))) \in \text{DYCK}_2 \quad ([([])][[]]) \notin \text{DYCK}_2$$

• **DYCK Problem:** Given streaming access to length N string, determine if it’s in DYCK_2 using $o(N)$ space.
Dyck Language Problem
[Magaziez, Mathieu, Nayak ’10]

- DYCK_2 is the set of strings of balanced brackets when there are two different types of brackets:

 $((([])([]))) \in \text{DYCK}_2$

 $([[]][])) \notin \text{DYCK}_2$

- \textbf{DYCK Problem:} Given streaming access to length N string, determine if it's in DYCK_2 using $o(N)$ space.

- \textbf{Previous results:} Given one pass, $\tilde{O}(\sqrt{N})$ space suffices. If you’re allowed one forward pass followed by a reverse pass, $\tilde{O}(\log N)$ space suffices.
Dyck Language Problem

[Magniez, Mathieu, Nayak ’10]

- \text{DYCK}_2 \text{ is the set of strings of balanced brackets when there are two different types of brackets:}
 \[
 ((([])([]))) \in \text{DYCK}_2 \quad \text{and} \quad ([[]]) \notin \text{DYCK}_2
 \]

- \textbf{DYCK Problem:} Given streaming access to length N string, determine if it’s in \text{DYCK}_2 using \(o(N)\) space.

- \textbf{Previous results:} Given one pass, \(\tilde{O}(\sqrt{N})\) space suffices. If you’re allowed one forward pass followed by a reverse pass, \(\tilde{O}(\log N)\) space suffices.

? \textbf{Big Question:} Does \(\tilde{O}(\log N)\) space suffice if we’re only allowed multiple forward passes?
Outline

I. Priority Queues and Memory Checking Algorithms
 - $\tilde{O}(\sqrt{N})$ space algorithm for PQ with no annotations!
 - Extensions to stacks, double-ended queues, etc.
Outline

I. **Priority Queues and Memory Checking Algorithms**
 - $\tilde{O}(\sqrt{N})$ space algorithm for PQ with no annotations!
 - Extensions to stacks, double-ended queues, etc.

II. **Multipass Stream Lower Bounds**
 - Any constant pass algorithm for DYCK_2 or PQ that only uses forward passes requires $\Omega(\sqrt{N})$ space
Outline

I. Priority Queues and Memory Checking Algorithms
 • $\tilde{O}(\sqrt{N})$ space algorithm for PQ with no annotations!
 • Extensions to stacks, double-ended queues, etc.

II. Multipass Stream Lower Bounds
 • Any constant pass algorithm for ${\text{DYCK}}_2$ or PQ that only uses forward passes requires $\Omega(\sqrt{N})$ space

III. Information Complexity Trade-offs for Augmented Index
 • Even multi-round protocol leak information.
I. Memory Checking
II. Lower Bounds
III. Augmented Indexing
I. Memory Checking
PQ Algorithm
PQ Algorithm

- **Thm:** There exists a $O(\sqrt{N \log N})$ space algorithm with $O(\log N)$ amortized update time for recognizing PQ.
PQ Algorithm

- **Thm:** There exists a $O(\sqrt{N \log N})$ space algorithm with $O(\log N)$ amortized update time for recognizing PQ.

- **Prelim:** Easy to check that set of values inserted equals set of values extracted using fingerprinting:

 $$f_S(x) = \prod_{a \in S} (x - a) \mod p$$
PQ Algorithm

- **Thm:** There exists a $O(\sqrt{N \log N})$ space algorithm with $O(\log N)$ amortized update time for recognizing PQ.

- **Prelim:** Easy to check that set of values inserted equals set of values extracted using fingerprinting:

$$f_S(x) = \prod_{a \in S} (x - a) \mod p$$

For this talk: Assume inserted elements are distinct and that inserts come before their corresponding extract. I.e., we’re trying to identify the following **bad pattern:**

```
ins(u) .... ext(v) ... ext(u) for some u < v
```
Epochs and Local Bad Patterns...
Epochs and Local Bad Patterns...
• Split length N sequence into \sqrt{N} epochs of length \sqrt{N}
• Split length N sequence into \sqrt{N} epochs of length \sqrt{N}
• Split length N sequence into \sqrt{N} epochs of length \sqrt{N}

• **Defn:** Bad pattern $\text{ins}(u) \ldots \text{ext}(v) \ldots \text{ext}(u)$ is *local* if $\text{ins}(u)$ and $\text{ext}(v)$ occur in same epoch and *long-range* otherwise.
• Split length N sequence into \sqrt{N} epochs of length \sqrt{N}

• **Defn:** Bad pattern $\text{ins}(u) \ldots \text{ext}(v) \ldots \text{ext}(u)$ is *local* if $\text{ins}(u)$ and $\text{ext}(v)$ occur in same epoch and *long-range* otherwise.

• Using $O(\sqrt{N})$ space, we can buffer each epoch and check for local bad patterns.
Catching Long-Range Bad Patterns... 1/2
• **Defn:** Let $f_t(i)$ be maximum value extracted between end of i-th epoch and *present time* t.
Defn: Let $f_t(i)$ be maximum value extracted between end of i-th epoch and present time t.

Catching Long-Range Bad Patterns... 1/2
Defn: Let $f_t(i)$ be the maximum value extracted between the end of the i-th epoch and the present time t.
Defn: Let $f_t(i)$ be maximum value extracted between end of i-th epoch and present time t.
Catching Long-Range Bad Patterns... 1/2

- **Defn:** Let $f_t(i)$ be maximum value extracted between end of i-th epoch and *present time* t.
\textbf{Defn:} Let $f_t(i)$ be maximum value extracted between end of i-th epoch and present time t.

\textbf{Defn:} Each insert or extract is \textit{adopted} by k-th epoch where $k = \min\{j : f(j) \leq u\}$ where we assume $f(\text{current epoch}) = 0$.
• **Lemma:** If $\text{ins}(u) \ldots \text{ext}(v) \ldots \text{ext}(u)$ is a long-range bad pattern then $\text{ins}(u)$ and $\text{ext}(u)$ are adopted by different epochs.
Lemma: If \(\text{ins}(u) \ldots \text{ext}(v) \ldots \text{ext}(u) \) is a long-range bad pattern then \(\text{ins}(u) \) and \(\text{ext}(u) \) are adopted by different epochs.

Proof:

i. Let \(\text{ins}(u) \) be adopted by \(k \)-th epoch.
Lemma: If \(\text{ins}(u) \ldots \text{ext}(v) \ldots \text{ext}(u) \) is a long-range bad pattern then \(\text{ins}(u) \) and \(\text{ext}(u) \) are adopted by different epochs.

Proof:

i. Let \(\text{ins}(u) \) be adopted by \(k \)-th epoch.

ii. After \(v \) is extracted \(f(k) \geq v > u \) and hence \(\text{ext}(u) \) will be adopted by \(k' \)-th epoch for some \(k' > k \).
Lemma: If ins(u) ... ext(v) ... ext(u) is a long-range bad pattern then ins(u) and ext(u) are adopted by different epochs.

Proof:

i. Let ins(u) be adopted by k-th epoch.

ii. After v is extracted f(k)≥v>u and hence ext(u) will be adopted by k’-th epoch for some k’>k.

Lemma: If there are no bad patterns, every ins(u) and ext(u) pair get adopted by the same epoch.
Lemma: If \(\text{ins}(u) \ldots \text{ext}(v) \ldots \text{ext}(u) \) is a long-range bad pattern then \(\text{ins}(u) \) and \(\text{ext}(u) \) are adopted by different epochs.

Proof:

i. Let \(\text{ins}(u) \) be adopted by \(k \)-th epoch.

ii. After \(v \) is extracted \(f(k) \geq v > u \) and hence \(\text{ext}(u) \) will be adopted by \(k' \)-th epoch for some \(k' > k \).

Lemma: If there are no bad patterns, every \(\text{ins}(u) \) and \(\text{ext}(u) \) pair get adopted by the same epoch.

Algorithm: Using fingerprinting to check:

\[\{(u,k) : \text{ins}(u) \text{ adopted by } k\} = \{(u,k) : \text{ext}(u) \text{ adopted by } k\}. \]
Finishing Up
Finishing Up

• Some steps to removing assumptions:

i. Within buffered epoch, rearrange terms such that all inserts follow a series of increasing extracts: ensures all extracts are adopted by previous epochs.

ii. Keep track of number of times epoch k adopts $\text{ins}(u)$ while $f(k)<u$ and while $f(k)=u$ separately and whether epoch k has ever adopted more $\text{ext}(u)$’s than $\text{ins}(u)$’s.
Finishing Up

- **Some steps to removing assumptions:**

i. Within buffered epoch, rearrange terms such that all inserts follow a series of increasing extracts: ensures all extracts are adopted by previous epochs.

 ii. Keep track of number of times epoch k adopts $\text{ins}(u)$ while $f(k) < u$ and while $f(k) = u$ separately and whether epoch k has ever adopted more $\text{ext}(u)$’s than $\text{ins}(u)$’s.

- **Thm:** There exists a $O(\sqrt{N \log N})$ space algorithm with $O(\log N)$ amortized update time for recognizing PQ.
Finishing Up

• **Some steps to removing assumptions:**

 i. Within buffered epoch, rearrange terms such that all inserts follow a series of increasing extracts: ensures all extracts are adopted by previous epochs.

 ii. Keep track of number of times epoch k adopts $\text{ins}(u)$ while $f(k)<u$ and while $f(k)=u$ separately and whether epoch k has ever adopted more $\text{ext}(u)$’s than $\text{ins}(u)$’s.

• **Thm:** There exists a $O(\sqrt{N \log N})$ space algorithm with $O(\log N)$ amortized update time for recognizing PQ.

• **Extensions:** Sub-linear space streaming recognition of other data structures like stacks, double-ended queues...
I. Memory Checking

II. Lower Bounds

III. Augmented Indexing
II. Lower Bounds
Augmented Index
Augmented Index

- Many space lower bounds in data stream model are based on reductions from communication complexity.
Augmented Index

- Many space lower bounds in data stream model are based on reductions from communication complexity.

- **Augmented Index**: Alice has $x \in \{0,1\}^n$ and Bob has a prefix $y \in \{0,1\}^{k-1}$ of x and $c \in \{0,1\}$. Bob wants to check if $c=x_k$.
Augmented Index

- Many space lower bounds in data stream model are based on reductions from communication complexity.
- **Augmented Index:** Alice has $x \in \{0,1\}^n$ and Bob has a prefix $y \in \{0,1\}^{k-1}$ of x and $c \in \{0,1\}$. Bob wants to check if $c = x_k$.
- **Thm:** Any $1/3$-error, one-way protocol from Alice to Bob for AI_n requires $\Omega(n)$ bits sent.

 [Miltersen et al. JCSS ’98]
Augmented Index

- Many space lower bounds in data stream model are based on reductions from communication complexity.

- **Augmented Index**: Alice has $x \in \{0,1\}^n$ and Bob has a prefix $y \in \{0,1\}^{k-1}$ of x and $c \in \{0,1\}$. Bob wants to check if $c = x_k$.

- **Thm**: Any 1/3-error, one-way protocol from Alice to Bob for AI_n requires $\Omega(n)$ bits sent. [Miltersen et al. JCSS '98]

- Our main result concerns multi-way protocols but we’ll cover the relevance to DYCK_2 and PQ first...
Multi-player Augmented Index
Multi-player Augmented Index

- We now have 2m players $A_1, \ldots, A_m, B_1, \ldots, B_m$ where each A_i and B_i have an instance (x^i, k^i, c^i) of AI_n.
Multi-player Augmented Index

- We now have 2m players $A_1, \ldots, A_m, B_1, \ldots, B_m$ where each A_i and B_i have an instance (x^i, k^i, c^i) of Ai_n

- Want to determine if any of the Ai instances are false using private messages communicated in the order

$$A_1 \rightarrow B_1 \rightarrow A_2 \rightarrow B_2 \rightarrow \ldots \rightarrow A_m \rightarrow B_m \rightarrow A_m \rightarrow A_{m-1} \rightarrow \ldots \rightarrow A_1$$
Multi-player Augmented Index

- We now have 2m players $A_1, ..., A_m, B_1, ..., B_m$ where each A_i and B_i have an instance (x^i, k^i, c^i) of AI_n
- Want to determine if any of the AI instances are false using private messages communicated in the order:

 $$A_1 \rightarrow B_1 \rightarrow A_2 \rightarrow B_2 \rightarrow ... \rightarrow A_m \rightarrow B_m \rightarrow A_m \rightarrow A_{m-1} \rightarrow ... \rightarrow A_1$$

- **Thm:** Any 1/3-error, p-round protocol for $MULTI-AI_{m,n}$ needs $ps = \Omega(\min m, n)$ where s is max message length.
Reduction to Dyck
Reduction to Dyck

[[[[]]]]
Reduction to Dyck

([()] [(())] [([)] [])])
Reduction to Dyck
Reduction to Dyck

(((()))))((()))
Reduction to Dyck
Reduction to Dyck
Reduction to Dyck

\[
([([()][([()])[([()])]])][([()])])
\]

\[
([([()])][([()])])
\]

\[
([([()])][([()])])
\]

\[
([([()])]([([()])]))
\]

\[
([([()])]([([()])]))
\]

\[
([([()])]([([()])]))
\]

\[
([([()])]([([()])]))
\]

\[
([([()])]([([()])]))
\]
Reduction to Dyck
Reduction to Dyck
Reduction to Dyck

[[] []]

([] [])

([] [])

([] [])

“Ascension Problem”
[Magniez, Mathieu, Nayak ’10]
Reduction to Dyck
• **Thm:** A constant-pass, algorithm for DYCK\(_2\) that fail with probability at most 1/3 requires \(\Omega(\sqrt{N})\) space.
Reduction to Dyck

- **Thm:** A constant-pass, algorithm for DYCK_2 that fail with probability at most $1/3$ requires $\Omega(\sqrt{N})$ space.

- **Proof:**

 i. Let A be a p-pass stream algorithm using s space.
Reduction to Dyck

• **Thm:** A constant-pass, algorithm for \(\text{DYCK}_2 \) that fail with probability at most 1/3 requires \(\Omega(\sqrt{N}) \) space.

• **Proof:**

 i. Let \(A \) be a p-pass stream algorithm using \(s \) space.

 ii. Use \(A \) to construct a p-round protocol for \(\text{MULTI}-A!\sqrt{N},\sqrt{N} \) where max message is \(s \)-bits: Each player simulates \(A \) on its part of input using Magniez et al. reduction and forwards memory state to next player.
Reduction to Dyck

• **Thm:** A constant-pass, algorithm for DYCK$_2$ that fail with probability at most 1/3 requires $\Omega(\sqrt{N})$ space.

• **Proof:**

 i. Let A be a p-pass stream algorithm using s space.

 ii. Use A to construct a p-round protocol for MULTI-AI$_{\sqrt{N},\sqrt{N}}$ where max message is s-bits: Each player simulates A on it’s part of input using Magniez et al. reduction and forwards memory state to next player.

 iii. Therefore s is $\Omega(\sqrt{N})$ as required.
Lower Bounds Summary

- **Thm:** Any constant pass algorithm for recognizing PQ or DYCK\(_2\) requires a \(\Omega(\sqrt{N})\) space.
Lower Bounds Summary

- **Thm:** Any constant pass algorithm for recognizing PQ or \(\text{DYCK}_2 \) requires a \(\Omega(\sqrt{N}) \) space.

- **Consequences:**

 i. Multiple forward passes have no significant advantage for recognizing the languages considered.

 ii. One forward pass + one reverse pass is exponentially more powerful than two forward passes.
I. Memory Checking

II. Lower Bounds

III. Augmented Indexing
III. Augmented Indexing
Information Complexity

[Chakrabarti, Shi, Wirth, Yao ’01]
Information Complexity

[Chakrabarti, Shi, Wirth, Yao ’01]

- Entropy and Mutual Information:

\[H(X) = -\Sigma \Pr[X = x] \log \Pr[X = x] \]
\[H(X|Y) = -\Sigma \Pr[X = x, Y = y] \log \Pr[X = x|Y = y] \]

\[I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) \]
\[I(X; Y|Z) = H(X|Z) - H(X|Y, Z) \]
Information Complexity

[Chakrabarti, Shi, Wirth, Yao ’01]

- **Entropy and Mutual Information:**

\[
H(X) = -\sum \text{Pr}[X = x] \log \text{Pr}[X = x]
\]

\[
H(X|Y) = -\sum \text{Pr}[X = x, Y = y] \log \text{Pr}[X = x|Y = y]
\]

\[
I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)
\]

\[
I(X; Y|Z) = H(X|Z) - H(X|Y, Z)
\]
Information Complexity
[Chakrabarti, Shi, Wirth, Yao ’01]

• **Entropy and Mutual Information:**

\[
\begin{align*}
H(X) & = -\Sigma \Pr[X = x] \lg \Pr[X = x] \\
H(X|Y) & = -\Sigma \Pr[X = x, Y = y] \lg \Pr[X = x|Y = y] \\
I(X; Y) & = H(X) - H(X|Y) = H(Y) - H(Y|X) \\
I(X; Y|Z) & = H(X|Z) - H(X|Y, Z)
\end{align*}
\]

• **Information cost method:** Consider mutual information between random input for a communication problem and the communication transcript:

\[
I(\text{transcript}; \text{input})
\]
Information Complexity

[Chakrabarti, Shi, Wirth, Yao ’01]

- **Entropy and Mutual Information:**

 \[
 H(X) = -\sum \Pr[X = x] \lg \Pr[X = x]
 \]

 \[
 H(X|Y) = -\sum \Pr[X = x, Y = y] \lg \Pr[X = x|Y = y]
 \]

 \[
 I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)
 \]

 \[
 I(X; Y|Z) = H(X|Z) - H(X|Y, Z)
 \]

- **Information cost method:** Consider mutual information between random input for a communication problem and the communication transcript:

 \[
 I(\text{transcript}; \text{input}) \leq \text{length of transcript}
 \]
Information Complexity
[Chakrabarti, Shi, Wirth, Yao ’01]

- **Entropy and Mutual Information:**

 \[H(X) = -\sum \text{Pr}[X = x] \lg \text{Pr}[X = x] \]
 \[H(X|Y) = -\sum \text{Pr}[X = x, Y = y] \lg \text{Pr}[X = x|Y = y] \]
 \[I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) \]
 \[I(X; Y|Z) = H(X|Z) - H(X|Y, Z) \]

- **Information cost method:** Consider mutual information between random input for a communication problem and the communication transcript:

 \[I(\text{transcript}; \text{input}) \leq \text{length of transcript} \]

- Can restrict to partial transcript and subsets of input: useful for proving direct-sum arguments.
Information Complexity of Al_n
Information Complexity of AI_n

- **Defn:** Let P be a protocol for AI_n using public random string R. Let T be the transcript and $(X, K, C) \sim \xi$. Define

\[
\text{icost}^A_\xi(P) = I(T : X | K, C, R) \\
\text{icost}^B_\xi(P) = I(T : K, C | X, R)
\]
Information Complexity of A_{I_n}

- **Defn:** Let P be a protocol for A_{I_n} using public random string R. Let T be the transcript and $(X, K, C) \sim \xi$. Define

 \[
 \text{icost}_A^\xi(P) = I(T : X | K, C, R) \\
 \text{icost}_B^\xi(P) = I(T : K, C | X, R)
 \]

- **Thm:** Let P be a randomized protocol for A_{I_n} with error $1/3$ under the uniform distribution μ. Then,

 \[
 \text{icost}_{\mu_0}^A(P) = \Omega(n) \quad \text{or} \quad \text{icost}_{\mu_0}^B(P) = \Omega(1)
 \]

 where μ_0 is μ conditioned on $X_K=C$.
MULTI-AI_{m,n} versus AI_n
MULTI-AIₘₙ versus AIₙ

• **Defn:** Let Q be a protocol for MULTI-AIₘₙ using public random string R. Let T be transcript and \((X^i, K^i, C^i)_{i \in [m]} \sim \xi\).

\[
icost_{\xi}(Q) = I(T_{m} : K^{1}, C^{1}, ..., K^{m}, C^{m} \mid X^{1}, ..., X^{m}, R)
\]

where \(T_m\) is the set of messages sent by \(B_m\).
MULTI-AI\(_m,n\) \textit{versus} AI\(_n\)

- **Defn:** Let Q be a protocol for MULTI-AI\(_m,n\) using public random string R. Let T be transcript and \((X^i,K^i,C^i)_{i\in[m]}\sim\xi\).

\[
i_{\text{cost}}(Q) = I(T_m : K^1, C^1, \ldots, K^m, C^m | X^1, \ldots, X^m, R)
\]

where \(T_m\) is the set of messages sent by B\(_m\).

- **Thm (Direct Sum):** If there exists a p-round, s-bit, \(\varepsilon\)-error protocol Q for MULTI-AI\(_m,n\) then there exists a p-round, \(\varepsilon\)-error randomized protocol P for AI\(_n\) where

 i. Alice sends at most ps bits

 ii. \(m \cdot i_{\text{cost}}^{B}(P) \leq i_{\text{cost}}^{\otimes m}(Q)\)
Putting it all together...
Putting it all together...

- **Thm**: Any p-round, s-bit, 1/3-error protocol Q for $\text{MULTI-}A_{m,n}$ requires $ps=\Omega(\min m,n)$.
Putting it all together...

- **Thm:** Any p-round, s-bit, 1/3-error protocol Q for $\text{MULTI-AL}_{m,n}$ requires $ps=\Omega(\min m,n)$.

- **Proof:**
 1. By direct sum theorem, there exists ε-error, p-pass protocol P for AL_n such that:

 \[
p \cdot s \geq \text{icost}_{\mu_0}^{\otimes m}(Q) \geq m \cdot \text{icost}_{\mu_0}^B(P) \geq p \cdot s \geq \text{icost}_{\mu_0}^A(P)\]
Putting it all together...

- **Thm:** Any p-round, s-bit, $1/3$-error protocol Q for MULTI-$\text{AI}_{m,n}$ requires $ps=\Omega(\min m,n)$.

- **Proof:**

 i. By direct sum theorem, there exists ε-error, p-pass protocol P for AI_n such that:

 $$p \cdot s \geq \text{icost}_{\mu_0}^B(Q) \geq m \cdot \text{icost}_{\mu_0}^B(P)$$

 $$p \cdot s \geq \text{icost}_{\mu_0}^A(P)$$

 ii. By information complexity of AI_n

 $$\max(m \cdot \text{icost}_{\mu_0}^B(P), \text{icost}_{\mu_0}^A(P)) = \Omega(\min(m, n))$$
Summary

Memory Checking: Sub-linear space recognition of various data-structure transcript languages is possible without annotation!

Theory of Stream Computation: Forward + reverse pass can be much more useful than many forward passes!

Further Work: Annotations, stream language recognition, ...

Thanks!