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• At each step, user inserts a value into the memory or 
asks that the smallest currently stored value is extracted

? Challenge: Without remembering all the interaction, can 
you verify the priority queue performed correctly? 

• Motivation: Memory checking useful when using cheap 
commodity hardware. 	
 [Blum, Evans, Gemmell, Kannan, Naor ’94]
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• Let PQ be set of legitimate transcripts of a priority 
queue that starts and ends empty.

• ins(5), ins(3), ext(3), ins(7), ext(5), ext(7) ∈ PQ

• ins(5), ext(3), ins(5), ins(7), ext(7), ext(5) ∉ PQ

• PQ Problem: Given streaming access to length N 
transcript, determine if it’s in PQ using o(N) space.

• Previous results: If each extract is annotated with insert 
time, Õ(√N) space suffices. 	
 [Chu, Kannan, McGregor ’07]

• ins(5), ins(3), ext(3,2), ins(7), ext(5,1), ext(7,4) ∈ PQ+

? Big Question: Is annotation necessary for sub-linear space?
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Dyck Language Problem
[Magniez, Mathieu, Nayak ’10]

• DYCK2 is the set of strings of balanced brackets when 
there are two different types of brackets:

• ((([])()[])) ∈ DYCK2                ([([]])[])) ∉ DYCK2

• DYCK Problem: Given streaming access to length N 
string, determine if it’s in DYCK2 using o(N) space. 

• Previous results: Given one pass, Õ(√N) space suffices. If 
you’re allowed one forward pass followed by a reverse 
pass, Õ(log N) space suffices. 	


? Big Question: Does Õ(log N) space suffice if we’re only 
allowed multiple forward passes?
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• Õ(√N) space algorithm for PQ with no annotations!

• Extensions to stacks, double-ended queues, etc.

II. Multipass Stream Lower Bounds 

• Any constant pass algorithm for DYCK2 or PQ that 
only uses forward passes requires Ω(√N) space

III. Information Complexity Trade-offs for Augmented Index

• Even multi-round protocol leak information.
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• Thm: There exists a O(√N log N) space algorithm with 
O(log N) amortized update time for recognizing PQ.

• Prelim: Easy to check that set of values inserted equals 
set of values extracted using fingerprinting:

! For this talk: Assume inserted elements are distinct and 
that inserts come before their corresponding extract. 
I.e., we’re trying to identify the following bad pattern:

• ins(u) .... ext(v) ... ext(u) for some u < v

fS(x) =
�

a∈S

(x − a) mod p
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• Split length N sequence into √N epochs of length √N

• Defn: Bad pattern ins(u) ... ext(v) ... ext(u) is local if ins(u) 
and ext(v) occur in same epoch and long-range otherwise.

• Using O(√N) space, we can buffer each epoch and check 
for local bad patterns.

Epoch-1 Epoch-2 Epoch-3 Epoch-4 Epoch-5 Epoch-6

Epochs and Local Bad Patterns...
In
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• Defn: Let ft(i) be maximum value extracted between end of 
i-th epoch and present time t. 

• Defn: Each insert or extract is adopted by k-th epoch where 
k = min{j : f(j)≤u} where we assume f(current epoch)=0.

f(1)
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• Lemma: If ins(u) ... ext(v) ... ext(u) is a long-range bad pattern 
then ins(u) and ext(u) are adopted by different epochs.

• Proof: 
i. Let ins(u) be adopted by k-th epoch.
ii. After v is extracted f(k)≥v>u and hence ext(u) will be 

adopted by k’-th epoch for some k’>k.

• Lemma: If there are no bad patterns, every ins(u) and ext(u) pair 
get adopted by the same epoch.

• Algorithm: Using fingerprinting to check:

• {(u,k) : ins(u) adopted by k} = {(u,k) : ext(u) adopted by k}.

Catching Long-Range Bad Patterns... 2/2



Finishing Up



Finishing Up

• Some steps to removing assumptions: 

i. Within buffered epoch, rearrange terms such that all 
inserts follow a series of increasing extracts: ensures 
all extracts are adopted by previous epochs. 

ii. Keep track of number of times epoch k adopts ins(u) 
while f(k)<u and while f(k)=u separately and whether 
epoch k has ever adopted more ext(u)’s than ins(u)’s.



Finishing Up

• Some steps to removing assumptions: 

i. Within buffered epoch, rearrange terms such that all 
inserts follow a series of increasing extracts: ensures 
all extracts are adopted by previous epochs. 

ii. Keep track of number of times epoch k adopts ins(u) 
while f(k)<u and while f(k)=u separately and whether 
epoch k has ever adopted more ext(u)’s than ins(u)’s.

• Thm: There exists a O(√N log N) space algorithm with 
O(log N) amortized update time for recognizing PQ.



Finishing Up

• Some steps to removing assumptions: 

i. Within buffered epoch, rearrange terms such that all 
inserts follow a series of increasing extracts: ensures 
all extracts are adopted by previous epochs. 

ii. Keep track of number of times epoch k adopts ins(u) 
while f(k)<u and while f(k)=u separately and whether 
epoch k has ever adopted more ext(u)’s than ins(u)’s.

• Thm: There exists a O(√N log N) space algorithm with 
O(log N) amortized update time for recognizing PQ.

• Extensions: Sub-linear space streaming recognition of 
other data structures like stacks, double-ended queues...
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• Many space lower bounds in data stream model are 
based on reductions from communication complexity.

• Augmented Index: Alice has x∈{0,1}n and Bob has a prefix 
y∈{0,1}k-1 of x and c∈{0,1}. Bob wants to check if c=xk.

• Thm: Any 1/3-error, one-way protocol from Alice to Bob 
for AIn requires Ω(n) bits sent.       [Miltersen et al. JCSS ’98]

• Our main result concerns multi-way protocols but we’ll 
cover the relevance to DYCK2 and PQ first...

x∈{0,1}n y∈{0,1}k-1, k∈[n], c∈{0,1}, 



Multi-player Augmented Index



Multi-player Augmented Index

• We now have 2m players A1 , ... ,  Am , B1 , ... , Bm where 

each Ai and Bi have an instance (xi,ki,ci) of AIn

x1 x2 x3y1, k1, c1 y2, k2, c2 y3, k3, c3



Multi-player Augmented Index

• We now have 2m players A1 , ... ,  Am , B1 , ... , Bm where 

each Ai and Bi have an instance (xi,ki,ci) of AIn

• Want to determine if any of the AI instances are false 
using private messages communicated in the order

• A1→B1→ A2→B2→...→Am→Bm→Am→Am-1→...→A1

x1x2x3x1 x2 x3y1, k1, c1 y2, k2, c2 y3, k3, c3
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• We now have 2m players A1 , ... ,  Am , B1 , ... , Bm where 

each Ai and Bi have an instance (xi,ki,ci) of AIn

• Want to determine if any of the AI instances are false 
using private messages communicated in the order

• A1→B1→ A2→B2→...→Am→Bm→Am→Am-1→...→A1

• Thm: Any 1/3-error, p-round protocol for MULTI-AIm,n 
needs ps=Ω(min m,n) where s is max message length.

x1x2x3x1 x2 x3y1, k1, c1 y2, k2, c2 y3, k3, c3
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“Ascension Problem” 
[Magniez, Mathieu, Nayak ’10]
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Reduction to Dyck

• Thm: A constant-pass, algorithm for DYCK2 that fail with 
probability at most 1/3 requires Ω(√N) space.

• Proof: 

i. Let A be a p-pass stream algorithm using s space. 
ii. Use A to construct a p-round protocol for MULTI-AI√N,√N 

where max message is s-bits: Each player simulates A on it’s 
part of input using Magniez et al. reduction and forwards 
memory state to next player.

iii. Therefore s is Ω(√N) as required.
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Lower Bounds Summary

• Thm: Any constant pass algorithm for recognizing PQ or 
DYCK2 requires a Ω(√N) space.

• Consequences:

i. Multiple forward passes have no significant advantage 
for recognizing the languages considered.

ii. One forward pass + one reverse pass is exponentially 
more powerful than two forward passes. 
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• Entropy and Mutual Information:

• Information cost method: Consider mutual information 
between random input for a communication problem and 
the communication transcript:

• Can restrict to partial transcript and subsets of input: 
useful for proving direct-sum arguments.

Information Complexity
[Chakrabarti, Shi, Wirth, Yao ’01]

H(X ) = −Σ Pr[X = x ] lg Pr[X = x ]

H(X |Y ) = −Σ Pr[X = x ,Y = y ] lg Pr[X = x |Y = y ]

I (X ;Y ) = H(X )− H(X |Y ) = H(Y )− H(Y |X )

I (X ;Y |Z ) = H(X |Z )− H(X |Y ,Z )

I (transcript; input) ≤ length of transcript
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Information Complexity of AIn
• Defn: Let P be a protocol for AIn using public random 

string R. Let T be the transcript and (X, K, C)~ξ. Define

icostAξ (P) = I (T : X | K ,C ,R)

icostBξ (P) = I (T : K ,C | X ,R)



Information Complexity of AIn
• Defn: Let P be a protocol for AIn using public random 

string R. Let T be the transcript and (X, K, C)~ξ. Define

• Thm: Let P be a randomized protocol for AIn with error 
1/3 under the uniform distribution μ. Then, 

• where μ0 is μ conditioned on XK=C.

icostAµ0
(P) = Ω(n) or icostBµ0

(P) = Ω(1)

icostAξ (P) = I (T : X | K ,C ,R)

icostBξ (P) = I (T : K ,C | X ,R)
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MULTI-AIm,n versus AIn

• Defn: Let Q be a protocol for MULTI-AIm,n using public 
random string R. Let T be transcript and (Xi,Ki,Ci)i∈[m]~ξ.

• where Tm is the set of messages sent by Bm.

icostξ(Q) = I(Tm : K1, C1, ... , Km, Cm | X1, ... , Xm, R)



MULTI-AIm,n versus AIn

• Defn: Let Q be a protocol for MULTI-AIm,n using public 
random string R. Let T be transcript and (Xi,Ki,Ci)i∈[m]~ξ.

• where Tm is the set of messages sent by Bm.

• Thm (Direct Sum): If there exists a p-round, s-bit, ε-error 
protocol Q for MULTI-AIm,n then there exists a p-round, 
ε-error randomized protocol P for AIn where 

i. Alice sends at most ps bits

ii.  m · icostBµ0
(P) ≤ icostµ⊗m

0
(Q)

icostξ(Q) = I(Tm : K1, C1, ... , Km, Cm | X1, ... , Xm, R)



Putting it all together...



Putting it all together...

• Thm: Any p-round, s-bit, 1/3-error protocol Q for MULTI-
AIm,n requires ps=Ω(min m,n). 



Putting it all together...

• Thm: Any p-round, s-bit, 1/3-error protocol Q for MULTI-
AIm,n requires ps=Ω(min m,n). 

• Proof: 

i. By direct sum theorem, there exists ε-error, p-pass 
protocol P for AIn such that:

p · s ≥ icostµ⊗m
0

(Q) ≥ m · icostBµ0
(P)

p · s ≥ icostAµ0
(P)



Putting it all together...

• Thm: Any p-round, s-bit, 1/3-error protocol Q for MULTI-
AIm,n requires ps=Ω(min m,n). 

• Proof: 

i. By direct sum theorem, there exists ε-error, p-pass 
protocol P for AIn such that:

ii. By information complexity of AIn 

p · s ≥ icostµ⊗m
0

(Q) ≥ m · icostBµ0
(P)

p · s ≥ icostAµ0
(P)

max(m · icostBµ0
(P), icostAµ0

(P)) = Ω(min(m, n))



Thanks!

Memory Checking: Sub-linear space 
recognition of various data-
structure transcript languages is 
possible without annotation!

Theory of Stream Computation: 
Forward + reverse pass can be 
much more useful than many 
forward passes!

Further Work: Annotations, stream 
language recognition, ...

Summary




