
Data Streams, Dyck Languages, and
Detecting Dubious Data Structures

! Amit Chakrabarti ! Dartmouth College
! Graham Cormode ! AT&T Research Labs
! Ranganath Kondapally ! Dartmouth College
! Andrew McGregor ! University of Massachusetts, Amherst

• At each step, user inserts a value into the memory or
asks that the smallest currently stored value is extracted

• At each step, user inserts a value into the memory or
asks that the smallest currently stored value is extracted

MEMORY

5

ins(5)

• At each step, user inserts a value into the memory or
asks that the smallest currently stored value is extracted

MEMORY

5 3

ins(5) ins(3)

• At each step, user inserts a value into the memory or
asks that the smallest currently stored value is extracted

MEMORY

5 3

ins(5) ins(3)

extract min!

• At each step, user inserts a value into the memory or
asks that the smallest currently stored value is extracted

MEMORY

53

ins(5) ins(3) ext(3)

• At each step, user inserts a value into the memory or
asks that the smallest currently stored value is extracted

MEMORY

53 6

ins(5) ins(3) ext(3) ins(6)

• At each step, user inserts a value into the memory or
asks that the smallest currently stored value is extracted

MEMORY

53 76

ins(5) ins(3) ext(3) ins(6) ins(7)

• At each step, user inserts a value into the memory or
asks that the smallest currently stored value is extracted

MEMORY

53 76

ins(5) ins(3) ext(3) ins(6) ins(7)

extract min!

• At each step, user inserts a value into the memory or
asks that the smallest currently stored value is extracted

MEMORY

53 76

ins(5) ins(3) ext(3) ins(6) ext(5)ins(7)

• At each step, user inserts a value into the memory or
asks that the smallest currently stored value is extracted

MEMORY

53 76

ins(5) ins(3) ext(3) ins(6) ext(5)ins(7)

extract min!

• At each step, user inserts a value into the memory or
asks that the smallest currently stored value is extracted

MEMORY

53 76

ins(5) ins(3) ext(3) ins(6) ext(5)ins(7) ext(6)

• At each step, user inserts a value into the memory or
asks that the smallest currently stored value is extracted

MEMORY

53 76

ins(5) ins(3) ext(3) ins(6) ext(5)ins(7) ext(6)

extract min!

• At each step, user inserts a value into the memory or
asks that the smallest currently stored value is extracted

MEMORY

5376

ins(5) ins(3) ext(3) ins(6) ext(5)ins(7) ext(6) ext(7)

• At each step, user inserts a value into the memory or
asks that the smallest currently stored value is extracted

? Challenge: Without remembering all the interaction, can
you verify the priority queue performed correctly?

MEMORY

5376

ins(5) ins(3) ext(3) ins(6) ext(5)ins(7) ext(6) ext(7)

• At each step, user inserts a value into the memory or
asks that the smallest currently stored value is extracted

? Challenge: Without remembering all the interaction, can
you verify the priority queue performed correctly?

• Motivation: Memory checking useful when using cheap
commodity hardware. 	

 [Blum, Evans, Gemmell, Kannan, Naor ’94]

MEMORY

5376

ins(5) ins(3) ext(3) ins(6) ext(5)ins(7) ext(6) ext(7)

PQ Language Problem

PQ Language Problem

• Let PQ be set of legitimate transcripts of a priority
queue that starts and ends empty.

PQ Language Problem

• Let PQ be set of legitimate transcripts of a priority
queue that starts and ends empty.

• ins(5), ins(3), ext(3), ins(7), ext(5), ext(7) ∈ PQ

PQ Language Problem

• Let PQ be set of legitimate transcripts of a priority
queue that starts and ends empty.

• ins(5), ins(3), ext(3), ins(7), ext(5), ext(7) ∈ PQ

• ins(5), ext(3), ins(5), ins(7), ext(7), ext(5) ∉ PQ

PQ Language Problem

• Let PQ be set of legitimate transcripts of a priority
queue that starts and ends empty.

• ins(5), ins(3), ext(3), ins(7), ext(5), ext(7) ∈ PQ

• ins(5), ext(3), ins(5), ins(7), ext(7), ext(5) ∉ PQ

• PQ Problem: Given streaming access to length N
transcript, determine if it’s in PQ using o(N) space.

PQ Language Problem

• Let PQ be set of legitimate transcripts of a priority
queue that starts and ends empty.

• ins(5), ins(3), ext(3), ins(7), ext(5), ext(7) ∈ PQ

• ins(5), ext(3), ins(5), ins(7), ext(7), ext(5) ∉ PQ

• PQ Problem: Given streaming access to length N
transcript, determine if it’s in PQ using o(N) space.

• Previous results: If each extract is annotated with insert
time, Õ(√N) space suffices. 	

 [Chu, Kannan, McGregor ’07]

• ins(5), ins(3), ext(3,2), ins(7), ext(5,1), ext(7,4) ∈ PQ+

PQ Language Problem

• Let PQ be set of legitimate transcripts of a priority
queue that starts and ends empty.

• ins(5), ins(3), ext(3), ins(7), ext(5), ext(7) ∈ PQ

• ins(5), ext(3), ins(5), ins(7), ext(7), ext(5) ∉ PQ

• PQ Problem: Given streaming access to length N
transcript, determine if it’s in PQ using o(N) space.

• Previous results: If each extract is annotated with insert
time, Õ(√N) space suffices. 	

 [Chu, Kannan, McGregor ’07]

• ins(5), ins(3), ext(3,2), ins(7), ext(5,1), ext(7,4) ∈ PQ+

? Big Question: Is annotation necessary for sub-linear space?

Dyck Language Problem
[Magniez, Mathieu, Nayak ’10]

Dyck Language Problem
[Magniez, Mathieu, Nayak ’10]

• DYCK2 is the set of strings of balanced brackets when
there are two different types of brackets:

• ((([])()[])) ∈ DYCK2 ([([]])[])) ∉ DYCK2

Dyck Language Problem
[Magniez, Mathieu, Nayak ’10]

• DYCK2 is the set of strings of balanced brackets when
there are two different types of brackets:

• ((([])()[])) ∈ DYCK2 ([([]])[])) ∉ DYCK2

• DYCK Problem: Given streaming access to length N
string, determine if it’s in DYCK2 using o(N) space.

Dyck Language Problem
[Magniez, Mathieu, Nayak ’10]

• DYCK2 is the set of strings of balanced brackets when
there are two different types of brackets:

• ((([])()[])) ∈ DYCK2 ([([]])[])) ∉ DYCK2

• DYCK Problem: Given streaming access to length N
string, determine if it’s in DYCK2 using o(N) space.

• Previous results: Given one pass, Õ(√N) space suffices. If
you’re allowed one forward pass followed by a reverse
pass, Õ(log N) space suffices. 	

Dyck Language Problem
[Magniez, Mathieu, Nayak ’10]

• DYCK2 is the set of strings of balanced brackets when
there are two different types of brackets:

• ((([])()[])) ∈ DYCK2 ([([]])[])) ∉ DYCK2

• DYCK Problem: Given streaming access to length N
string, determine if it’s in DYCK2 using o(N) space.

• Previous results: Given one pass, Õ(√N) space suffices. If
you’re allowed one forward pass followed by a reverse
pass, Õ(log N) space suffices. 	

? Big Question: Does Õ(log N) space suffice if we’re only
allowed multiple forward passes?

Outline

Outline
I. Priority Queues and Memory Checking Algorithms

• Õ(√N) space algorithm for PQ with no annotations!

• Extensions to stacks, double-ended queues, etc.

Outline
I. Priority Queues and Memory Checking Algorithms

• Õ(√N) space algorithm for PQ with no annotations!

• Extensions to stacks, double-ended queues, etc.

II. Multipass Stream Lower Bounds

• Any constant pass algorithm for DYCK2 or PQ that
only uses forward passes requires Ω(√N) space

Outline
I. Priority Queues and Memory Checking Algorithms

• Õ(√N) space algorithm for PQ with no annotations!

• Extensions to stacks, double-ended queues, etc.

II. Multipass Stream Lower Bounds

• Any constant pass algorithm for DYCK2 or PQ that
only uses forward passes requires Ω(√N) space

III. Information Complexity Trade-offs for Augmented Index

• Even multi-round protocol leak information.

I. Memory
Checking

II. Lower
Bounds

III. Augmented
Indexing

I. Memory
Checking

II. Lower
Bounds

III. Augmented
Indexing

I. Memory
Checking
I. Memory
Checking

PQ Algorithm

PQ Algorithm

• Thm: There exists a O(√N log N) space algorithm with
O(log N) amortized update time for recognizing PQ.

PQ Algorithm

• Thm: There exists a O(√N log N) space algorithm with
O(log N) amortized update time for recognizing PQ.

• Prelim: Easy to check that set of values inserted equals
set of values extracted using fingerprinting:

fS(x) =
�

a∈S

(x − a) mod p

PQ Algorithm

• Thm: There exists a O(√N log N) space algorithm with
O(log N) amortized update time for recognizing PQ.

• Prelim: Easy to check that set of values inserted equals
set of values extracted using fingerprinting:

! For this talk: Assume inserted elements are distinct and
that inserts come before their corresponding extract.
I.e., we’re trying to identify the following bad pattern:

• ins(u) ext(v) ... ext(u) for some u < v

fS(x) =
�

a∈S

(x − a) mod p

Epochs and Local Bad Patterns...

Epochs and Local Bad Patterns...
In

cr
ea

si
ng

 V
al

ue
 →

Increasing Time →

• Split length N sequence into √N epochs of length √N

Epochs and Local Bad Patterns...
In

cr
ea

si
ng

 V
al

ue
 →

Increasing Time →

• Split length N sequence into √N epochs of length √N

Epoch-1 Epoch-2 Epoch-3 Epoch-4 Epoch-5 Epoch-6

Epochs and Local Bad Patterns...
In

cr
ea

si
ng

 V
al

ue
 →

Increasing Time →

• Split length N sequence into √N epochs of length √N

• Defn: Bad pattern ins(u) ... ext(v) ... ext(u) is local if ins(u)
and ext(v) occur in same epoch and long-range otherwise.

Epoch-1 Epoch-2 Epoch-3 Epoch-4 Epoch-5 Epoch-6

Epochs and Local Bad Patterns...
In

cr
ea

si
ng

 V
al

ue
 →

Increasing Time →

• Split length N sequence into √N epochs of length √N

• Defn: Bad pattern ins(u) ... ext(v) ... ext(u) is local if ins(u)
and ext(v) occur in same epoch and long-range otherwise.

• Using O(√N) space, we can buffer each epoch and check
for local bad patterns.

Epoch-1 Epoch-2 Epoch-3 Epoch-4 Epoch-5 Epoch-6

Epochs and Local Bad Patterns...
In

cr
ea

si
ng

 V
al

ue
 →

Increasing Time →

Catching Long-Range Bad Patterns... 1/2

• Defn: Let ft(i) be maximum value extracted between end of
i-th epoch and present time t.

f(1)

f(2)

Catching Long-Range Bad Patterns... 1/2

• Defn: Let ft(i) be maximum value extracted between end of
i-th epoch and present time t.

f(1)

f(2)

Catching Long-Range Bad Patterns... 1/2

• Defn: Let ft(i) be maximum value extracted between end of
i-th epoch and present time t.

f(1)

f(2)

f(3)

Catching Long-Range Bad Patterns... 1/2

• Defn: Let ft(i) be maximum value extracted between end of
i-th epoch and present time t.

f(1)

f(2)

f(3)

Catching Long-Range Bad Patterns... 1/2

f(3)f(2)

• Defn: Let ft(i) be maximum value extracted between end of
i-th epoch and present time t.

f(1)

Catching Long-Range Bad Patterns... 1/2

f(3)f(2)

• Defn: Let ft(i) be maximum value extracted between end of
i-th epoch and present time t.

• Defn: Each insert or extract is adopted by k-th epoch where
k = min{j : f(j)≤u} where we assume f(current epoch)=0.

f(1)

Catching Long-Range Bad Patterns... 1/2

Catching Long-Range Bad Patterns... 2/2

• Lemma: If ins(u) ... ext(v) ... ext(u) is a long-range bad pattern
then ins(u) and ext(u) are adopted by different epochs.

Catching Long-Range Bad Patterns... 2/2

• Lemma: If ins(u) ... ext(v) ... ext(u) is a long-range bad pattern
then ins(u) and ext(u) are adopted by different epochs.

• Proof:
i. Let ins(u) be adopted by k-th epoch.

Catching Long-Range Bad Patterns... 2/2

• Lemma: If ins(u) ... ext(v) ... ext(u) is a long-range bad pattern
then ins(u) and ext(u) are adopted by different epochs.

• Proof:
i. Let ins(u) be adopted by k-th epoch.
ii. After v is extracted f(k)≥v>u and hence ext(u) will be

adopted by k’-th epoch for some k’>k.

Catching Long-Range Bad Patterns... 2/2

• Lemma: If ins(u) ... ext(v) ... ext(u) is a long-range bad pattern
then ins(u) and ext(u) are adopted by different epochs.

• Proof:
i. Let ins(u) be adopted by k-th epoch.
ii. After v is extracted f(k)≥v>u and hence ext(u) will be

adopted by k’-th epoch for some k’>k.

• Lemma: If there are no bad patterns, every ins(u) and ext(u) pair
get adopted by the same epoch.

Catching Long-Range Bad Patterns... 2/2

• Lemma: If ins(u) ... ext(v) ... ext(u) is a long-range bad pattern
then ins(u) and ext(u) are adopted by different epochs.

• Proof:
i. Let ins(u) be adopted by k-th epoch.
ii. After v is extracted f(k)≥v>u and hence ext(u) will be

adopted by k’-th epoch for some k’>k.

• Lemma: If there are no bad patterns, every ins(u) and ext(u) pair
get adopted by the same epoch.

• Algorithm: Using fingerprinting to check:

• {(u,k) : ins(u) adopted by k} = {(u,k) : ext(u) adopted by k}.

Catching Long-Range Bad Patterns... 2/2

Finishing Up

Finishing Up

• Some steps to removing assumptions:

i. Within buffered epoch, rearrange terms such that all
inserts follow a series of increasing extracts: ensures
all extracts are adopted by previous epochs.

ii. Keep track of number of times epoch k adopts ins(u)
while f(k)<u and while f(k)=u separately and whether
epoch k has ever adopted more ext(u)’s than ins(u)’s.

Finishing Up

• Some steps to removing assumptions:

i. Within buffered epoch, rearrange terms such that all
inserts follow a series of increasing extracts: ensures
all extracts are adopted by previous epochs.

ii. Keep track of number of times epoch k adopts ins(u)
while f(k)<u and while f(k)=u separately and whether
epoch k has ever adopted more ext(u)’s than ins(u)’s.

• Thm: There exists a O(√N log N) space algorithm with
O(log N) amortized update time for recognizing PQ.

Finishing Up

• Some steps to removing assumptions:

i. Within buffered epoch, rearrange terms such that all
inserts follow a series of increasing extracts: ensures
all extracts are adopted by previous epochs.

ii. Keep track of number of times epoch k adopts ins(u)
while f(k)<u and while f(k)=u separately and whether
epoch k has ever adopted more ext(u)’s than ins(u)’s.

• Thm: There exists a O(√N log N) space algorithm with
O(log N) amortized update time for recognizing PQ.

• Extensions: Sub-linear space streaming recognition of
other data structures like stacks, double-ended queues...

I. Memory
Checking

II. Lower
Bounds

III. Augmented
Indexing

I. Memory
Checking

II. Lower
Bounds

III. Augmented
Indexing

II. Lower
Bounds
II. Lower
Bounds

Augmented Index

Augmented Index

• Many space lower bounds in data stream model are
based on reductions from communication complexity.

Augmented Index

• Many space lower bounds in data stream model are
based on reductions from communication complexity.

• Augmented Index: Alice has x∈{0,1}n and Bob has a prefix
y∈{0,1}k-1 of x and c∈{0,1}. Bob wants to check if c=xk.

x∈{0,1}n y∈{0,1}k-1, k∈[n], c∈{0,1},

Augmented Index

• Many space lower bounds in data stream model are
based on reductions from communication complexity.

• Augmented Index: Alice has x∈{0,1}n and Bob has a prefix
y∈{0,1}k-1 of x and c∈{0,1}. Bob wants to check if c=xk.

• Thm: Any 1/3-error, one-way protocol from Alice to Bob
for AIn requires Ω(n) bits sent. [Miltersen et al. JCSS ’98]

x∈{0,1}n y∈{0,1}k-1, k∈[n], c∈{0,1},

Augmented Index

• Many space lower bounds in data stream model are
based on reductions from communication complexity.

• Augmented Index: Alice has x∈{0,1}n and Bob has a prefix
y∈{0,1}k-1 of x and c∈{0,1}. Bob wants to check if c=xk.

• Thm: Any 1/3-error, one-way protocol from Alice to Bob
for AIn requires Ω(n) bits sent. [Miltersen et al. JCSS ’98]

• Our main result concerns multi-way protocols but we’ll
cover the relevance to DYCK2 and PQ first...

x∈{0,1}n y∈{0,1}k-1, k∈[n], c∈{0,1},

Multi-player Augmented Index

Multi-player Augmented Index

• We now have 2m players A1 , ... , Am , B1 , ... , Bm where

each Ai and Bi have an instance (xi,ki,ci) of AIn

x1 x2 x3y1, k1, c1 y2, k2, c2 y3, k3, c3

Multi-player Augmented Index

• We now have 2m players A1 , ... , Am , B1 , ... , Bm where

each Ai and Bi have an instance (xi,ki,ci) of AIn

• Want to determine if any of the AI instances are false
using private messages communicated in the order

• A1→B1→ A2→B2→...→Am→Bm→Am→Am-1→...→A1

x1x2x3x1 x2 x3y1, k1, c1 y2, k2, c2 y3, k3, c3

Multi-player Augmented Index

• We now have 2m players A1 , ... , Am , B1 , ... , Bm where

each Ai and Bi have an instance (xi,ki,ci) of AIn

• Want to determine if any of the AI instances are false
using private messages communicated in the order

• A1→B1→ A2→B2→...→Am→Bm→Am→Am-1→...→A1

• Thm: Any 1/3-error, p-round protocol for MULTI-AIm,n
needs ps=Ω(min m,n) where s is max message length.

x1x2x3x1 x2 x3y1, k1, c1 y2, k2, c2 y3, k3, c3

Reduction to Dyck

Reduction to Dyck

 (
 [
(

([(

Reduction to Dyck

 (
 [
(

([(

) (
][

)][(

Reduction to Dyck

 (
 [
(

([(

) (
][

)][(

 (
 [
[

[[(

Reduction to Dyck

 (
 [
(

([(

) (
][

)][(

 (
 [
[

[[(

) (
] [
)(

)])([(

Reduction to Dyck

 (
 [
(

([(

) (
][

)][(

 (
 [
[

[[(

) (
] [
)(

)])([(

 [
 (
(

(([

Reduction to Dyck

 (
 [
(

([(

) (
][

)][(

 (
 [
[

[[(

) (
] [
)(

)])([(

 [
 (
(

(([

][

][

Reduction to Dyck

 (
 [
(

([(

) (
][

)][(

 (
 [
[

[[(

) (
] [
)(

)])([(

 [
 (
(

(([

][

][

]
)
)

]))

Reduction to Dyck

 (
 [
(

([(

) (
][

)][(

 (
 [
[

[[(

) (
] [
)(

)])([(

 [
 (
(

(([

][

][

]
)
)

]))

)
]
]

)]]

Reduction to Dyck

 (
 [
(

([(

) (
][

)][(

 (
 [
[

[[(

) (
] [
)(

)])([(

 [
 (
(

(([

][

][

]
)
)

]))

)
]
]

)]]

)
]
)

)])

Reduction to Dyck

 (
 [
(

([(

) (
][

)][(

 (
 [
[

[[(

) (
] [
)(

)])([(

 [
 (
(

(([

][

][

]
)
)

]))

)
]
]

)]]

)
]
)

)])

“Ascension Problem”
[Magniez, Mathieu, Nayak ’10]

Reduction to Dyck

Reduction to Dyck

• Thm: A constant-pass, algorithm for DYCK2 that fail with
probability at most 1/3 requires Ω(√N) space.

Reduction to Dyck

• Thm: A constant-pass, algorithm for DYCK2 that fail with
probability at most 1/3 requires Ω(√N) space.

• Proof:

i. Let A be a p-pass stream algorithm using s space.

Reduction to Dyck

• Thm: A constant-pass, algorithm for DYCK2 that fail with
probability at most 1/3 requires Ω(√N) space.

• Proof:

i. Let A be a p-pass stream algorithm using s space.
ii. Use A to construct a p-round protocol for MULTI-AI√N,√N

where max message is s-bits: Each player simulates A on it’s
part of input using Magniez et al. reduction and forwards
memory state to next player.

Reduction to Dyck

• Thm: A constant-pass, algorithm for DYCK2 that fail with
probability at most 1/3 requires Ω(√N) space.

• Proof:

i. Let A be a p-pass stream algorithm using s space.
ii. Use A to construct a p-round protocol for MULTI-AI√N,√N

where max message is s-bits: Each player simulates A on it’s
part of input using Magniez et al. reduction and forwards
memory state to next player.

iii. Therefore s is Ω(√N) as required.

Lower Bounds Summary

Lower Bounds Summary

• Thm: Any constant pass algorithm for recognizing PQ or
DYCK2 requires a Ω(√N) space.

Lower Bounds Summary

• Thm: Any constant pass algorithm for recognizing PQ or
DYCK2 requires a Ω(√N) space.

• Consequences:

i. Multiple forward passes have no significant advantage
for recognizing the languages considered.

ii. One forward pass + one reverse pass is exponentially
more powerful than two forward passes.

I. Memory
Checking

II. Lower
Bounds

III. Augmented
Indexing

I. Memory
Checking

II. Lower
Bounds

III. Augmented
Indexing

III. Augmented
Indexing

III. Augmented
Indexing

Information Complexity
[Chakrabarti, Shi, Wirth, Yao ’01]

• Entropy and Mutual Information:

Information Complexity
[Chakrabarti, Shi, Wirth, Yao ’01]

H(X) = −Σ Pr[X = x] lg Pr[X = x]

H(X |Y) = −Σ Pr[X = x ,Y = y] lg Pr[X = x |Y = y]

I (X ;Y) = H(X)− H(X |Y) = H(Y)− H(Y |X)

I (X ;Y |Z) = H(X |Z)− H(X |Y ,Z)

• Entropy and Mutual Information:

Information Complexity
[Chakrabarti, Shi, Wirth, Yao ’01]

H(X) = −Σ Pr[X = x] lg Pr[X = x]

H(X |Y) = −Σ Pr[X = x ,Y = y] lg Pr[X = x |Y = y]

I (X ;Y) = H(X)− H(X |Y) = H(Y)− H(Y |X)

I (X ;Y |Z) = H(X |Z)− H(X |Y ,Z)

• Entropy and Mutual Information:

• Information cost method: Consider mutual information
between random input for a communication problem and
the communication transcript:

Information Complexity
[Chakrabarti, Shi, Wirth, Yao ’01]

H(X) = −Σ Pr[X = x] lg Pr[X = x]

H(X |Y) = −Σ Pr[X = x ,Y = y] lg Pr[X = x |Y = y]

I (X ;Y) = H(X)− H(X |Y) = H(Y)− H(Y |X)

I (X ;Y |Z) = H(X |Z)− H(X |Y ,Z)

I (transcript; input) ≤ length of transcript

• Entropy and Mutual Information:

• Information cost method: Consider mutual information
between random input for a communication problem and
the communication transcript:

Information Complexity
[Chakrabarti, Shi, Wirth, Yao ’01]

H(X) = −Σ Pr[X = x] lg Pr[X = x]

H(X |Y) = −Σ Pr[X = x ,Y = y] lg Pr[X = x |Y = y]

I (X ;Y) = H(X)− H(X |Y) = H(Y)− H(Y |X)

I (X ;Y |Z) = H(X |Z)− H(X |Y ,Z)

I (transcript; input) ≤ length of transcript

• Entropy and Mutual Information:

• Information cost method: Consider mutual information
between random input for a communication problem and
the communication transcript:

• Can restrict to partial transcript and subsets of input:
useful for proving direct-sum arguments.

Information Complexity
[Chakrabarti, Shi, Wirth, Yao ’01]

H(X) = −Σ Pr[X = x] lg Pr[X = x]

H(X |Y) = −Σ Pr[X = x ,Y = y] lg Pr[X = x |Y = y]

I (X ;Y) = H(X)− H(X |Y) = H(Y)− H(Y |X)

I (X ;Y |Z) = H(X |Z)− H(X |Y ,Z)

I (transcript; input) ≤ length of transcript

Information Complexity of AIn

Information Complexity of AIn
• Defn: Let P be a protocol for AIn using public random

string R. Let T be the transcript and (X, K, C)~ξ. Define

icostAξ (P) = I (T : X | K ,C ,R)

icostBξ (P) = I (T : K ,C | X ,R)

Information Complexity of AIn
• Defn: Let P be a protocol for AIn using public random

string R. Let T be the transcript and (X, K, C)~ξ. Define

• Thm: Let P be a randomized protocol for AIn with error
1/3 under the uniform distribution μ. Then,

• where μ0 is μ conditioned on XK=C.

icostAµ0
(P) = Ω(n) or icostBµ0

(P) = Ω(1)

icostAξ (P) = I (T : X | K ,C ,R)

icostBξ (P) = I (T : K ,C | X ,R)

MULTI-AIm,n versus AIn

MULTI-AIm,n versus AIn

• Defn: Let Q be a protocol for MULTI-AIm,n using public
random string R. Let T be transcript and (Xi,Ki,Ci)i∈[m]~ξ.

• where Tm is the set of messages sent by Bm.

icostξ(Q) = I(Tm : K1, C1, ... , Km, Cm | X1, ... , Xm, R)

MULTI-AIm,n versus AIn

• Defn: Let Q be a protocol for MULTI-AIm,n using public
random string R. Let T be transcript and (Xi,Ki,Ci)i∈[m]~ξ.

• where Tm is the set of messages sent by Bm.

• Thm (Direct Sum): If there exists a p-round, s-bit, ε-error
protocol Q for MULTI-AIm,n then there exists a p-round,
ε-error randomized protocol P for AIn where

i. Alice sends at most ps bits

ii. m · icostBµ0
(P) ≤ icostµ⊗m

0
(Q)

icostξ(Q) = I(Tm : K1, C1, ... , Km, Cm | X1, ... , Xm, R)

Putting it all together...

Putting it all together...

• Thm: Any p-round, s-bit, 1/3-error protocol Q for MULTI-
AIm,n requires ps=Ω(min m,n).

Putting it all together...

• Thm: Any p-round, s-bit, 1/3-error protocol Q for MULTI-
AIm,n requires ps=Ω(min m,n).

• Proof:

i. By direct sum theorem, there exists ε-error, p-pass
protocol P for AIn such that:

p · s ≥ icostµ⊗m
0

(Q) ≥ m · icostBµ0
(P)

p · s ≥ icostAµ0
(P)

Putting it all together...

• Thm: Any p-round, s-bit, 1/3-error protocol Q for MULTI-
AIm,n requires ps=Ω(min m,n).

• Proof:

i. By direct sum theorem, there exists ε-error, p-pass
protocol P for AIn such that:

ii. By information complexity of AIn

p · s ≥ icostµ⊗m
0

(Q) ≥ m · icostBµ0
(P)

p · s ≥ icostAµ0
(P)

max(m · icostBµ0
(P), icostAµ0

(P)) = Ω(min(m, n))

Thanks!

Memory Checking: Sub-linear space
recognition of various data-
structure transcript languages is
possible without annotation!

Theory of Stream Computation:
Forward + reverse pass can be
much more useful than many
forward passes!

Further Work: Annotations, stream
language recognition, ...

Summary

