Crash Course in Data Stream Theory
Part 2: Graphs, Geometry, and Future Directions

Andrew McGregor
University of Massachusetts Amherst
Outline

Basic Definitions

Graph Spanners and Sparsifiers

Clustering

Counting Triangles

Research Directions: To Infinity and Beyond...
Outline

Basic Definitions

Graph Spanners and Sparsifiers

Clustering

Counting Triangles

Research Directions: To Infinity and Beyond...
Graph Streams and Geometric Streams

- **Graph Streams**: Stream of edges $E = \{e_1, e_2, \ldots, e_m\}$ describe a graph G on n nodes. Estimate properties of G.
Graph Streams and Geometric Streams

- **Graph Streams:** Stream of edges $E = \{e_1, e_2, \ldots, e_m\}$ describe a graph G on n nodes. Estimate properties of G.
- **Geometric Streams:** Stream of points $P = \{p_1, p_2, \ldots, p_m\}$ from some metric space (\mathcal{X}, d), e.g., \mathbb{R}^t. Estimate properties of P.
Outline

Basic Definitions

Graph Spanners and Sparsifiers

Clustering

Counting Triangles

Research Directions: To Infinity and Beyond…
Warm-Up: Connectivity

▶ **Thm:** Can determine if a graph is connected in $O(n \log n)$ space.

1. Maintain label $\ell(u)$ for each node u where labels are initially distinct
2. On seeing edge (u, v) with $\ell(u) \neq \ell(v)$, $\ell(w) \leftarrow \ell(u)$ for all w with $\ell(w) = \ell(v)$
3. The graph is connected iff every node ends up with the same label
4. If we collect (u, v) when $\ell(u) \neq \ell(v)$ we maintain a spanning forest

▶ Can do something similar to determine if graph is bipartite

▶ Most graph problems require space roughly proportional to the number of nodes... called the "semi-streaming space restriction"
Warm-Up: Connectivity

- **Thm:** Can determine if a graph is connected in $O(n \log n)$ space.
- **Algorithm:**
 1. Maintain label $\ell(u)$ for each node u where labels are initially distinct

Can do something similar to determine if graph is bipartite

Most graph problems require space roughly proportional to the number of nodes. . . called the "semi-streaming space restriction"
Warm-Up: Connectivity

- **Thm:** Can determine if a graph is connected in $O(n \log n)$ space.
- **Algorithm:**
 1. Maintain label $\ell(u)$ for each node u where labels are initially distinct
 2. On seeing edge (u, v) with $\ell(u) \neq \ell(v)$,

 $$\ell(w) \leftarrow \ell(u) \quad \text{for all } w \text{ with } \ell(w) = \ell(v)$$
Warm-Up: Connectivity

- **Thm:** Can determine if a graph is connected in $O(n \log n)$ space.
- **Algorithm:**
 1. Maintain label $\ell(u)$ for each node u where labels are initially distinct
 2. On seeing edge (u, v) with $\ell(u) \neq \ell(v)$,
 \[
 \ell(w) \leftarrow \ell(u) \quad \text{for all } w \text{ with } \ell(w) = \ell(v)
 \]
 3. The graph is connected iff every node ends up with the same label

- Can do something similar to determine if graph is bipartite

- Most graph problems require space roughly proportional to the number of nodes... called the "semi-streaming space restriction"
Warm-Up: Connectivity

- **Thm:** Can determine if a graph is connected in $O(n \log n)$ space.

- **Algorithm:**
 1. Maintain label $\ell(u)$ for each node u where labels are initially distinct.
 2. On seeing edge (u, v) with $\ell(u) \neq \ell(v)$,

 $$\ell(w) \leftarrow \ell(u) \quad \text{for all } w \text{ with } \ell(w) = \ell(v)$$
 3. The graph is connected iff every node ends up with the same label.
 4. If we collect (u, v) when $\ell(u) \neq \ell(v)$ we maintain a spanning forest.
Warm-Up: Connectivity

- **Thm**: Can determine if a graph is connected in $O(n \log n)$ space.
- **Algorithm**:
 1. Maintain label $\ell(u)$ for each node u where labels are initially distinct
 2. On seeing edge (u, v) with $\ell(u) \neq \ell(v)$,
 \[
 \ell(w) \leftarrow \ell(u) \quad \text{for all } w \text{ with } \ell(w) = \ell(v)
 \]
 3. The graph is connected iff every node ends up with the same label
 4. If we collect (u, v) when $\ell(u) \neq \ell(v)$ we maintain a spanning forest

- Can do something similar to determine if graph is bipartite
Warm-Up: Connectivity

- **Thm:** Can determine if a graph is connected in $O(n \log n)$ space.
- **Algorithm:**
 1. Maintain label $\ell(u)$ for each node u where labels are initially distinct
 2. On seeing edge (u, v) with $\ell(u) \neq \ell(v)$,

 \[\ell(w) \leftarrow \ell(u) \quad \text{for all } w \text{ with } \ell(w) = \ell(v) \]
 3. The graph is connected iff every node ends up with the same label
 4. If we collect (u, v) when $\ell(u) \neq \ell(v)$ we maintain a spanning forest
- Can do something similar to determine if graph is bipartite
- Most graph problems require space roughly proportional to the number of nodes...called the "semi-streaming space restriction"
Sparsify the graph as it arrives

- When an edge arrives, only store it if it satisfies some condition
Sparsify the graph as it arrives

- When an edge arrives, only store it if it satisfies some condition
- **Graph Sparsifiers:** Condition maintains $\tilde{O}(n\epsilon^{-2})$ edges but the resulting graph preserves all cuts up to a $1 + \epsilon$ factor
Sparsify the graph as it arrives

- When an edge arrives, only store it if it satisfies some condition
- **Graph Sparsifiers**: Condition maintains $\tilde{O}(n\epsilon^{-2})$ edges but the resulting graph preserves all cuts up to a $1 + \epsilon$ factor
- **Matchings**: Condition maintains $\tilde{O}(n)$ edges preserves the maximum weight matching up to a constant factor
Sparsify the graph as it arrives

- When an edge arrives, only store it if it satisfies some condition
- **Graph Sparsifiers:** Condition maintains $\tilde{O}(n\epsilon^{-2})$ edges but the resulting graph preserves all cuts up to a $1 + \epsilon$ factor
- **Matchings:** Condition maintains $\tilde{O}(n)$ edges preserves the maximum weight matching up to a constant factor
- **Graph Spanners:** Condition maintains $\tilde{O}(n^{1+1/t})$ edges but the resulting graph preserves all graph distances up to a factor $2t - 1$
Spanners and Distance Estimation

- The edges define a shortest path graph metric $d_G : V \times V \rightarrow \mathbb{N}$.

Thm: Can construct a $2^t - 1$ spanner in $\tilde{O}(n^{1+1/t})$ space.

Algorithm:
1. Let E' be initially empty
2. On seeing (u, v), $E' \leftarrow E' \cup (u, v)$ if $d_H(u, v) > 2^t - 1$

Analysis:
1. Every distance has grown by at most a factor $2^t - 1$
2. $|E'| = \tilde{O}(n^{1+1/t})$ because it's a graph with no cycles of length $\leq 2t$

Above algorithm is rather slow but faster algorithms exist.
Spanners and Distance Estimation

- The edges define a shortest path graph metric $d_G : V \times V \rightarrow \mathbb{N}$.
- An α-spanner of a graph $G = (V, E)$ is a subgraph $H = (V, E')$ such that for all u, v,

\[d_G(u, v) \leq d_H(u, v) \leq \alpha d_G(u, v) \]
Spanners and Distance Estimation

- The edges define a shortest path graph metric \(d_G : V \times V \rightarrow \mathbb{N} \).
- An \(\alpha \)-spanner of a graph \(G = (V, E) \) is a subgraph \(H = (V, E') \) such that for all \(u, v \),
 \[
 d_G(u, v) \leq d_H(u, v) \leq \alpha d_G(u, v)
 \]
- **Thm:** Can construct a \(2t - 1 \) spanner in \(\tilde{O}(n^{1+1/t}) \) space.
Spanners and Distance Estimation

- The edges define a shortest path graph metric $d_G : V \times V \to \mathbb{N}$.
- An α-spanner of a graph $G = (V, E)$ is a subgraph $H = (V, E')$ such that for all u, v,
 \[
 d_G(u, v) \leq d_H(u, v) \leq \alpha d_G(u, v)
 \]
- **Thm:** Can construct a $2t - 1$ spanner in $\tilde{O}(n^{1+1/t})$ space.
- **Algorithm:**
 1. Let E' be initially empty
Spanners and Distance Estimation

- The edges define a shortest path graph metric $d_G : V \times V \to \mathbb{N}$.
- An α-spanner of a graph $G = (V, E)$ is a subgraph $H = (V, E')$ such that for all u, v,

$$d_G(u, v) \leq d_H(u, v) \leq \alpha d_G(u, v)$$

- **Thm:** Can construct a $2t - 1$ spanner in $\tilde{O}(n^{1+1/t})$ space.
- **Algorithm:**
 1. Let E' be initially empty
 2. On seeing (u, v), $E' \leftarrow E' \cup (u, v)$ if $d_H(u, v) > 2t - 1$
Spanners and Distance Estimation

- The edges define a shortest path graph metric $d_G : V \times V \to \mathbb{N}$.
- An α-spanner of a graph $G = (V, E)$ is a subgraph $H = (V, E')$ such that for all u, v,

 $$d_G(u, v) \leq d_H(u, v) \leq \alpha d_G(u, v)$$

- **Thm:** Can construct a $2t - 1$ spanner in $\tilde{O}(n^{1+1/t})$ space.

 Algorithm:
 1. Let E' be initially empty
 2. On seeing (u, v), $E' \leftarrow E' \cup (u, v)$ if $d_H(u, v) > 2t - 1$

- **Analysis:**
 1. Every distance has grown by at most a factor $2t - 1$
The edges define a shortest path graph metric $d_G : V \times V \to \mathbb{N}$.

An α-spanner of a graph $G = (V, E)$ is a subgraph $H = (V, E')$ such that for all u, v,

$$d_G(u, v) \leq d_H(u, v) \leq \alpha d_G(u, v)$$

Thm: Can construct a $2t - 1$ spanner in $\tilde{O}(n^{1+1/t})$ space.

Algorithm:
1. Let E' be initially empty
2. On seeing (u, v), $E' \leftarrow E' \cup (u, v)$ if $d_H(u, v) > 2t - 1$

Analysis:
1. Every distance has grown by at most a factor $2t - 1$
2. $|E'| = \tilde{O}(n^{1+1/t})$ because it’s a graph with no cycles of length $\leq 2t$
Spanners and Distance Estimation

- The edges define a shortest path graph metric $d_G : V \times V \rightarrow \mathbb{N}$.
- An α-spanner of a graph $G = (V, E)$ is a subgraph $H = (V, E')$ such that for all u, v,
 $$d_G(u, v) \leq d_H(u, v) \leq \alpha d_G(u, v)$$

Thm: Can construct a $2t - 1$ spanner in $\tilde{O}(n^{1+1/t})$ space.

Algorithm:
1. Let E' be initially empty
2. On seeing (u, v), $E' \leftarrow E' \cup (u, v)$ if $d_H(u, v) > 2t - 1$

Analysis:
1. Every distance has grown by at most a factor $2t - 1$
2. $|E'| = \tilde{O}(n^{1+1/t})$ because it’s a graph with no cycles of length $\leq 2t$

Above algorithm is rather slow but faster algorithms exist
Outline

Basic Definitions

Graph Spanners and Sparsifiers

Clustering

Counting Triangles

Research Directions: To Infinity and Beyond…
k-center

- Given a stream of distinct points $X = \{p_1, \ldots, p_n\}$ from a metric space (\mathcal{X}, d), find the set of k points $Y \subset X$ that minimizes:

$$\max_i \min_{y \in Y} d(p_i, y)$$
Given a stream of distinct points $X = \{p_1, \ldots, p_n\}$ from a metric space (X, d), find the set of k points $Y \subset X$ that minimizes:

$$\max_{i} \min_{y \in Y} d(p_i, y)$$

Can find 2 approx. in $\tilde{O}(k)$ space if you know OPT ahead of time.
Given a stream of distinct points \(X = \{ p_1, \ldots, p_n \} \) from a metric space \((X, d) \), find the set of \(k \) points \(Y \subset X \) that minimizes:

\[
\max_i \min_{y \in Y} d(p_i, y)
\]

- Can find 2 approx. in \(\tilde{O}(k) \) space if you know \(\text{OPT} \) ahead of time.
- Can find \((2 + \epsilon)\) approx. in \(\tilde{O}(k\epsilon^{-1} \log(a/b)) \) space if you know

\[
a \leq \text{OPT} \leq b
\]
k-center

- Given a stream of distinct points $X = \{p_1, \ldots, p_n\}$ from a metric space (X, d), find the set of k points $Y \subset X$ that minimizes:

 $$\max_i \min_{y \in Y} d(p_i, y)$$

- Can find 2 approx. in $\tilde{O}(k)$ space if you know OPT ahead of time.
- Can find $(2 + \epsilon)$ approx. in $\tilde{O}(k\epsilon^{-1} \log(a/b))$ space if you know

 $$a \leq \text{OPT} \leq b$$

- **Thm:** $(2 + \epsilon)$ approx. in $\tilde{O}(k\epsilon^{-1} \log \epsilon^{-1})$ space.
Consider first \(k + 1 \) points: this gives a lower bound \(a \) on \(\text{OPT} \).
Consider first $k + 1$ points: this gives a lower bound a on OPT.

- Instantiate basic algorithm with guesses

$$\ell_1 = a, \quad \ell_2 = (1 + \epsilon)a, \quad \ell_3 = (1 + \epsilon)^2a, \ldots \quad \ell_{1+t} = O(\epsilon^{-1})a$$
Consider first \(k + 1 \) points: this gives a lower bound \(a \) on \(\text{OPT} \).

Instantiate basic algorithm with guesses

\[
\ell_1 = a, \quad \ell_2 = (1 + \epsilon)a, \quad \ell_3 = (1 + \epsilon)^2 a, \ldots \quad \ell_{1+t} = O(\epsilon^{-1})a
\]

Say instantiation goes bad if it tries to open \((k+1)\)-th center.
Consider first \(k + 1 \) points: this gives a lower bound \(a \) on \(\text{OPT} \).

Instantiate basic algorithm with guesses

\[
\ell_1 = a, \quad \ell_2 = (1 + \epsilon) a, \quad \ell_3 = (1 + \epsilon)^2 a, \ldots \quad \ell_{1+t} = O(\epsilon^{-1}) a
\]

Say instantiation goes bad if it tries to open \((k + 1)\)-th center

If instantiation for guess \(\ell \) goes bad when processing \((j + 1)\)-th point
Consider first $k + 1$ points: this gives a lower bound a on OPT.

Instantiate basic algorithm with guesses

$$
\ell_1 = a, \quad \ell_2 = (1 + \epsilon)a, \quad \ell_3 = (1 + \epsilon)^2 a, \ldots \quad \ell_{1+t} = O(\epsilon^{-1})a
$$

Say instantiation goes bad if it tries to open $(k + 1)$-th center

If instantiation for guess ℓ goes bad when processing $(j + 1)$-th point

- Let q_1, \ldots, q_k be centers chosen so far.
Consider first $k+1$ points: this gives a lower bound a on OPT.

Instantiate basic algorithm with guesses

$$\ell_1 = a, \; \ell_2 = (1 + \epsilon)a, \; \ell_3 = (1 + \epsilon)^2 a, \ldots \; \ell_{1+t} = O(\epsilon^{-1})a$$

Say instantiation goes bad if it tries to open $(k+1)$-th center

If instantiation for guess ℓ goes bad when processing $(j+1)$-th point

- Let q_1, \ldots, q_k be centers chosen so far.
- Then p_1, \ldots, p_j are all at most 2ℓ from a q_i.
Consider first $k + 1$ points: this gives a lower bound a on OPT.

Instantiate basic algorithm with guesses

$$
\ell_1 = a, \quad \ell_2 = (1 + \epsilon)a, \quad \ell_3 = (1 + \epsilon)^2 a, \ldots \quad \ell_{1+t} = O(\epsilon^{-1})a
$$

Say instantiation goes bad if it tries to open $(k+1)$-th center.

If instantiation for guess ℓ goes bad when processing $(j+1)$-th point

- Let q_1, \ldots, q_k be centers chosen so far.
- Then p_1, \ldots, p_j are all at most 2ℓ from a q_i.
- Optimum for $\{q_1, \ldots, q_k, p_{j+1}, \ldots, p_n\}$ is at most $\text{OPT} + 2\ell$.
Consider first $k + 1$ points: this gives a lower bound a on OPT.

Instantiate basic algorithm with guesses

$$\ell_1 = a, \ \ell_2 = (1 + \epsilon)a, \ \ell_3 = (1 + \epsilon)^2a, \ldots \ \ell_{1+t} = O(\epsilon^{-1})a$$

Say instantiation goes bad if it tries to open $(k + 1)$-th center.

If instantiation for guess ℓ goes bad when processing $(j + 1)$-th point

- Let q_1, \ldots, q_k be centers chosen so far.
- Then p_1, \ldots, p_j are all at most 2ℓ from a q_i.
- Optimum for $\{q_1, \ldots, q_k, p_{j+1}, \ldots, p_n\}$ is at most $\text{OPT} + 2\ell$.

Hence, for an instantiation with guess $2\ell / \epsilon$ only incurs a small error if we use $\{q_1, \ldots, q_k, p_{j+1}, \ldots, p_n\}$ rather than $\{p_1, \ldots, p_n\}$.
Other computational geometry problems

- Fixed-dimensional linear programming
- Minimum enclosing balls
- Convex hulls
- Diameter
- Clustering with other objective functions
Outline

Basic Definitions

Graph Spanners and Sparsifiers

Clustering

Counting Triangles

Research Directions: To Infinity and Beyond...
Given a stream of edges, estimate the number of triangles T_3 up to a factor $(1 + \epsilon)$ with probability $1 - \delta$ given promise that $T_3 > t$.

Thm: $\Omega(n^2)$ space required to determine if $t = 0$ (with $\delta = 1/3$).

Thm: $\tilde{O}(\epsilon^{-2} (nm/t))$ space is sufficient.
Given a stream of edges, estimate the number of triangles T_3 up to a factor $(1 + \epsilon)$ with probability $1 - \delta$ given promise that $T_3 > t$.

Thm: $\Omega(n^2)$ space required to determine if $t = 0$ (with $\delta = 1/3$).
Given a stream of edges, estimate the number of triangles T_3 up to a factor $(1 + \epsilon)$ with probability $1 - \delta$ given promise that $T_3 > t$.

Thm: $\Omega(n^2)$ space required to determine if $t = 0$ (with $\delta = 1/3$).

Thm: $\tilde{O}(\epsilon^{-2}(nm/t))$ space is sufficient.
Lower Bound

- **Thm:** $\Omega(n^2)$ space required to determine if $T_3 \neq 0$
Lower Bound

- **Thm:** $\Omega(n^2)$ space required to determine if $T_3 \neq 0$
- **Analysis:**
 1. Suppose Alice has $n \times n$ binary matrix A, Bob has $n \times n$ binary matrix B. Is $A_{ij} = B_{ij} = 1$ for some (i, j)?
Lower Bound

- **Thm:** $\Omega(n^2)$ space required to determine if $T_3 \neq 0$
- **Analysis:**
 1. Suppose Alice has $n \times n$ binary matrix A, Bob has $n \times n$ binary matrix B. Is $A_{ij} = B_{ij} = 1$ for some (i, j)?
 2. Problem requires $\Omega(n^2)$ bits of communication
Lower Bound

- **Thm:** $\Omega(n^2)$ space required to determine if $T_3 \neq 0$
- **Analysis:**
 1. Suppose Alice has $n \times n$ binary matrix A, Bob has $n \times n$ binary matrix B. Is $A_{ij} = B_{ij} = 1$ for some (i, j)?
 2. Problem requires $\Omega(n^2)$ bits of communication
 3. Consider graph $G = (V, E)$ with

$$V = \{v_1, \ldots, v_n, u_1, \ldots, u_n, w_1, \ldots, w_n\} \text{ and } E = \{(v_i, u_i) : i \in [n]\}$$
Lower Bound

- **Thm:** $\Omega(n^2)$ space required to determine if $T_3 \neq 0$
- **Analysis:**
 1. Suppose Alice has $n \times n$ binary matrix A, Bob has $n \times n$ binary matrix B. Is $A_{ij} = B_{ij} = 1$ for some (i, j)?
 2. Problem requires $\Omega(n^2)$ bits of communication
 3. Consider graph $G = (V, E)$ with

 $$V = \{v_1, \ldots, v_n, u_1, \ldots, u_n, w_1, \ldots, w_n\} \text{ and } E = \{(v_i, u_i) : i \in [n]\}$$

 4. Alice emulates streams algorithm on G and edges $\{(u_i, w_j) : A_{ij} = 1\}$
Lower Bound

- **Thm:** $\Omega(n^2)$ space required to determine if $T_3 \neq 0$
- **Analysis:**
 1. Suppose Alice has $n \times n$ binary matrix A, Bob has $n \times n$ binary matrix B. Is $A_{ij} = B_{ij} = 1$ for some (i, j)?
 2. Problem requires $\Omega(n^2)$ bits of communication
 3. Consider graph $G = (V, E)$ with
 \[
 V = \{v_1, \ldots, v_n, u_1, \ldots, u_n, w_1, \ldots, w_n\} \quad \text{and} \quad E = \{(v_i, u_i) : i \in [n]\}
 \]
 4. Alice emulates streams algorithm on G and edges $\{(u_i, w_j) : A_{ij} = 1\}$
 5. Sends the memory state of the algorithm to Bob
Lower Bound

- **Thm:** $\Omega(n^2)$ space required to determine if $T_3 \neq 0$
- **Analysis:**
 1. Suppose Alice has $n \times n$ binary matrix A, Bob has $n \times n$ binary matrix B. Is $A_{ij} = B_{ij} = 1$ for some (i, j)?
 2. Problem requires $\Omega(n^2)$ bits of communication
 3. Consider graph $G = (V, E)$ with

 $$V = \{v_1, \ldots, v_n, u_1, \ldots, u_n, w_1, \ldots, w_n\} \text{ and } E = \{(v_i, u_i) : i \in [n]\}$$
 4. Alice emulates streams algorithm on G and edges $\{(u_i, w_j) : A_{ij} = 1\}$
 5. Sends the memory state of the algorithm to Bob
 6. Bob continues algorithm on edges $\{(v_i, w_j) : B_{ij} = 1\}$
Lower Bound

- **Thm:** $\Omega(n^2)$ space required to determine if $T_3 \neq 0$
- **Analysis:**
 1. Suppose Alice has $n \times n$ binary matrix A, Bob has $n \times n$ binary matrix B. Is $A_{ij} = B_{ij} = 1$ for some (i, j)?
 2. Problem requires $\Omega(n^2)$ bits of communication
 3. Consider graph $G = (V, E)$ with
 \[
 V = \{v_1, \ldots, v_n, u_1, \ldots, u_n, w_1, \ldots, w_n\} \text{ and } E = \{(v_i, u_i) : i \in [n]\}
 \]
 4. Alice emulates streams algorithm on G and edges $\{(u_i, w_j) : A_{ij} = 1\}$
 5. Sends the memory state of the algorithm to Bob
 6. Bob continues algorithm on edges $\{(v_i, w_j) : B_{ij} = 1\}$
 7. Memory is $\Omega(n^2)$ bits since $T_3 > 0$ iff $A_{ij} = B_{ij} = 1$ for some i, j
An Algorithm

- **Thm:** $\tilde{O}(\epsilon^{-2}(nm/t))$ space is sufficient if $T_3 \geq t$.

- Algorithm:
 1. Pick an edge $e_{ij} = (u, v)$ uniformly at random from the stream.
 2. Pick w uniformly at random from $V \{u, v\}$.
 3. If $e_{jk} = (u, w), e_{kl} = (v, w)$ for $j, k > i$ exist return $3m(n-2)$; else 0.

- Analysis:
An Algorithm

- **Thm:** $\tilde{O}(\epsilon^{-2}(nm/t))$ space is sufficient if $T_3 \geq t$.
- **Algorithm:**
 - Pick an edge $e_i = (u, v)$ uniformly at random from the stream.
An Algorithm

- **Thm:** $\tilde{O}(\epsilon^{-2}(nm/t))$ space is sufficient if $T_3 \geq t$.
- **Algorithm:**
 - Pick an edge $e_i = (u, v)$ uniformly at random from the stream.
 - Pick w uniformly at random from $V \setminus \{u, v\}$
An Algorithm

- **Thm:** $\tilde{O}(\epsilon^{-2}(nm/t))$ space is sufficient if $T_3 \geq t$.
- **Algorithm:**
 - Pick an edge $e_i = (u, v)$ uniformly at random from the stream.
 - Pick w uniformly at random from $V \setminus \{u, v\}$
 - If $e_j = (u, w)$, $e_k = (v, w)$ for $j, k > i$ exist return $3m(n - 2)$; else 0.
An Algorithm

- **Thm:** $\tilde{O}(\epsilon^{-2}(nm/t))$ space is sufficient if $T_3 \geq t$.
- **Algorithm:**
 - Pick an edge $e_i = (u, v)$ uniformly at random from the stream.
 - Pick w uniformly at random from $V \setminus \{u, v\}$
 - If $e_j = (u, w), e_k = (v, w)$ for $j, k > i$ exist return $3m(n - 2)$; else 0.
- **Analysis:**
 - Expected outcome of algorithm is T_3
An Algorithm

- **Thm:** $\tilde{O}(\epsilon^{-2}(nm/t))$ space is sufficient if $T_3 \geq t$.

- **Algorithm:**
 - Pick an edge $e_i = (u, v)$ uniformly at random from the stream.
 - Pick w uniformly at random from $V \setminus \{u, v\}$
 - If $e_j = (u, w), e_k = (v, w)$ for $j, k > i$ exist return $3m(n - 2)$; else 0.

- **Analysis:**
 - Expected outcome of algorithm is T_3
 - Repeat $O(\epsilon^{-2}(mn/t))$ times in parallel and average
Outline

Basic Definitions

Graph Spanners and Sparsifiers

Clustering

Counting Triangles

Research Directions: To Infinity and Beyond...
Past work assumes stream is ordered by an all-powerful adversary.
Random Order Streams and Space-Efficient Sampling

- Past work assumes stream is ordered by an all-powerful adversary
- Can we design smaller-space algorithms if we assume random order?
Random Order Streams and Space-Efficient Sampling

- Past work assumes stream is ordered by an all-powerful adversary
- Can we design smaller-space algorithms if we assume random order?
- Perform average-case analysis to understand performance in practice
Past work assumes stream is ordered by an all-powerful adversary
Can we design smaller-space algorithms if we assume random order?
Perform average-case analysis to understand performance in practice
What about processing stochastically generated streams such as a stream of i.i.d. samples? Learning algorithms...
Probabilistic Data

- Previous work assumes all input is specified exactly
Probabilistic Data

- Previous work assumes all input is specified exactly
- What if each data item has some inherent uncertainty
Probabilistic Data

- Previous work assumes all input is specified exactly
- What if each data item has some inherent uncertainty
- Can we compute the expected value or distribution of aggregates?
Annotations and Stream Verification

- Suppose we have help processing the stream by a third party who "annotates" the stream

\[\langle x_1, x_2, x_3, x_4, \ldots, x_m \rangle \rightarrow \langle x_1, x_2, a_2, x_3, x_4, \ldots, x_m, a_m \rangle \]
Annotations and Stream Verification

- Suppose we have help processing the stream by a third party who “annotates” the stream

\[\langle x_1, x_2, x_3, x_4, \ldots, x_m \rangle \rightarrow \langle x_1, x_2, a_2, x_3, x_4, \ldots, x_m, a_m \rangle \]

- Can we reduce our space use if assisted by an honest helper but not be misled by a malicious helper?
Thanks!

- Blog: http://polylogblog.wordpress.com
- Lectures: Piotr Indyk, MIT
 http://stellar.mit.edu/S/course/6/fa07/6.895/
- Books:
 “Data Streams: Algorithms and Applications”
 S. Muthukrishnan (2005)
 “Algorithms and Complexity of Stream Processing”
 A. McGregor, S. Muthukrishnan (forthcoming)