Data Streams: Random Order & Multiple Passes

2009 Barbados Workshop on Computational Complexity

Andrew McGregor
Random Order Streams:

- Average case analysis: data is worst-case but order is random.
- Lower bounds are more useful than in the adversarial case.
- Streams ordered randomly: e.g., space-efficient sampling
Introduction

Random Order Streams:
- Average case analysis: data is worst-case but order is random.
- Lower bounds are more useful than in the adversarial case.
- Streams ordered randomly: e.g., space-efficient sampling

Multiple Pass Streams:
- How much extra power do you get with a few extra passes?
- With external data, it’s easier to access data sequentially.
Pass-Space Trade-Offs

Problem

Given a stream of n values from $[n]$, what’s smallest value that doesn’t appear in stream? You have p passes over the data.

Version 1: All values appear exactly once except for the missing value. $\tilde{\Theta}(1)$

Version 2: All values less than smallest missing value appear exactly once $\tilde{\Theta}(\frac{n}{p})$

Version 3: General problem, $\tilde{\Theta}(\frac{n}{p})$

Other trade-offs: Find length k increasing sequence given it exists: $\tilde{\Theta}(\frac{k}{1+1/(2^p-1)})$ [Liben-Nowell et al. ’06, Guha, McGregor ’08]
Pass-Space Trade-Offs

Problem

Given a stream of n values from $[n]$, what’s smallest value that doesn’t appear in stream? You have p passes over the data.

- **Version 1**: All values appear exactly once except for the missing value.
 \[\tilde{O}(1) \]
Pass-Space Trade-Offs

Problem

Given a stream of n values from $[n]$, what’s smallest value that doesn’t appear in stream? You have p passes over the data.

- **Version 1**: All values appear exactly once except for the missing value.

 $\tilde{\Theta}(1)$

- **Version 2**: All values less than smallest missing value appear exactly once

 $\tilde{\Theta}(n^{1/p})$
Pass-Space Trade-Offs

Problem

Given a stream of n values from $[n]$, what’s smallest value that doesn’t appear in stream? You have p passes over the data.

- **Version 1:** All values appear exactly once except for the missing value.

 $\tilde{\Theta}(1)$

- **Version 2:** All values less than smallest missing value appear exactly once

 $\tilde{\Theta}(n^{1/p})$

- **Version 3:** General problem,

 $\tilde{\Theta}(n/p)$

Other trade-offs: Find length k increasing sequence given it exists:

$\tilde{\Theta}(k^{1+1/(2^p-1)})$

[Liben-Nowell et al. '06, Guha, McGregor '08]
Pass-Space Trade-Offs

Problem

Given a stream of \(n \) *values from* \([n]\), *what’s smallest value that doesn’t appear in stream? You have* \(p \) *passes over the data.*

- **Version 1**: All values appear exactly once except for the missing value.
 \[\tilde{\Theta}(1)\]

- **Version 2**: All values less than smallest missing value appear exactly once
 \[\tilde{\Theta}(n^{1/p})\]

- **Version 3**: General problem,
 \[\tilde{\Theta}(n/p)\]

Other trade-offs: Find length \(k \) increasing sequence given it exists:
\[\tilde{\Theta}(k^{1+1/(2^p-1)})\] [Liben-Nowell et al. ’06, Guha, McGregor ’08]
Random Order Streams

Problem

Given \(m \) *values from* \([n]\), *find median in* \(\text{polylog}(m, n) \) *space.*
Random Order Streams

Problem

Given m values from $[n]$, find median in $\text{polylog}(m, n)$ space.

Approximate Median (i.e., one with rank $m/2 \pm t$) in One Pass:

- **Adversarial**: $\tilde{O}(m)$-approx [Greenwald, Khanna ’01]
- **Random**: $\tilde{O}(m^{1/2})$-approx [Guha, McGregor ’06]
Random Order Streams

Problem

Given m values from $[n]$, find median in $\text{polylog}(m, n)$ space.

Approximate Median (i.e., one with rank $m/2 \pm t$) in One Pass:

- **Adversarial**: $\tilde{\Theta}(m)$-approx [Greenwald, Khanna ’01]
- **Random**: $\tilde{O}(m^{1/2})$-approx [Guha, McGregor ’06]

Exact Median in Multiple Passes

- **Adversarial**: $\Theta(\log m / \log \log m)$ pass [Munro, Paterson ’78, Guha, McGregor ’07]
- **Random**: $\Theta(\log \log m)$ pass [Guha, McGregor ’06, Chakrabarti, Jayram, Patrascu ’08, Chakrabarti, Cormode, McGregor ’08]
Selection
 Adversarial Order
 Random Order

Frequency Moments

Hamming Distance
Outline

Selection
 Adversarial Order
 Random Order

Frequency Moments

Hamming Distance
Outline

Selection
 Adversarial Order
 Random Order

Frequency Moments

Hamming Distance
Algorithms for Median in Adversarial-Order Stream

Theorem (Adversarial Order)

Can find element of rank $m/2 \pm \epsilon m$ in one pass and $\tilde{O}(\epsilon^{-1})$ space.
Can find median in $O(\log m / \log \log m)$ passes and $\tilde{O}(1)$ space.
Theorem (Adversarial Order)

Can find element of rank \(m/2 \pm \epsilon m \) in one pass and \(\tilde{O}(\epsilon^{-1}) \) space.

Can find median in \(O(\log m / \log \log m) \) passes and \(\tilde{O}(1) \) space.

- Already seen one pass result:
 - Can find elements with rank \(i\epsilon m \pm \epsilon m \) for \(i \in [\epsilon^{-1}] \)
Algorithms for Median in Adversarial-Order Stream

Theorem (Adversarial Order)

Can find element of rank $m/2 \pm \epsilon m$ in one pass and $\tilde{O}(\epsilon^{-1})$ space.

Can find median in $O(\log m / \log \log m)$ passes and $\tilde{O}(1)$ space.

- Already seen one pass result:
 - Can find elements with rank $i \epsilon m \pm \epsilon m$ for $i \in [\epsilon^{-1}]$
- For multiple-pass result:
Algorithms for Median in Adversarial-Order Stream

Theorem (Adversarial Order)

Can find element of rank \(m/2 \pm \epsilon m \) in one pass and \(\tilde{O}(\epsilon^{-1}) \) space. Can find median in \(O(\log m / \log \log m) \) passes and \(\tilde{O}(1) \) space.

- Already seen one pass result:
 - Can find elements with rank \(i\epsilon m \pm \epsilon m \) for \(i \in [\epsilon^{-1}] \)
- For multiple-pass result:
 - In pass 1, use one pass alg. with \(\epsilon = \frac{1}{\log m} \) to find \(a \) and \(b \) s.t.
 \[
 \text{rank}(a) = \frac{m}{2} - \frac{2m}{\log m} \pm \frac{m}{\log m} \quad \text{and} \quad \text{rank}(b) = \frac{m}{2} + \frac{2m}{\log m} \pm \frac{m}{\log m}
 \]
Algorithms for Median in Adversarial-Order Stream

Theorem (Adversarial Order)

Can find element of rank $m/2 \pm \epsilon m$ in one pass and $\tilde{O}(\epsilon^{-1})$ space.

Can find median in $O(\log \frac{m}{\log \log m})$ passes and $\tilde{O}(1)$ space.

- Already seen one pass result:
 - Can find elements with rank $i\epsilon m \pm \epsilon m$ for $i \in [\epsilon^{-1}]$

- For multiple-pass result:
 - In pass 1, use one pass alg. with $\epsilon = \frac{1}{\log m}$ to find a and b s.t.

 $\text{rank}(a) = \frac{m}{2} - \frac{2m}{\log m} \pm \frac{m}{\log m}$ and $\text{rank}(b) = \frac{m}{2} + \frac{2m}{\log m} \pm \frac{m}{\log m}$
 - In pass 2, compute $\text{rank}(a)$ and $\text{rank}(b)$
 Algorithms for Median in Adversarial-Order Stream

Theorem (Adversarial Order)

Can find element of rank $m/2 \pm \epsilon m$ in one pass and $\tilde{O}(\epsilon^{-1})$ space.

Can find median in $O(\log m / \log \log m)$ passes and $\tilde{O}(1)$ space.

- Already seen one pass result:
 - Can find elements with rank $i \epsilon m \pm \epsilon m$ for $i \in [\epsilon^{-1}]$

- For multiple-pass result:
 - In pass 1, use one pass alg. with $\epsilon = \frac{1}{\log m}$ to find a and b s.t.

 \[
 \text{rank}(a) = \frac{m}{2} - \frac{2m}{\log m} \pm \frac{m}{\log m} \quad \text{and} \quad \text{rank}(b) = \frac{m}{2} + \frac{2m}{\log m} \pm \frac{m}{\log m}
 \]
 - In pass 2, compute rank(a) and rank(b)
 - Recurse on elements in the range (a, b).
One Pass Lower Bound

Theorem

Finding $m/2 \pm m^\delta$ rank element in 1 pass requires $\Omega(m^{1-\delta})$ space.
One Pass Lower Bound

Theorem

Finding $m/2 \pm m^\delta$ rank element in 1 pass requires $\Omega(m^{1-\delta})$ space.

- INDEX Reduction: Alice has $x \in \{0, 1\}^t$, Bob has $j \in [t]$
One Pass Lower Bound

Theorem

Finding \(m/2 \pm m^\delta \) rank element in 1 pass requires \(\Omega(m^{1-\delta}) \) space.

- INDEX Reduction: Alice has \(x \in \{0, 1\}^t \), Bob has \(j \in [t] \)
- Alice constructs \(A = \{2i + x_i : i \in [t]\} \)
One Pass Lower Bound

Theorem

Finding \(m/2 \pm m^\delta \) rank element in 1 pass requires \(\Omega(m^{1-\delta}) \) space.

- INDEX Reduction: Alice has \(x \in \{0, 1\}^t \), Bob has \(j \in [t] \)
- Alice constructs \(A = \{2i + x_i : i \in [t]\} \)
- Bob constructs \(B = \{t - j \text{ copies of } 0, j - 1 \text{ copies of } 2t + 2\} \)

Exercise

Prove an algorithm that doesn't know \(m \) in advance requires \(\Omega(m) \) space to find median even when the data comes in sorted order.
One Pass Lower Bound

Theorem

Finding $m/2 \pm m^\delta$ rank element in 1 pass requires $\Omega(m^{1-\delta})$ space.

- **INDEX Reduction**: Alice has $x \in \{0, 1\}^t$, Bob has $j \in [t]$
- Alice constructs $A = \{2i + x_i : i \in [t]\}$
- Bob constructs $B = \{t - j \text{ copies of } 0, j - 1 \text{ copies of } 2t + 2\}$
- Median of the $2t - 1$ values is $2j + x_j$
One Pass Lower Bound

Theorem
Finding \(m/2 \pm m^\delta \) rank element in 1 pass requires \(\Omega(m^{1-\delta}) \) space.

- **INDEX Reduction**: Alice has \(x \in \{0, 1\}^t \), Bob has \(j \in [t] \)
- Alice constructs \(A = \{2i + x_i : i \in [t]\} \)
- Bob constructs \(B = \{t - j \text{ copies of } 0, j - 1 \text{ copies of } 2t + 2\} \)
- Median of the \(2t - 1 \) values is \(2j + x_j \)
- \(\therefore \) Exact median requires \(\Omega(t) = \Omega(m) \) space.
One Pass Lower Bound

Theorem
Finding $m/2 \pm m^\delta$ rank element in 1 pass requires $\Omega(m^{1-\delta})$ space.

- **INDEX Reduction:** Alice has $x \in \{0, 1\}^t$, Bob has $j \in [t]$
- Alice constructs $A = \{2i + x_i : i \in [t]\}$
- Bob constructs $B = \{t - j \text{ copies of } 0, j - 1 \text{ copies of } 2t + 2\}$
- Median of the $2t - 1$ values is $2j + x_j$
- \therefore Exact median requires $\Omega(t) = \Omega(m)$ space.
- For approximate result, duplicate each element $2m^\delta + 1$ times.
One Pass Lower Bound

Theorem

Finding \(m/2 \pm m^\delta \) rank element in 1 pass requires \(\Omega(m^{1-\delta}) \) space.

- **INDEX Reduction**: Alice has \(x \in \{0, 1\}^t \), Bob has \(j \in [t] \)
- Alice constructs \(A = \{2i + x_i : i \in [t]\} \)
- Bob constructs \(B = \{t - j \text{ copies of } 0, j - 1 \text{ copies of } 2t + 2\} \)
- Median of the \(2t - 1 \) values is \(2j + x_j \)
- \(\therefore \) Exact median requires \(\Omega(t) = \Omega(m) \) space.
- For approximate result, duplicate each element \(2m^\delta + 1 \) times.
- \(\therefore \) Approx median requires \(\Omega(t) = \Omega(m/m^\delta) \) space.
One Pass Lower Bound

Theorem

Finding \(m/2 \pm m^\delta \) rank element in 1 pass requires \(\Omega(m^{1-\delta}) \) space.

- **INDEX** Reduction: Alice has \(x \in \{0, 1\}^t \), Bob has \(j \in [t] \)
- Alice constructs \(A = \{2i + x_i : i \in [t]\} \)
- Bob constructs \(B = \{t - j \text{ copies of } 0, j - 1 \text{ copies of } 2t + 2\} \)
- Median of the \(2t - 1 \) values is \(2j + x_j \)
- \(\therefore \) Exact median requires \(\Omega(t) = \Omega(m) \) space.
- For approximate result, duplicate each element \(2m^\delta + 1 \) times.
- \(\therefore \) Approx median requires \(\Omega(t) = \Omega(m/m^\delta) \) space.

Exercise

Prove an algorithm that doesn’t know \(m \) in advance requires \(\Omega(m) \) space to find median even when the data comes in sorted order.
Two Pass Lower Bound

Theorem
Finding median in 2 passes requires $\Omega(m^{1/2})$ space.
Two Pass Lower Bound

Theorem

Finding median in 2 passes requires $\Omega(m^{1/2})$ space.

- "2-level INDEX" Reduction: Alice has $x^{1}, \ldots, x^{t} \in \{0, 1\}^{t}$, Bob has $y \in [t]^{t}$, Charlie has $i \in [t]$. To determine $x^{j_{i}}$ where $j = y_{i}$ after two rounds, requires $\Omega(t)$ bits of communication.

[Nisan, Widgerson '91]
Two Pass Lower Bound

Theorem
Finding median in 2 passes requires $\Omega(m^{1/2})$ space.

- “2-level INDEX” Reduction: Alice has $x^1, \ldots, x^t \in \{0, 1\}^t$, Bob has $y \in [t]^t$, Charlie has $i \in [t]$. To determine x^j_i where $j = y_i$ after two rounds, requires $\Omega(t)$ bits of communication. [Nisan, Widgerson '91]

- For $j \in [t]$, appropriate players construct

$$A_i = \{2j + x^j_i : i \in [t]\} + o_i \text{ where } o_i = B(i - 1)$$

$$B_i = \{t - y_i \text{ copies of 0 and } y_i - 1 \text{ copies of } B\} + o_i$$

$$C = \{t - i \text{ copies of 0 and } i - 1 \text{ copies of } Bo_t\}$$
Two Pass Lower Bound

Theorem

Finding median in 2 passes requires $\Omega(m^{1/2})$ space.

- “2-level INDEX” Reduction: Alice has $x^1, \ldots, x^t \in \{0, 1\}^t$, Bob has $y \in [t]^t$, Charlie has $i \in [t]$. To determine x^i_j where $j = y_i$ after two rounds, requires $\Omega(t)$ bits of communication. [Nisan, Widgerson '91]

- For $j \in [t]$, appropriate players construct

 $$A_i = \{2j + x^i_j : i \in [t]\} + o_i \text{ where } o_i = B(i - 1)$$

 $$B_i = \{t - y_i \text{ copies of 0 and } y_i - 1 \text{ copies of } B\} + o_i$$

 $$C = \{t - i \text{ copies of 0 and } i - 1 \text{ copies of } B_0t\}$$

- Median of the $O(t^2)$ values is $o_i + 2j + x^i_j$ where $j = y_i$
Two Pass Lower Bound

Theorem
Finding median in 2 passes requires $\Omega(m^{1/2})$ space.

- “2-level INDEX” Reduction: Alice has $x^1, \ldots, x^t \in \{0, 1\}^t$, Bob has $y \in [t]^t$, Charlie has $i \in [t]$. To determine x^j_i where $j = y_i$ after two rounds, requires $\Omega(t)$ bits of communication. [Nisan, Widgerson '91]

- For $j \in [t]$, appropriate players construct

 $A_i = \{2j + x^j_i : i \in [t]\} + o_i$ where $o_i = B(i - 1)$

 $B_i = \{t - y_i \text{ copies of } 0 \text{ and } y_i - 1 \text{ copies of } B\} + o_i$

 $C = \{t - i \text{ copies of } 0 \text{ and } i - 1 \text{ copies of } Bo_t\}$

- Median of the $O(t^2)$ values is $o_i + 2j + x^j_i$ where $j = y_i$

 \therefore Exact median requires $\Omega(t) = \Omega(m^{1/2})$ space.
Outline

Selection
 Adversarial Order
 Random Order

Frequency Moments

Hamming Distance
Random Order Algorithms

Theorem
Can find element of rank $m/2 \pm \tilde{O}(\sqrt{m})$ in one pass and $\tilde{O}(1)$ space. Can find median in $O(\log \log m)$ passes and $\tilde{O}(1)$ space.
Theorem

Can find element of rank $m/2 \pm \tilde{O}(\sqrt{m})$ in one pass and $\tilde{O}(1)$ space. Can find median in $O(\log \log m)$ passes and $\tilde{O}(1)$ space.

- One pass result:

 - Split stream into $O(\log m)$ segments of length $O(m/\log m)$.
 - At the start of the i-th segment, we think rank(a_i) < $m/2$ < rank(b_i).
 - Let c be the first element in the segment with $a_i < c < b_i$.
 - In the rest of the segment, estimate rank(c) by \tilde{r}.
 - If $\tilde{r} = m/2 \pm \tilde{O}(\sqrt{m})$, return \tilde{r}, otherwise:
 - $(a_i+1, b_i+1) = \begin{cases} (a_i, c) & \text{if } \tilde{r} > m/2 \\ (c, b_i) & \text{if } \tilde{r} < m/2 \end{cases}$
 - For multiple-pass result: Recurse with care!
Random Order Algorithms

Theorem
Can find element of rank $m/2 \pm \tilde{O}(\sqrt{m})$ in one pass and $\tilde{O}(1)$ space. Can find median in $O(\log \log m)$ passes and $\tilde{O}(1)$ space.

▶ One pass result:
 ▶ Split stream into $O(\log m)$ segments of length $O(m/\log m)$
Random Order Algorithms

Theorem

Can find element of rank \(m/2 \pm \tilde{O}(\sqrt{m}) \) in one pass and \(\tilde{O}(1) \) space. Can find median in \(O(\log \log m) \) passes and \(\tilde{O}(1) \) space.

- **One pass result:**
 - Split stream into \(O(\log m) \) segments of length \(O(m/\log m) \)
 - At start of \(i \)-th segment: we think \(\text{rank}(a_i) < m/2 < \text{rank}(b_i) \).
Random Order Algorithms

Theorem

Can find element of rank \(m/2 \pm \tilde{O}(\sqrt{m}) \) in one pass and \(\tilde{O}(1) \) space. Can find median in \(O(\log \log m) \) passes and \(\tilde{O}(1) \) space.

- One pass result:
 - Split stream into \(O(\log m) \) segments of length \(O(m / \log m) \)
 - At start of \(i \)-th segment: we think \(\text{rank}(a_i) < m/2 < \text{rank}(b_i) \)
 - Let \(c \) be first element in segment with \(a_i < c < b_i \)
Random Order Algorithms

Theorem

Can find element of rank $m/2 \pm \tilde{O}(\sqrt{m})$ in one pass and $\tilde{O}(1)$ space. Can find median in $O(\log \log m)$ passes and $\tilde{O}(1)$ space.

▶ One pass result:
 ▶ Split stream into $O(\log m)$ segments of length $O(m/\log m)$
 ▶ At start of i-th segment: we think $\text{rank}(a_i) < m/2 < \text{rank}(b_i)$.
 ▶ Let c be first element in segment with $a_i < c < b_i$
 ▶ In rest of segment, estimate $\text{rank}(c)$ by \tilde{r}
Random Order Algorithms

Theorem

Can find element of rank $m/2 \pm \tilde{O}(\sqrt{m})$ in one pass and $\tilde{O}(1)$ space. Can find median in $O(\log \log m)$ passes and $\tilde{O}(1)$ space.

- **One pass result:**
 - Split stream into $O(\log m)$ segments of length $O(m/\log m)$
 - At start of i-th segment: we think $\text{rank}(a_i) < m/2 < \text{rank}(b_i)$
 - Let c be first element in segment with $a_i < c < b_i$
 - In rest of segment, estimate $\text{rank}(c)$ by \tilde{r}
 - If $\tilde{r} = m/2 \pm \tilde{O}(\sqrt{m})$ return \tilde{r}, otherwise:

\[
(a_{i+1}, b_{i+1}) = \begin{cases}
(a_i, c) & \text{if } \tilde{r} > m/2 \\
(c, b_i) & \text{if } \tilde{r} < m/2
\end{cases}
\]

- For multiple-pass result: Recurse with care!
Random Order Algorithms

Theorem

Can find element of rank \(m/2 \pm \tilde{O}(\sqrt{m}) \) in one pass and \(\tilde{O}(1) \) space. Can find median in \(O(\log \log m) \) passes and \(\tilde{O}(1) \) space.

▶ One pass result:

▶ Split stream into \(O(\log m) \) segments of length \(O(m/\log m) \)
▶ At start of \(i \)-th segment: we think \(\text{rank}(a_i) < m/2 < \text{rank}(b_i) \).
▶ Let \(c \) be first element in segment with \(a_i < c < b_i \)
▶ In rest of segment, estimate \(\text{rank}(c) \) by \(\tilde{r} \)
▶ If \(\tilde{r} = m/2 \pm \tilde{O}(\sqrt{m}) \) return \(\tilde{r} \), otherwise:

\[
(a_{i+1}, b_{i+1}) = \begin{cases}
(a_i, c) & \text{if } \tilde{r} > m/2 \\
(c, b_i) & \text{if } \tilde{r} < m/2
\end{cases}
\]

▶ For multiple-pass result: Recurse with care!
Random Order One Pass Lower Bound

Theorem

Finding median in 1 pass requires $\Omega(m^{1/2})$ space.
Theorem

Finding median in 1 pass requires $\Omega(m^{1/2})$ space.

- **INDEX** Reduction: Alice has $x \in \{0, 1\}^t$, Bob has $j \in [t]$. Solving problem requires $\Omega(t)$ even when $x \in_R \{0, 1\}^t$.

Choosing large c ensures ordering is sufficiently random.
Random Order One Pass Lower Bound

Theorem

Finding median in 1 pass requires \(\Omega(m^{1/2}) \) space.

- **INDEX Reduction**: Alice has \(x \in \{0, 1\}^t \), Bob has \(j \in [t] \).
 Solving problem requires \(\Omega(t) \) even when \(x \in \mathbb{R} \{0, 1\}^t \).

- For some constant \(c > 0 \), define:

\[
A = \{2i + x_i : i \in [t]\}
\]

\[
B = \{ct^2 + t - j \text{ copies of 0 and } ct^2 + j - 1 \text{ copies of } 2t + 2\}
\]
Theorem

Finding median in 1 pass requires $\Omega(m^{1/2})$ space.

- INDEX Reduction: Alice has $x \in \{0, 1\}^t$, Bob has $j \in [t]$. Solving problem requires $\Omega(t)$ even when $x \in_R \{0, 1\}^t$.
- For some constant $c > 0$, define:

 $$A = \{2i + x_i : i \in [t]\}$$

 $$B = \{ct^2 + t - j \text{ copies of 0 and } ct^2 + j - 1 \text{ copies of } 2t + 2\}$$

- Alice and Bob simulate algorithm on random permutation of $A \cup B$. Alice determines 1st half and Bob determines 2nd half:
Random Order One Pass Lower Bound

Theorem

Finding median in 1 pass requires \(\Omega(m^{1/2}) \) space.

- **INDEX Reduction:** Alice has \(x \in \{0, 1\}^t \), Bob has \(j \in [t] \). Solving problem requires \(\Omega(t) \) even when \(x \in \mathbb{R} \{0, 1\}^t \).
- For some constant \(c > 0 \), define:

 \[
 A = \{2i + x_i : i \in [t]\}
 \]

 \[
 B = \{ct^2 + t - j \text{ copies of 0 and } ct^2 + j - 1 \text{ copies of } 2t + 2\}
 \]

- Alice and Bob simulate algorithm on random permutation of \(A \cup B \). Alice determines 1st half and Bob determines 2nd half:
 - Alice assumes \(j = t/2 \): Bob “fixes” the balance.
Theorem

Finding median in 1 pass requires $\Omega(m^{1/2})$ space.

- **INDEX Reduction**: Alice has $x \in \{0, 1\}^t$, Bob has $j \in [t]$. Solving problem requires $\Omega(t)$ even when $x \in_R \{0, 1\}^t$.
- For some constant $c > 0$, define:

$$A = \{2i + x_i : i \in [t]\}$$

$$B = \{ct^2 + t - j \text{ copies of } 0 \text{ and } ct^2 + j - 1 \text{ copies of } 2t + 2\}$$

- Alice and Bob simulate algorithm on random permutation of $A \cup B$. Alice determines 1st half and Bob determines 2nd half:
 - Alice assumes $j = t/2$: Bob “fixes” the balance.
 - Bob guesses values of x_i if $2i + x_i$ appears in his half.
Random Order One Pass Lower Bound

Theorem

Finding median in 1 pass requires $\Omega(m^{1/2})$ space.

- **INDEX** Reduction: Alice has $x \in \{0, 1\}^t$, Bob has $j \in [t]$. Solving problem requires $\Omega(t)$ even when $x \in \mathbb{R} \{0, 1\}^t$.

- For some constant $c > 0$, define:

 $A = \{2i + x_i : i \in [t]\}$

 $B = \{ct^2 + t - j \text{ copies of 0 and } ct^2 + j - 1 \text{ copies of } 2t + 2\}$

- Alice and Bob simulate algorithm on random permutation of $A \cup B$. Alice determines 1st half and Bob determines 2nd half:
 - Alice assumes $j = t/2$: Bob “fixes” the balance.
 - Bob guesses values of x_i if $2i + x_i$ appears in his half.

- Choosing large c ensures ordering is sufficiently random.
Outline

Selection
 Adversarial Order
 Random Order

Frequency Moments

Hamming Distance
Frequency Moments

Problem

Given \(m \) elements from \([n]\), find \((1 + \epsilon)\) approx for \(F_k = \sum_{i \in [n]} f_i^k \) with probability \(1 - \delta \) where \(f_i \) is the frequency of item \(i \).
Frequency Moments

Problem
Given m elements from $[n]$, find $(1 + \epsilon)$ approx for $F_k = \sum_{i \in [n]} f_i^k$ with probability $1 - \delta$ where f_i is the frequency of item i.

Theorem (Chakrabarti et al. ’03, Indyk, Woodruff ’05)
$\tilde{O}_{\epsilon,\delta}(n^{1-2/k})$ space when stream is in adversarial order.
Frequency Moments

Problem
Given m elements from $[n]$, find $(1 + \epsilon)$ approx for $F_k = \sum_{i \in [n]} f_i^k$ with probability $1 - \delta$ where f_i is the frequency of item i.

Theorem (Chakrabarti et al. ’03, Indyk, Woodruff ’05)
$\tilde{\Theta}_{\epsilon, \delta}(n^{1-2/k})$ space when stream is in adversarial order.

Theorem (Andoni et al. ’08)
$\tilde{\Omega}(n^{1-2.5/k})$ space necessary when the stream is in random order.
Frequency Moments

Problem
Given m elements from $[n]$, find $(1 + \epsilon)$ approx for $F_k = \sum_{i \in [n]} f_i^k$ with probability $1 - \delta$ where f_i is the frequency of item i.

Theorem (Chakrabarti et al. ’03, Indyk, Woodruff ’05)
$\tilde{\Theta}_{\epsilon, \delta}(n^{1-2/k})$ space when stream is in adversarial order.

Theorem (Andoni et al. ’08)
$\tilde{\Omega}(n^{1-2.5/k})$ space necessary when the stream is in random order.

Rumor has it that this has been tightened to $\Omega(n^{1-2/k})$...
Adversarial Order Lower Bound

- t-DISJ Reduction: t sets $S_1, \ldots, S_t \subseteq [n]$ of size n/t. Are sets pairwise-disjoint or does there exist a common element?
Adversarial Order Lower Bound

- **t-DISJ Reduction**: t sets $S_1, \ldots, S_t \subseteq [n]$ of size n/t. Are sets pairwise-disjoint or does there exist a common element?

- If i-th player has S_i, t-DISJ requires $\tilde{\Omega}(n/t)$ communication.

[Bar-Yosseff et al. '02, Chakrabarti et al. '03]
Adversarial Order Lower Bound

- **t-DISJ Reduction**: t sets $S_1, \ldots, S_t \subset [n]$ of size n/t. Are sets pairwise-disjoint or does there exists common element?
- If i-th player has S_i, t-DISJ requires $\tilde{\Omega}(n/t)$ communication. [Bar-Yosseff et al. '02, Chakrabarti et al. '03]
- Let $S = \bigcup_{i \in [t]} S_i$. If $t^k > 2n$,

 $$ (F_k(S) \leq n) \Rightarrow (t\text{-DISJ}(S) = "disjoint") $$

 $$ (F_k(S) \geq 2n) \Rightarrow (t\text{-DISJ}(S) = "common element") $$
Adversarial Order Lower Bound

- **t-DISJ Reduction**: t sets $S_1, \ldots, S_t \subset [n]$ of size n/t. Are sets pairwise-disjoint or does there exists common element?

- If i-th player has S_i, t-DISJ requires $\tilde{\Omega}(n/t)$ communication. [Bar-Yosseff et al. '02, Chakrabarti et al. '03]

- Let $S = \bigcup_{i \in [t]} S_i$. If $t^k > 2n$,

\[
(F_k(S) \leq n) \Rightarrow (t\text{-DISJ}(S) = \text{“disjoint”})
\]

\[
(F_k(S) \geq 2n) \Rightarrow (t\text{-DISJ}(S) = \text{“common element”})
\]

- An 1-pass, s-space algorithm that 2-approximates F_k gives a ts-space algorithm that solves $(2n)^{1/k}$-DISJ
Random Order Lower Bound

Theorem (Andoni et al. ’08)
\[\tilde{\Omega}(n^{1-3/k}) \text{ space necessary for random order stream.} \]
Random Order Lower Bound

Theorem (Andoni et al. '08)

$\tilde{\Omega}(n^{1-3/k})$ space necessary for random order stream.

- t-DISJ Reduction: $S_1, \ldots, S_t \subset [n']$ of size n'/t.
Random Order Lower Bound

Theorem (Andoni et al. ’08)

\[\tilde{\Omega}(n^{1-3/k}) \] space necessary for random order stream.

- \textit{t-DISJ Reduction:} \(S_1, \ldots, S_t \subset [n'] \) of size \(n'/t \).
- Using public random bits, players pick random stream \(S \) from \([2n]^n \), random map \(f : [n] \to [n] \), and random permutations \(\pi_i \).
Random Order Lower Bound

Theorem (Andoni et al. '08)
\(\tilde{\Omega}(n^{1-3/k}) \) space necessary for random order stream.

- \(t \)-DISJ Reduction: \(S_1, \ldots, S_t \subset [n'] \) of size \(n'/t \).
- Using public random bits, players pick random stream \(S \) from \([2n]^n\), random map \(f : [n] \rightarrow [n] \), and random permutations \(\pi_i \)
Random Order Lower Bound

Theorem (Andoni et al. '08)
\(\tilde{\Omega}(n^{1-3/k}) \) space necessary for random order stream.

- \(t \)-DISJ Reduction: \(S_1, \ldots, S_t \subset [n'] \) of size \(n'/t \).
- Using public random bits, players pick random stream \(S \) from \([2n]^n \), random map \(f : [n] \rightarrow [n] \), and random permutations \(\pi_i \).
- Player \(i \) computes string \(\sigma(f(S_i)) \)
Random Order Lower Bound

Theorem (Andoni et al. '08)
\(\tilde{\Omega}(n^{1-3/k})\) space necessary for random order stream.

- **t-DISJ Reduction**: \(S_1, \ldots, S_t \subset \mathbb{[n']}\) of size \(n'/t\).
- Using public random bits, players pick random stream \(S\) from \([2n]^n\), random map \(f: [n] \rightarrow [n]\), and random permutations \(\pi_i\).
- Player \(i\) computes string \(\sigma(f(S_i))\).
- Players embed the strings in \(S\) at random locations:
 - If embedding of two strings overlap, abort algorithm.
 - Probability of aborting is sufficiently small if \(n' = n^{1-1/k}\)
Random Order Lower Bound

Theorem (Andoni et al. '08)

\(\tilde{\Omega}(n^{1-3/k}) \) space necessary for random order stream.

- \(t \)-DISJ Reduction: \(S_1, \ldots, S_t \subset [n'] \) of size \(n'/t \).
- Using public random bits, players pick random stream \(S \) from \([2n]^n \), random map \(f : [n] \rightarrow [n] \), and random permutations \(\pi_i \).
- Player \(i \) computes string \(\sigma(f(S_i)) \).
- Players embed the strings in \(S \) at random locations:
 - If embedding of two strings overlap, abort algorithm.
 - Probability of aborting is sufficiently small if \(n' = n^{1-1/k} \).

Extending ideas, gives \(\tilde{\Omega}(n^{1-2/k}) \).
Outline

Selection
 Adversarial Order
 Random Order

Frequency Moments

Hamming Distance
Hamming Distance Lower Bound

Problem

Alice knows $x \in \{0, 1\}^n$ and Bob knows $y \in \{0, 1\}^n$. Want to estimate hamming distance up to $\pm o(\sqrt{n})$ with probability $9/10$.

Theorem (Woodruff 2004, Jayram et al. 2008)

Any one-way protocol requires $\Omega(n)$ bits of communication.

Theorem (Brody, Chakrabarti last week)

Any $O(1)$-round protocol requires $\Omega(n)$ bits of communication.

Corollary

Any $O(1)$-pass algorithm that $(1 + \epsilon)$ approximates F_0 or F_2 requires $\Omega(\epsilon^{-2})$ space.
Problem

Alice knows \(x \in \{0, 1\}^n \) *and Bob knows* \(y \in \{0, 1\}^n \). *Want to estimate hamming distance up to* \(\pm o(\sqrt{n}) \) *with probability* 9/10.

Theorem (Woodruff 2004, Jayram et al. 2008)

Any one-way protocol requires \(\Omega(n) \) *bits of communication.*
Hamming Distance Lower Bound

Problem
Alice knows $x \in \{0, 1\}^n$ and Bob knows $y \in \{0, 1\}^n$. Want to estimate hamming distance up to $\pm o(\sqrt{n})$ with probability $9/10$.

Theorem (Woodruff 2004, Jayram et al. 2008)
Any one-way protocol requires $\Omega(n)$ bits of communication.

Theorem (Brody, Chakrabarti last week)
Any $O(1)$-round protocol requires $\Omega(n)$ bits of communication.
Hamming Distance Lower Bound

Problem
Alice knows \(x \in \{0, 1\}^n \) and Bob knows \(y \in \{0, 1\}^n \). Want to estimate hamming distance up to \(\pm o(\sqrt{n}) \) with probability \(9/10 \).

Theorem (Woodruff 2004, Jayram et al. 2008)
Any one-way protocol requires \(\Omega(n) \) bits of communication.

Theorem (Brody, Chakrabarti last week)
Any \(O(1) \)-round protocol requires \(\Omega(n) \) bits of communication.

Corollary
Any \(O(1) \)-pass algorithm that \((1 + \epsilon)\) approximates \(F_0 \) or \(F_2 \) requires \(\Omega(\epsilon^{-2}) \) space.
One-Pass Lower Bound (1/2)

- Reduction from INDEX problem: Alice knows $z \in \{0, 1\}^t$ and Bob knows $j \in [t]$. Let’s assume $|z| = t/2$ and this is odd.
One-Pass Lower Bound (1/2)

- Reduction from INDEX problem: Alice knows $z \in \{0, 1\}^t$ and Bob knows $j \in [t]$. Let’s assume $|z| = t/2$ and this is odd.
- Alice and Bob pick $r \in_R \{-1, 1\}^n$ using public random bits.
One-Pass Lower Bound (1/2)

- Reduction from **INDEX** problem: Alice knows $z \in \{0, 1\}^t$ and Bob knows $j \in [t]$. Let’s assume $|z| = t/2$ and this is odd.
- Alice and Bob pick $r \in_R \{-1, 1\}^n$ using public random bits.
- Alice computes $sn(r.z)$ and Bob computes $sn(r_j)$
One-Pass Lower Bound (1/2)

- Reduction from INDEX problem: Alice knows $z \in \{0, 1\}^t$ and Bob knows $j \in [t]$. Let’s assume $|z| = t/2$ and this is odd.
- Alice and Bob pick $r \in_R \{-1, 1\}^n$ using public random bits.
- Alice computes $\text{sn}(r.z)$ and Bob computes $\text{sn}(r_j)$
- **Claim:** For some constant $c > 0$,

$$\mathbb{P} [\text{sn}(r.z) = \text{sn}(r_j)] = \begin{cases}
1/2 & \text{if } z_j = 0 \\
1/2 + c/\sqrt{t} & \text{if } z_j = 1
\end{cases}$$
One-Pass Lower Bound (1/2)

- Reduction from INDEX problem: Alice knows $z \in \{0, 1\}^t$ and Bob knows $j \in [t]$. Let’s assume $|z| = t/2$ and this is odd.
- Alice and Bob pick $r \in \mathbb{R} \{-1, 1\}^n$ using public random bits.
- Alice computes $sn(r.z)$ and Bob computes $sn(r_j)$.
- **Claim:** For some constant $c > 0$,

$$\mathbb{P}[sn(r.z) = sn(r_j)] = \begin{cases}
1/2 & \text{if } z_j = 0 \\
1/2 + c/\sqrt{t} & \text{if } z_j = 1
\end{cases}$$

- Repeat $n = O(t)$ times to construct

$$x_i = I[sn(r.z) = +] \quad \text{and} \quad y_i = I[sn(r_j) = +]$$
One-Pass Lower Bound (1/2)

- Reduction from INDEX problem: Alice knows $z \in \{0, 1\}^t$ and Bob knows $j \in [t]$. Let’s assume $|z| = t/2$ and this is odd.
- Alice and Bob pick $r \in_R \{-1, 1\}^n$ using public random bits.
- Alice computes $\text{sn}(r.z)$ and Bob computes $\text{sn}(r_j)$
- **Claim:** For some constant $c > 0$,
 \[\mathbb{P}[\text{sn}(r.z) = \text{sn}(r_j)] = \begin{cases}
 1/2 & \text{if } z_j = 0 \\
 1/2 + c/\sqrt{t} & \text{if } z_j = 1
 \end{cases} \]
- Repeat $n = O(t)$ times to construct
 \[x_i = \mathbb{I}[\text{sn}(r.z) = +] \quad \text{and} \quad y_i = \mathbb{I}[\text{sn}(r_j) = +] \]
- With probability $9/10$, for some constants $c_1 < c_2$,
 \[z_j = 0 \Rightarrow \Delta(x, y) \geq n/2 - c_1 \sqrt{n} \]
 \[z_j = 1 \Rightarrow \Delta(x, y) \leq n/2 - c_2 \sqrt{n} \]
One-Pass Lower Bound (2/2)

Claim

For some constant $c > 0$,

$$\mathbb{P} [\text{sn}(r.z) = \text{sn}(r_j)] = \begin{cases}
1/2 & \text{if } z_j = 0 \\
1/2 + c/\sqrt{t} & \text{if } z_j = 1
\end{cases}$$
One-Pass Lower Bound (2/2)

Claim

For some constant $c > 0$,

$$
\mathbb{P}[\text{sn}(r.z) = \text{sn}(r_j)] = \begin{cases}
1/2 & \text{if } z_j = 0 \\
1/2 + c/\sqrt{t} & \text{if } z_j = 1
\end{cases}
$$

- If $z_j = 0$ then $\text{sn}(r.z)$ and $\text{sn}(r_j)$ are independent.
One-Pass Lower Bound (2/2)

Claim

For some constant $c > 0$,

\[P[\text{sn}(r.z) = \text{sn}(r_j)] = \begin{cases}
1/2 & \text{if } z_j = 0 \\
1/2 + c/\sqrt{t} & \text{if } z_j = 1
\end{cases} \]

- If $z_j = 0$ then $\text{sn}(r.z)$ and $\text{sn}(r_j)$ are independent.
- If $z_j = 1$, let $s = r.z - r_j$, $A = \{\text{sn}(r.z) = \text{sn}(r_j)\}$:
Claim

For some constant $c > 0$,

$$
P \left[\text{sn}(r.z) = \text{sn}(r_j) \right] = \begin{cases}
1/2 & \text{if } z_j = 0 \\
1/2 + c/\sqrt{t} & \text{if } z_j = 1
\end{cases}
$$

- If $z_j = 0$ then $\text{sn}(r.z)$ and $\text{sn}(r_j)$ are independent.
- If $z_j = 1$, let $s = r.z - r_j$, $A = \{\text{sn}(r.z) = \text{sn}(r_j)\}$:

$$
P [A] = P [A | s = 0] P [s = 0] + P [A | s \neq 0] P [s \neq 0]
$$
Claim

For some constant $c > 0$,

$$\mathbb{P}[\text{sn}(r.z) = \text{sn}(r_j)] = \begin{cases}
1/2 & \text{if } z_j = 0 \\
1/2 + c/\sqrt{t} & \text{if } z_j = 1
\end{cases}$$

- If $z_j = 0$ then $\text{sn}(r.z)$ and $\text{sn}(r_j)$ are independent.
- If $z_j = 1$, let $s = r.z - r_j$, $A = \{\text{sn}(r.z) = \text{sn}(r_j)\}$:

 $$\mathbb{P}[A] = \mathbb{P}[A|s = 0] \mathbb{P}[s = 0] + \mathbb{P}[A|s \neq 0] \mathbb{P}[s \neq 0]$$

 $$\mathbb{P}[A|s = 0] = 1 \text{ and } \mathbb{P}[A|s \neq 0] = 1/2$$
One-Pass Lower Bound (2/2)

Claim

For some constant $c > 0$,

$$\Pr[\text{sn}(r.z) = \text{sn}(r_j)] = \begin{cases}
1/2 & \text{if } z_j = 0 \\
1/2 + c/\sqrt{t} & \text{if } z_j = 1
\end{cases}$$

- If $z_j = 0$ then $\text{sn}(r.z)$ and $\text{sn}(r_j)$ are independent.
- If $z_j = 1$, let $s = r.z - r_j$, $A = \{\text{sn}(r.z) = \text{sn}(r_j)\}$:

$$\Pr[A] = \Pr[A|s = 0] \Pr[s = 0] + \Pr[A|s \neq 0] \Pr[s \neq 0]$$

$$\Pr[A|s = 0] = 1 \text{ and } \Pr[A|s \neq 0] = 1/2$$

$$\Pr[s = 0] = 2c/\sqrt{n} \text{ for some constant } c > 0$$
Summary: We looked at some nice problems, our curiosity is piqued, and now we want to start finding more problems to solve.

Thanks!