Graph & Geometry Problems in Data Streams
2009 Barbados Workshop on Computational Complexity

Andrew McGregor
Models:

- **Graph Streams**: Stream of edges $E = \{e_1, e_2, \ldots, e_m\}$ describe a graph G on n nodes. Estimate properties of G.

- **Geometric Streams**: Stream of points $X = \{p_1, p_2, \ldots, p_m\}$ from some metric space (\mathcal{X}, d). Estimate properties of X.

Notes:

- \tilde{O} is our friend: we'll hide dependence on $\text{polylog}(m, n)$ terms.

- Assume that p_i can be stored in $\tilde{O}(1)$ space and $d(p_i, p_j)$ can be calculated if both p_i and p_j are stored in memory.

- Theory isn’t as cohesive but we get to cherry-pick results.
Introduction

Models:
- **Graph Streams**: Stream of edges $E = \{e_1, e_2, \ldots, e_m\}$ describe a graph G on n nodes. Estimate properties of G.
- **Geometric Streams**: Stream of points $X = \{p_1, p_2, \ldots, p_m\}$ from some metric space (\mathcal{X}, d). Estimate properties of X.

Notes:
- \tilde{O} is our friend: we’ll hide dependence on polylog(m, n) terms.
- Assume that p_i can be stored in $\tilde{O}(1)$ space and $d(p_i, p_j)$ can be calculated if both p_i and p_j are stored in memory.
- Theory isn’t as cohesive but we get to cherry-pick results...
Counting Triangles

Matching

Clustering

Graph Distances
Outline

Counting Triangles

Matching

Clustering

Graph Distances
Problem

Given a stream of edges, estimate the number of triangles T_3 up to a factor $(1 + \epsilon)$ with probability $1 - \delta$ given promise that $T_3 > t$.
Problem

Given a stream of edges, estimate the number of triangles T_3 up to a factor $(1 + \epsilon)$ with probability $1 - \delta$ given promise that $T_3 \geq t$.

Warm-Up

What's an algorithm using $O(\epsilon^{-2}(n^3/t) \log \delta^{-1})$ space?
Problem
Given a stream of edges, estimate the number of triangles T_3 up to a factor $(1 + \epsilon)$ with probability $1 - \delta$ given promise that $T_3 > t$.

Warm-Up
What’s an algorithm using $O(\epsilon^{-2}(n^3/t) \log \delta^{-1})$ space?

Theorem
$\Omega(n^2)$ space required to determine if $t = 0$ (with $\delta = 1/3$).
Problem
Given a stream of edges, estimate the number of triangles T_3 up to a factor $(1 + \epsilon)$ with probability $1 - \delta$ given promise that $T_3 > t$.

Warm-Up
What’s an algorithm using $O(\epsilon^{-2}(n^3/t) \log \delta^{-1})$ space?

Theorem
$\Omega(n^2)$ space required to determine if $t = 0$ (with $\delta = 1/3$).

Theorem (Sivakumar et al. 2002)
$\tilde{O}(\epsilon^{-2}(nm/t)^2 \log \delta^{-1})$ space is sufficient.
Problem
Given a stream of edges, estimate the number of triangles T_3 up to a factor $(1 + \epsilon)$ with probability $1 - \delta$ given promise that $T_3 > t$.

Warm-Up
What’s an algorithm using $O(\epsilon^{-2}(n^3/t) \log \delta^{-1})$ space?

Theorem
$\Omega(n^2)$ space required to determine if $t = 0$ (with $\delta = 1/3$).

Theorem (Sivakumar et al. 2002)
$\tilde{O}(\epsilon^{-2}(nm/t)^2 \log \delta^{-1})$ space is sufficient.

Theorem (Buriol et al. 2006)
$\tilde{O}(\epsilon^{-2}(nm/t) \log \delta^{-1})$ space is sufficient.
Lower Bound

Theorem
\[\Omega(n^2) \text{ space required to determine if } T_3 \neq 0 \text{ when } \delta = 1/3. \]
Lower Bound

Theorem
Ω(\(n^2\)) space required to determine if \(T_3 \neq 0\) when \(\delta = 1/3\).

- Reduce from set-disjointness: Alice has \(n \times n\) binary matrix \(A\), Bob has \(n \times n\) binary matrix \(B\). Is \(A_{ij} = B_{ij} = 1\) for some \((i, j)\)? Needs \(\Omega(n^2)\) bits of communication [Razborov 1992].
Lower Bound

Theorem
Ω(n²) space required to determine if T₃ ≠ 0 when δ = 1/3.

► Reduce from set-disjointness: Alice has n × n binary matrix A, Bob has n × n binary matrix B. Is Aᵢⱼ = Bᵢⱼ = 1 for some (i, j)? Needs Ω(n²) bits of communication [Razborov 1992].

► Consider graph G = (V, E) with

\[V = \{v₁, \ldots, vₙ, u₁, \ldots, uₙ, w₁, \ldots, wₙ\} \] and \[E = \{(vᵢ, uᵢ) : i ∈ [n]\} \]
Lower Bound

Theorem

\(\Omega(n^2) \) space required to determine if \(T_3 \neq 0 \) when \(\delta = 1/3 \).

- Reduce from set-disjointness: Alice has \(n \times n \) binary matrix \(A \), Bob has \(n \times n \) binary matrix \(B \). Is \(A_{ij} = B_{ij} = 1 \) for some \((i, j)\)? Needs \(\Omega(n^2) \) bits of communication [Razborov 1992].

- Consider graph \(G = (V, E) \) with

 \[
 V = \{v_1, \ldots, v_n, u_1, \ldots, u_n, w_1, \ldots, w_n\} \quad \text{and} \quad E = \{(v_i, u_i) : i \in [n]\}
 \]

- Alice runs algorithm on \(G \) and edges \(\{(u_i, w_j) : A_{ij} = 1\} \).
Lower Bound

Theorem
\(\Omega(n^2) \) space required to determine if \(T_3 \neq 0 \) when \(\delta = 1/3 \).

- Reduce from set-disjointness: Alice has \(n \times n \) binary matrix \(A \), Bob has \(n \times n \) binary matrix \(B \). Is \(A_{ij} = B_{ij} = 1 \) for some \((i, j) \)? Needs \(\Omega(n^2) \) bits of communication [Razborov 1992].
- Consider graph \(G = (V, E) \) with

\[
V = \{v_1, \ldots, v_n, u_1, \ldots, u_n, w_1, \ldots, w_n\} \quad \text{and} \quad E = \{(v_i, u_i) : i \in [n]\}
\]

- Alice runs algorithm on \(G \) and edges \(\{(u_i, w_j) : A_{ij} = 1\} \).
- Bob continues running algorithm on edges \(\{(v_i, w_j) : B_{ij} = 1\} \).
Lower Bound

Theorem
\(\Omega(n^2) \) space required to determine if \(T_3 \neq 0 \) when \(\delta = 1/3 \).

- Reduce from set-disjointness: Alice has \(n \times n \) binary matrix \(A \), Bob has \(n \times n \) binary matrix \(B \). Is \(A_{ij} = B_{ij} = 1 \) for some \((i, j) \)? Needs \(\Omega(n^2) \) bits of communication [Razborov 1992].
- Consider graph \(G = (V, E) \) with

\[
V = \{v_1, \ldots, v_n, u_1, \ldots, u_n, w_1, \ldots, w_n\} \quad \text{and} \quad E = \{(v_i, u_i) : i \in [n]\}
\]

- Alice runs algorithm on \(G \) and edges \(\{(u_i, w_j) : A_{ij} = 1\} \).
- Bob continues running algorithm on edges \(\{(v_i, w_j) : B_{ij} = 1\} \).
- \(T_3 > 0 \) iff \(A_{ij} = B_{ij} = 1 \) for some \((i, j) \).
First Algorithm

Theorem (Sivakumar et al. 2002)

\[\tilde{O}(\epsilon^{-2}(nm/T_3)^2 \log \delta^{-1}) \] space is sufficient.
First Algorithm

Theorem (Sivakumar et al. 2002)
\[\tilde{O}(\epsilon^{-2} \frac{nm}{T_3}^2 \log \delta^{-1}) \text{ space is sufficient.} \]

- Given stream of edges induce stream of node-triples:

 edge \((u, v)\) gives rise to \(\{u, v, w\}\) for \(w \in V \setminus \{u, v\}\)
First Algorithm

Theorem (Sivakumar et al. 2002)
\[\tilde{O}(\epsilon^{-2}(nm/T_3)^2 \log \delta^{-1}) \text{ space is sufficient.} \]

- Given stream of edges induce stream of node-triples:

 edge \((u, v)\) gives rise to \(\{u, v, w\}\) for \(w \in V \setminus \{u, v\}\)

- Consider \(F_k = \sum (\text{freq. of } \{u,v,w\})^k\) and note

\[
\begin{pmatrix}
F_0 \\
F_1 \\
F_2
\end{pmatrix} =
\begin{pmatrix}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 9
\end{pmatrix}
\begin{pmatrix}
T_1 \\
T_2 \\
T_3
\end{pmatrix}
\]

where \(T_i\) is the set of node-triples having exactly \(i\) edges in the induced subgraph.
First Algorithm

Theorem (Sivakumar et al. 2002)
\(\tilde{O}(\varepsilon^{-2}(nm/ T_3)^2 \log \delta^{-1}) \) space is sufficient.

- Given stream of edges induce stream of node-triples:

 edge \((u, v)\) gives rise to \(\{u, v, w\}\) for \(w \in V \setminus \{u, v\}\)

- Consider \(F_k = \sum(\text{freq. of }\{u,v,w\})^k\) and note

\[
\begin{pmatrix}
F_0 \\
F_1 \\
F_2
\end{pmatrix} =
\begin{pmatrix}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 9
\end{pmatrix}
\begin{pmatrix}
T_1 \\
T_2 \\
T_3
\end{pmatrix}
\]

where \(T_i\) is the set of node-triples having exactly \(i\) edges in the induced subgraph.

- \(T_3 = F_0 - 3F_1/2 + F_2/2\) so good approx. for \(F_0, F_1, F_2\) suffice.
Second Algorithm

Theorem (Buriol et al. 2006)
\[\tilde{O}(\epsilon^{-2}(nm/T_3) \log \delta^{-1}) \] space is sufficient.
Second Algorithm

Theorem (Buriol et al. 2006)
\[\tilde{O}(\epsilon^{-2}(nm/T_3) \log \delta^{-1}) \text{ space is sufficient.} \]

- Pick an edge \(e_i = (u, v) \) uniformly at random from the stream.
Theorem (Buriol et al. 2006)
\[\tilde{O}(\epsilon^{-2}(nm/T_3) \log \delta^{-1}) \text{ space is sufficient.} \]

- Pick an edge \(e_i = (u, v) \) uniformly at random from the stream.
- Pick \(w \) uniformly at random from \(V \setminus \{u, v\} \)
Second Algorithm

Theorem (Buriol et al. 2006)
\[\tilde{O}(\epsilon^{-2}(nm/T_3) \log \delta^{-1}) \text{ space is sufficient.} \]

- Pick an edge \(e_i = (u, v) \) uniformly at random from the stream.
- Pick \(w \) uniformly at random from \(V \setminus \{u, v\} \)
- If \(e_j = (u, w), \ e_k = (v, w) \) for \(j, k > i \) exist return 1; else 0.
Second Algorithm

Theorem (Buriol et al. 2006)
\[\tilde{O}(\epsilon^{-2} (nm/T_3) \log \delta^{-1}) \] space is sufficient.

- Pick an edge \(e_i = (u, v) \) uniformly at random from the stream.
- Pick \(w \) uniformly at random from \(V \setminus \{u, v\} \).
- If \(e_j = (u, w), e_k = (v, w) \) for \(j, k > i \) exist return 1; else 0.

Lemma
Expected outcome of algorithm is \(\frac{T_3}{3m(n-2)} \).
Second Algorithm

Theorem (Buriol et al. 2006)
\[\tilde{O}(\epsilon^{-2}(nm/T_3) \log \delta^{-1}) \text{ space is sufficient.} \]

- Pick an edge \(e_i = (u, v) \) uniformly at random from the stream.
- Pick \(w \) uniformly at random from \(V \setminus \{u, v\} \)
- If \(e_j = (u, w), e_k = (v, w) \) for \(j, k > i \) exist return 1; else 0.

Lemma

Expected outcome of algorithm is \(\frac{T_3}{3m(n-2)} \).

- Repeat \(O(\epsilon^{-2}(mn/t) \log \delta^{-1}) \) times in parallel and scale average up by \(3m(n-2) \).
Outline

Counting Triangles

Matching

Clustering

Graph Distances
Problem

Stream of weighted edges \((e, w_e)\): Find \(M \subseteq E\) that maximizes \(\sum_{e \in M} w_e\) such that no two edges in \(M\) share an endpoint.
Maximum Weight Matching

Problem

Stream of weighted edges \((e, w_e)\): Find \(M \subset E\) that maximizes \(\sum_{e \in M} w_e\) such that no two edges in \(M\) share an endpoint.

Warm-Up

An easy 2 approx. for unweighted case in \(\tilde{O}(n)\) space?
Maximum Weight Matching

Problem

Stream of weighted edges \((e, w_e)\): Find \(M \subset E\) that maximizes \(\sum_{e \in M} w_e\) such that no two edges in \(M\) share an endpoint.

Warm-Up

An easy \(2\) approx. for unweighted case in \(\tilde{O}(n)\) space?

Theorem

\[3 + 2\sqrt{2} = 5.83\ldots\] approx. in \(\tilde{O}(n)\) space.
Maximum Weight Matching

Problem
Stream of weighted edges \((e, w_e)\): Find \(M \subseteq E\) that maximizes
\[\sum_{e \in M} w_e \] such that no two edges in \(M\) share an endpoint.

Warm-Up
An easy 2 approx. for unweighted case in \(\tilde{O}(n)\) space?

Theorem
\[3 + 2\sqrt{2} = 5.83 \ldots \text{ approx. in } \tilde{O}(n) \text{ space}. \]

Improved to 5.59\ldots [Mariano 07] and 5.24\ldots [Sarma et al. 09].
Maximum Weight Matching

Problem
Stream of weighted edges \((e, w_e)\): Find \(M \subset E\) that maximizes \(\sum_{e \in M} w_e\) such that no two edges in \(M\) share an endpoint.

Warm-Up
An easy \(2\) approx. for unweighted case in \(\tilde{O}(n)\) space?

Theorem
\[3 + 2\sqrt{2} = 5.83\ldots\ \text{approx. in } \tilde{O}(n)\space{\text{space.}}\]

Improved to 5.59\ldots [Mariano 07] and 5.24\ldots [Sarma et al. 09].

Open Problem
Prove a lower bound or a much better algorithm!
An Algorithm

- At all times maintain a matching M, initially $M = \emptyset$.

For the analysis we use the following definitions to describe the execution of the algorithm:

- An edge e kills an edge e' if e' was removed when e arrives.
- We say an edge is a survivor if it's in the final matching.
- For survivor edge e, the trail of the dead is $T(e) = C_1 \cup C_2 \cup ...$, where $C_0 = \{e\}$ and $C_i = \bigcup_{e' \in C_{i-1}} \{\text{edges killed by } e'\}$.
An Algorithm

- At all times maintain a matching M, initially $M = \emptyset$.
- On seeing $e = (u, v)$, suppose $e' = (u, u_1), e'' = (v, u_2) \in M$.

For the analysis we use the following definitions to describe the execution of the algorithm:

- An edge e kills an edge e' if e' was removed when e arrives.
- We say an edge is a survivor if it's in the final matching.
- For survivor e, the trail of the dead is $T(e) = C_1 \cup C_2 \cup ...$, where $C_0 = \{e\}$ and $C_i = \cup e' \in C_{i-1} \{edges killed by e'\}$.
An Algorithm

- At all times maintain a matching M, initially $M = \emptyset$.
- On seeing $e = (u, v)$, suppose $e' = (u, u_1), e'' = (v, u_2) \in M$
- If $w_e \geq (1 + \gamma)(w_{e'} + w_{e''})$, $M \leftarrow M \cup \{e\} \setminus \{e', e''\}$
An Algorithm

- At all times maintain a matching M, initially $M = \emptyset$.
- On seeing $e = (u, v)$, suppose $e' = (u, u_1), e'' = (v, u_2) \in M$
- If $w_e \geq (1 + \gamma)(w_{e'} + w_{e''})$, $M \leftarrow M \cup \{e\} \setminus \{e', e''\}$

For the analysis we use the following definitions to describe the execution of the algorithm:
An Algorithm

- At all times maintain a matching M, initially $M = \emptyset$.
- On seeing $e = (u, v)$, suppose $e' = (u, u_1), e'' = (v, u_2) \in M$
- If $w_e \geq (1 + \gamma)(w_{e'} + w_{e''})$, $M \leftarrow M \cup \{e\} \setminus \{e', e''\}$

For the analysis we use the following definitions to describe the execution of the algorithm:
An Algorithm

- At all times maintain a matching M, initially $M = \emptyset$.
- On seeing $e = (u, v)$, suppose $e' = (u, u_1), e'' = (v, u_2) \in M$
- If $w_e \geq (1 + \gamma)(w_{e'} + w_{e''})$, $M \leftarrow M \cup \{e\} \setminus \{e', e''\}$

For the analysis we use the following definitions to describe the execution of the algorithm:

- An edge e **kills** an edge e' if e' was removed when e arrives.
An Algorithm

- At all times maintain a matching M, initially $M = \emptyset$.
- On seeing $e = (u, v)$, suppose $e' = (u, u_1), e'' = (v, u_2) \in M$
- If $w_e \geq (1 + \gamma)(w_{e'} + w_{e''})$, $M \leftarrow M \cup \{e\} \setminus \{e', e''\}$

For the analysis we use the following definitions to describe the execution of the algorithm:

- An edge e kills an edge e' if e' was removed when e arrives.
- We say an edge is a survivor if it’s in the final matching.
An Algorithm

- At all times maintain a matching M, initially $M = \emptyset$.
- On seeing $e = (u, \nu)$, suppose $e' = (u, u_1), e'' = (\nu, u_2) \in M$.
- If $w_e \geq (1 + \gamma)(w_{e'} + w_{e''})$, $M \leftarrow M \cup \{e\} \setminus \{e', e''\}$

For the analysis we use the following definitions to describe the execution of the algorithm:

- An edge e **kills** an edge e' if e' was removed when e arrives.
- We say an edge is a **survivor** if it's in the final matching.
- For survivor e, the **trail of the dead** is $T(e) = C_1 \cup C_2 \cup \ldots$, where $C_0 = \{e\}$ and

\[
C_i = \bigcup_{e' \in C_{i-1}} \{\text{edges killed by } e'\}
\]
Analysis

Lemma

Let S be set of survivors and $w(S)$ be weight of final matching.

1. $w(T(S)) \leq \frac{w(S)}{\gamma}$
2. $\text{OPT} \leq (1 + \gamma)(w(T(S)) + 2w(S))$

Approximation factor is $\frac{1}{\gamma} + 3 + 2\gamma$ and $\gamma = \frac{1}{\sqrt{2}}$ gives result.
Analysis

Lemma
Let S be set of survivors and $w(S)$ be weight of final matching.

1. $w(T(S)) \leq w(S)/\gamma$
2. $\text{OPT} \leq (1 + \gamma)(w(T(S)) + 2w(S))$

Approximation factor is $1/\gamma + 3 + 2\gamma$ and $\gamma = 1/\sqrt{2}$ gives result.

Proof.
Analysis

Lemma

Let S be set of survivors and $w(S)$ be weight of final matching.

1. $w(T(S)) \leq w(S)/\gamma$
2. $\text{OPT} \leq (1 + \gamma)(w(T(S)) + 2w(S))$

Approximation factor is $1/\gamma + 3 + 2\gamma$ and $\gamma = 1/\sqrt{2}$ gives result.

Proof.

1. Consider $e \in S$:

$$(1+\gamma)w(T(e)) = \sum_{i \geq 1} (1+\gamma)w(C_i) \leq \sum_{i \geq 0} w(C_i) = w(T(e)) + w(e)$$
Analysis

Lemma
Let S be set of survivors and $w(S)$ be weight of final matching.

1. $w(T(S)) \leq w(S)/\gamma$
2. $\text{OPT} \leq (1 + \gamma)(w(T(S)) + 2w(S))$

Approximation factor is $1/\gamma + 3 + 2\gamma$ and $\gamma = 1/\sqrt{2}$ gives result.

Proof.

1. Consider $e \in S$:

$$(1+\gamma)w(T(e)) = \sum_{i \geq 1}(1+\gamma)w(C_i) \leq \sum_{i \geq 0} w(C_i) = w(T(e)) + w(e)$$

2. Can charge the weights of edges in OPT to the $S \cup T(S)$ such that each edge $e \in T(S)$ is charged at most $(1 + \gamma)w(e)$ and each edge $e \in S$ is charged at most $2(1 + \gamma)w(e)$.

Outline

Counting Triangles

Matching

Clustering

Graph Distances
Problem

Given a stream of distinct points \(X = \{p_1, \ldots, p_n\} \) from a metric space \((X, d)\), find the set of \(k \) points \(Y \subset X \) that minimizes:

\[
\max_i \min_{y \in Y} d(p_i, y)
\]
Problem
Given a stream of distinct points $X = \{p_1, \ldots, p_n\}$ from a metric space (X, d), find the set of k points $Y \subset X$ that minimizes:

$$\max_i \min_{y \in Y} d(p_i, y)$$

Warm-Up

- Find 2-approx. if you’re given OPT.
- Find $(2 + \epsilon)$-approx. if you’re given that $a \leq \text{OPT} \leq b$
Problem

Given a stream of distinct points $X = \{p_1, \ldots, p_n\}$ from a metric space (\mathcal{X}, d), find the set of k points $Y \subset X$ that minimizes:

$$\max_i \min_{y \in Y} d(p_i, y)$$

Warm-Up

- Find 2-approx. if you’re given OPT.
- Find $(2 + \epsilon)$-approx. if you’re given that $a \leq \text{OPT} \leq b$

Theorem (Khuller and McCutchen 2009, Guha 2009)

$(2 + \epsilon)$ approx. for metric k-center in $\tilde{O}(k\epsilon^{-1} \log \epsilon^{-1})$ space.
Consider first \(k + 1 \) points: this gives a lower bound \(a \) on \(\text{OPT} \).
\textit{k-center: Algorithm and Analysis}

- Consider first $k + 1$ points: this gives a lower bound a on OPT.
- Instantiate basic algorithm with guesses

\[\ell_1 = a, \ell_2 = (1 + \epsilon) a, \ell_3 = (1 + \epsilon)^2 a, \ldots \ell_{1+t} = O(\epsilon^{-1}) a \]
Consider first $k+1$ points: this gives a lower bound a on OPT.

Instantiate basic algorithm with guesses

$$
\ell_1 = a, \quad \ell_2 = (1 + \epsilon)a, \quad \ell_3 = (1 + \epsilon)^2a, \ldots \quad \ell_{1+t} = O(\epsilon^{-1})a
$$

Say instantiation goes bad if it tries to open $(k + 1)$-th center.
Consider first $k + 1$ points: this gives a lower bound a on OPT.

Instantiate basic algorithm with guesses

\[\ell_1 = a, \ell_2 = (1 + \epsilon)a, \ell_3 = (1 + \epsilon)^2a, \ldots \ell_{1+t} = O(\epsilon^{-1})a\]

Say instantiation goes bad if it tries to open $(k + 1)$-th center

Suppose instantiation with guess ℓ goes bad when processing $(j + 1)$-th point
Consider first \(k+1 \) points: this gives a lower bound \(a \) on \(\text{OPT} \).

Instantiate basic algorithm with guesses

\[
\ell_1 = a, \quad \ell_2 = (1 + \epsilon)a, \quad \ell_3 = (1 + \epsilon)^2a, \ldots \quad \ell_{1+t} = O(\epsilon^{-1})a
\]

Say instantiation goes bad if it tries to open \((k + 1) \)-th center.

Suppose instantiation with guess \(\ell \) goes bad when processing \((j + 1) \)-th point

Let \(q_1, \ldots, q_k \) be centers chosen so far.
Consider first $k + 1$ points: this gives a lower bound a on OPT.

Instantiate basic algorithm with guesses

$$
l_1 = a, \quad l_2 = (1 + \epsilon)a, \quad l_3 = (1 + \epsilon)^2 a, \ldots \quad l_{1+t} = O(\epsilon^{-1})a
$$

Say instantiation goes bad if it tries to open $(k + 1)$-th center.

Suppose instantiation with guess l goes bad when processing $(j + 1)$-th point

- Let q_1, \ldots, q_k be centers chosen so far.
- Then p_1, \ldots, p_j are all at most $2l$ from a q_i.
Consider first $k+1$ points: this gives a lower bound a on OPT.

Instantiate basic algorithm with guesses

$$
\ell_1 = a, \quad \ell_2 = (1 + \epsilon)a, \quad \ell_3 = (1 + \epsilon)^2 a, \ldots \quad \ell_{1+t} = O(\epsilon^{-1})a
$$

Say instantiation goes bad if it tries to open $(k+1)$-th center.

Suppose instantiation with guess ℓ goes bad when processing $(j+1)$-th point

- Let q_1, \ldots, q_k be centers chosen so far.
- Then p_1, \ldots, p_j are all at most 2ℓ from a q_i.
- Optimum for $\{q_1, \ldots, q_k, p_{j+1}, \ldots, p_n\}$ is at most $\text{OPT} + 2\ell$.
Consider first $k + 1$ points: this gives a lower bound a on OPT.

Instantiate basic algorithm with guesses

$$\ell_1 = a, \quad \ell_2 = (1 + \epsilon)a, \quad \ell_3 = (1 + \epsilon)^2a, \ldots \quad \ell_{1+t} = O(\epsilon^{-1})a$$

Say instantiation goes bad if it tries to open $(k + 1)$-th center.

Suppose instantiation with guess ℓ goes bad when processing $(j + 1)$-th point

- Let q_1, \ldots, q_k be centers chosen so far.
- Then p_1, \ldots, p_j are all at most 2ℓ from a q_i.
- Optimum for $\{q_1, \ldots, q_k, p_{j+1}, \ldots, p_n\}$ is at most $\text{OPT} + 2\ell$.

Hence, for an instantiation with guess $2\ell/\epsilon$ only incurs a small if we use $\{q_1, \ldots, q_k, p_{j+1}, \ldots, p_n\}$ rather than $\{p_1, \ldots, p_n\}$.
Outline

Counting Triangles

Matching

Clustering

Graph Distances
Distance Estimation

Problem

Stream of unweighted edges E defines a shortest path graph metric $d_G : V \times V \rightarrow \mathbb{N}$. For $u, v \in V$, estimate $d_G(u, v)$.

Warm-Up

2^{t-1} spanner using $\tilde{O}(n^{1+1/t})$ space.

Theorem (Elkin 2007)

2^{t-1} stretch spanner using $\tilde{O}(n^{1+1/t})$ space with constant update time.
Distance Estimation

Problem
Stream of unweighted edges E defines a shortest path graph metric $d_G : V \times V \rightarrow \mathbb{N}$. For $u, v \in V$, estimate $d_G(u, v)$.

Definition
An α-spanner of a graph $G = (V, E)$ is a subgraph $H = (V, E')$ such that for all u, v,

$$d_G(u, v) \leq d_H(u, v) \leq \alpha d_G(u, v)$$
Distance Estimation

Problem
Stream of unweighted edges E defines a shortest path graph metric $d_G : V \times V \rightarrow \mathbb{N}$. For $u, v \in V$, estimate $d_G(u, v)$.

Definition
An α-spanner of a graph $G = (V, E)$ is a subgraph $H = (V, E')$ such that for all u, v,

$$d_G(u, v) \leq d_H(u, v) \leq \alpha d_G(u, v)$$

Warm-Up
$2t - 1$ spanner using $\tilde{O}(n^{1+1/t})$ space.
Distance Estimation

Problem
Stream of unweighted edges E defines a shortest path graph metric $d_G : V \times V \rightarrow \mathbb{N}$. For $u, v \in V$, estimate $d_G(u, v)$.

Definition
An α-spanner of a graph $G = (V, E)$ is a subgraph $H = (V, E')$ such that for all u, v,

$$d_G(u, v) \leq d_H(u, v) \leq \alpha d_G(u, v)$$

Warm-Up
2$t – 1$ spanner using $\tilde{O}(n^{1+1/t})$ space.

Theorem (Elkin 2007)
2$t – 1$ stretch spanner using $\tilde{O}(n^{1+1/t})$ space with constant update time.
Towards better results if you’re allowed multiple passes...

Problem

Can we get better approximation for $d_G(u, v)$ with multiple passes?
Towards better results if you’re allowed multiple passes...

Problem
Can we get better approximation for $d_G(u, v)$ with multiple passes?

Warm-Up
Find $d_G(u, v)$ exactly in $\tilde{O}(n^{1+\gamma})$ space and $\tilde{O}(n^{1-\gamma})$ passes.
Towards better results if you’re allowed multiple passes...

Problem
Can we get better approximation for $d_G(u, v)$ with multiple passes?

Warm-Up
Find $d_G(u, v)$ exactly in $\tilde{O}(n^{1+\gamma})$ space and $\tilde{O}(n^{1-\gamma})$ passes.

Theorem
$O(k)$ approx in $\tilde{O}(n)$ space with $O(n^{1/k})$ passes.
Towards better results if you’re allowed multiple passes . . .

Problem
Can we get better approximation for \(d_G(u, v)\) with multiple passes?

Warm-Up
Find \(d_G(u, v)\) exactly in \(\tilde{O}(n^{1+\gamma})\) space and \(\tilde{O}(n^{1-\gamma})\) passes.

Theorem
\(O(k)\) approx in \(\tilde{O}(n)\) space with \(O(n^{1/k})\) passes.

Theorem (via Thorup, Zwick 2006)
\((1 + \epsilon)\) approx in \(\tilde{O}(n)\) space with \(n^{O(\log \epsilon^{-1})/\log \log n}\) passes.
Ramsey Partition Approach

Definition (Mendel, Naor 2006)

Ramsey Partition \mathcal{P}_Δ is a random partition of metric space. Each cluster has diameter at most Δ and for $t \leq \Delta/8$,

$$
\Pr(B_X(x, t) \in \mathcal{P}_\Delta) \geq \left(\frac{|B_X(x, \Delta/8)|}{|B_X(x, \Delta)|} \right)^{16t/\Delta} \geq \left(\frac{1}{n} \right)^{16t/\Delta}.
$$

Can construct in stream model in $\tilde{O}(n)$ space and $O(\Delta)$ passes.
Ramsey Partition Approach

Definition (Mendel, Naor 2006)

Ramsey Partition \mathcal{P}_Δ is a random partition of metric space. Each cluster has diameter at most Δ and for $t \leq \Delta/8$,

\[
\Pr(B_X(x, t) \in \mathcal{P}_\Delta) \geq \left(\frac{|B_X(x, \Delta/8)|}{|B_X(x, \Delta)|} \right)^{16t/\Delta} \geq \left(\frac{1}{n} \right)^{16t/\Delta}
\]

Can construct in stream model in $\tilde{O}(n)$ space and $O(\Delta)$ passes.

Algorithm

1. *Sample “beacons”* $b_1, \ldots, b_{n^{1-1/k}}$ including s and t from V
Ramsey Partition Approach

Definition (Mendel, Naor 2006)
Ramsey Partition \mathcal{P}_Δ is a random partion of metric space. Each cluster has diameter at most Δ and for $t \leq \Delta/8$,

$$\Pr(B_X(x, t) \in \mathcal{P}_\Delta) \geq \left(\frac{|B_X(x, \Delta/8)|}{|B_X(x, \Delta)|} \right)^{16t/\Delta} \geq \left(\frac{1}{n} \right)^{16t/\Delta}.$$

Can construct in stream model in $\tilde{O}(n)$ space and $O(\Delta)$ passes.

Algorithm

1. Sample “beacons” $b_1, \ldots, b_{n^{1-1/k}}$ including s and t from V
2. Repeat $O(n^{1/k} \log n)$ times:
 2.1 Create RP with diameter $\Delta \approx kn^{1/k}$ and consider $t \approx n^{1/k}$.
 2.2 For each beacon, add Δ-weighted edge to center of its cluster.
Summary: We looked at some nice problems, our curiosity is piqued, and now we want to start finding more problems to solve.

Thanks!