The Order of the Data Stream

Andrew McGregor (UCSD)

includes work with Sudipto Guha (UPenn)
Data Stream Model
Data Stream Model

- **Stream**: Length m list of numbers from range $[n]$: $S = 2, 30, 10, 2, 66, 43, 240, 3, 12, 492, ...$
Data Stream Model

- **Stream**: Length m list of numbers from range $[n]$: $S = 2, 30, 10, 2, 66, 43, 240, 3, 12, 492, ...$

- **Goal**: Estimate a function f of S such as median, entropy, distinct elements count, longest increasing subsequence, ...
Data Stream Model

- **Stream**: Length m list of numbers from range $[n]$:

 $S = 2, 30, 10, 2, 66, 43, 240, 3, 12, 492, ...$

- **Goal**: Estimate a function f of S such as median, entropy, distinct elements count, longest increasing subsequence, ...

- **The Catch**:

 Sequential access to data in fixed order
 Limited memory, typically $O(\text{polylog}(m,n))$ bits
 Limited number of passes over the data
Data Stream Model

- **Stream**: Length m list of numbers from range $[n]$:
 $S = 2, 30, 10, 2, 66, 43, 240, 3, 12, 492, ...$

- **Goal**: Estimate a function f of S such as median, entropy, distinct elements count, longest increasing subsequence, ...

- **The Catch**: Sequential access to data in fixed order
 - Limited memory, typically $O(\text{polylog}(m,n))$ bits
 - Limited number of passes over the data

- **Applications**: Monitoring network traffic, achieving I/O efficiency, database query-planning, sensor networks...

[Morris '78] [Munro, Paterson '78] [Flajolet, Martin '85]
[Alon, Matias, Szegedy '96] [Henzinger, Raghavan, Rajagopalan '98]
Order of the Data Stream
Order of the Data Stream

- **Order Dependent Function:** \(f(S) \neq f(\pi(S)) \), e.g., longest-increasing seq., histograms of time-series data, ...

 [Guha, Koudas, Shim ’01] [Liben-Nowell, Vee, Zhu ’05]
Order of the Data Stream

- **Order Dependent Function:** $f(S) \neq f(\pi(S))$, e.g., longest-increasing seq., histograms of time-series data, ...
 [Guha, Koudas, Shim ’01] [Liben-Nowell, Vee, Zhu ’05]

- **Order Invariant Function:** $f(S) = f(\pi(S))$, e.g., median, frequency moments, number of distinct items, ...
 Want guarantees for worst-case ordering.
 What about average/random orderings?
 e.g., processing streams of samples.
 [Munro, Paterson ’78] [Demaine, López-Ortiz, Munro ’02]
 [Guha, McGregor, Venkatasubramanian ’06]
 [Guha, McGregor ’06] [Guha, McGregor ’07a]
Order of the Data Stream

• **Order Dependent Function:** \(f(S) \neq f(\pi(S)) \), e.g., longest-increasing seq., histograms of time-series data, ...

 [Guha, Koudas, Shim '01] [Liben-Nowell, Vee, Zhu '05]

• **Order Invariant Function:** \(f(S) = f(\pi(S)) \), e.g., median, frequency moments, number of distinct items, ...

 Want guarantees for worst-case ordering.
 What about average/random orderings?
 e.g., processing streams of samples.

 [Munro, Paterson '78] [Demaine, López-Ortiz, Munro '02]
 [Guha, McGregor, Venkatasubramanian '06]
 [Guha, McGregor '06] [Guha, McGregor '07a]

• **Today's Focus:** Understanding via lower-bounds...
• **Thm:** Finding median in 1 pass (w/p $3/4$) requires $\Omega(m)$ space.
[Henzinger, Raghavan, Rajagopalan '99]
• **Thm:** Finding median in 1 pass (w/p 3/4) requires $\Omega(m)$ space. [Henzinger, Raghavan, Rajagopalan '99]

• **Proof:** Assume an alg. A exists using $o(m)$ space.
• **Thm:** Finding median in 1 pass (w/p 3/4) requires $\Omega(m)$ space. [Henzinger, Raghavan, Rajagopalan '99]

• **Proof:** Assume an alg. \mathcal{A} exists using $o(m)$ space. Use it to solve the “INDEX” problem.
Alice

length
t=\frac{m+1}{2}

binary string x

Bob

index i in range [t]

• **Thm:** Finding median in 1 pass (w/p 3/4) requires \(\Omega(m)\) space. [Henzinger, Raghavan, Rajagopalan '99]

• **Proof:** Assume an alg. \(A\) exists using \(o(m)\) space.
 Use it to solve the “INDEX” problem.
INDEX: “What’s the value of x_i?”

Any one-way protocol that works w/p 3/4 requires $\Omega(t)$ bits sent.

Alice

length
t=$(m+1)/2$
binary string x

Bob

index i in range $[t]$

Thm: Finding median in 1 pass (w/p 3/4) requires $\Omega(m)$ space. [Henzinger, Raghavan, Rajagopalan ’99]

Proof: Assume an alg. \mathcal{A} exists using $o(m)$ space. Use it to solve the “INDEX” problem.
INDEX: “What’s the value of x_i?”

Any one-way protocol that works w/p 3/4 requires $\Omega(t)$ bits sent.

Alice
length
t=$(m+1)/2$
binary string x

Bob
index i in range $[t]$

• **Thm:** Finding median in 1 pass (w/p 3/4) requires $\Omega(m)$ space.
 [Henzinger, Raghavan, Rajagopalan ’99]

• **Proof:** Assume an alg. A exists using $o(m)$ space.
 Use it to solve the “INDEX” problem.
Alice
length
t=(m+1)/2
binary string x

Bob
index i in range [t]

INDEX: “What’s the value of \(x_i \)?”
Any one-way protocol that works w/p 3/4 requires \(\Omega(t) \) bits sent.

- **Thm:** Finding median in 1 pass (w/p 3/4) requires \(\Omega(m) \) space. [Henzinger, Raghavan, Rajagopalan ’99]
- **Proof:** Assume an alg. \(\mathcal{A} \) exists using \(o(m) \) space. Use it to solve the “INDEX” problem.
INDEX: “What’s the value of x_i?”
Any one-way protocol that works w/p $3/4$ requires $\Omega(t)$ bits sent.

Alice
length $t = (m+1)/2$
binary string x

Bob
index i in range $[t]$

- **Thm:** Finding median in 1 pass (w/p 3/4) requires $\Omega(m)$ space.
 [Henzinger, Raghavan, Rajagopalan ’99]

- **Proof:** Assume an alg. \mathcal{A} exists using $o(m)$ space.
 Use it to solve the “INDEX” problem.
INDEX: “What’s the value of x_i?”

Any one-way protocol that works w/p 3/4 requires $\Omega(t)$ bits sent.

Alice
length
t=$\frac{(m+1)}{2}$
binary string x

Bob
index i in range $[t]$

• **Thm:** Finding median in 1 pass (w/p 3/4) requires $\Omega(m)$ space. [Henzinger, Raghavan, Rajagopalan '99]

• **Proof:** Assume an alg. \mathcal{A} exists using $o(m)$ space. Use it to solve the “INDEX” problem. Protocol uses $o(m)$ bits. Contradiction!
Our Talk

“Proving Lower Bounds When You Can’t Be Too Mean to the Algorithms”
Our Talk

“Proving Lower Bounds When You Can’t Be Too Mean to the Algorithms”

Selection:

One-Pass, LB (Random Order)
(general random-order lower bound)

Multi-Pass LB (Advers. Order)
(exponential separation between order)
Our Talk

“Proving Lower Bounds When You Can’t Be Too Mean to the Algorithms”

Selection:
One-Pass, LB (Random Order) (general random-order lower bound)
Multi-Pass LB (Advers. Order) (exponential separation between order)

Longest Increasing Subsequence:
Multi-Pass LB (doubly exponential pass/space trade-off)
Our Talk

“Proving Lower Bounds When You Can’t Be Too Mean to the Algorithms”

Selection:

One-Pass, LB (Random Order)
(general random-order lower bound)

Multi-Pass LB (Advers. Order)
(exponential separation between order)

Longest Increasing Subsequence:

Multi-Pass LB
(doubly exponential pass/space trade-off)

Post-Order Tree Traversal:

The “Pass Elimination” Technique
Our Talk

“Proving Lower Bounds When You Can’t Be Too Mean to the Algorithms”

Selection:
One-Pass, LB (Random Order)
(general random-order lower bound)
Multi-Pass LB (Advers. Order)
(exponential separation between order)

Longest Increasing Subsequence:
Multi-Pass LB
(doubly exponential pass/space trade-off)

Post-Order Tree Traversal:
The “Pass Elimination” Technique

Other Applications: 3D Linear Programming, Histograms, ...
1: Selection
2: Tree Traversal
3: Applications
I: Selection

a) Previous Work
b) Single-Pass LB (Random Order)
c) Multi-Pass LB (Advers. Order)
Previous Work
Previous Work

- **t-approx median**: Any element of rank = m/2±t
Previous Work

- **t-approx median**: Any element of rank $= m/2 \pm t$
- Previous Work (The Story So Far...):
Previous Work

- **t-approx median**: Any element of rank = m/2±t

- **Previous Work (The Story So Far...):**

<table>
<thead>
<tr>
<th>Approx.</th>
<th>Passes</th>
<th>Space</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>m^α</td>
<td>1</td>
<td>Œ(m^{1-α})</td>
<td>Advers.</td>
</tr>
</tbody>
</table>

[Greenwald, Khanna ‘01]
• **t-approx median**: Any element of rank = \(m/2 \pm t \)

• **Previous Work (The Story So Far...)**:

<table>
<thead>
<tr>
<th>Approx.</th>
<th>Passes</th>
<th>Space</th>
<th>Order</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m^\alpha)</td>
<td>1</td>
<td>(\tilde{O}(m^{1-\alpha}))</td>
<td>Advers.</td>
<td>[Greenwald, Khanna '01]</td>
</tr>
<tr>
<td>(\tilde{O}(m^{1/2}))</td>
<td>1</td>
<td>(\tilde{O}(1))</td>
<td>Random</td>
<td>[Guha, McGregor '06]</td>
</tr>
</tbody>
</table>
Previous Work

- **t-approx median:** Any element of rank = m/2±t

- **Previous Work (The Story So Far...):**

<table>
<thead>
<tr>
<th>Approx.</th>
<th>Passes</th>
<th>Space</th>
<th>Order</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>m^α</td>
<td>1</td>
<td>Õ(m^{1-α})</td>
<td>Advers.</td>
<td>[Greenwald, Khanna '01]</td>
</tr>
<tr>
<td>Õ(m^{1/2})</td>
<td>1</td>
<td>Õ(1)</td>
<td>Random</td>
<td>[Guha, McGregor '06]</td>
</tr>
<tr>
<td>Exact</td>
<td>O(lg m/lg lg m)</td>
<td>Õ(1)</td>
<td>Advers.</td>
<td>[Munro, Paterson '78]</td>
</tr>
</tbody>
</table>
Previous Work

- **t-approx median:** Any element of rank $= m/2 \pm t$

- **Previous Work (The Story So Far...):**

<table>
<thead>
<tr>
<th>Approx.</th>
<th>Passes</th>
<th>Space</th>
<th>Order</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>m^α</td>
<td>1</td>
<td>$\tilde{O}(m^{1-\alpha})$</td>
<td>Advers.</td>
<td>[Greenwald, Khanna ‘01]</td>
</tr>
<tr>
<td>$\tilde{O}(m^{1/2})$</td>
<td>1</td>
<td>$\tilde{O}(1)$</td>
<td>Random</td>
<td>[Guha, McGregor ‘06]</td>
</tr>
<tr>
<td>Exact</td>
<td>$O(lg m/lg lg m)$</td>
<td>$\tilde{O}(1)$</td>
<td>Advers.</td>
<td>[Munro, Paterson ‘78]</td>
</tr>
<tr>
<td>Exact</td>
<td>$O(lg lg m)$</td>
<td>$\tilde{O}(1)$</td>
<td>Random</td>
<td>[Guha, McGregor ‘06]</td>
</tr>
</tbody>
</table>
Previous Work

- **t-approx median:** Any element of rank = \(m/2\pm t \)

Previous Work (The Story So Far...):

<table>
<thead>
<tr>
<th>Approx.</th>
<th>Passes</th>
<th>Space</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m^\alpha)</td>
<td>1</td>
<td>(\tilde{O}(m^{1-\alpha}))</td>
<td>Advers. [Greenwald, Khanna '01]</td>
</tr>
<tr>
<td>(\tilde{O}(m^{1/2}))</td>
<td>1</td>
<td>(\tilde{O}(1))</td>
<td>Random [Guha, McGregor '06]</td>
</tr>
<tr>
<td>Exact</td>
<td>(O(\lg m/\lg \lg m))</td>
<td>(\tilde{O}(1))</td>
<td>Advers. [Munro, Paterson '78]</td>
</tr>
<tr>
<td>Exact</td>
<td>(O(\lg \lg m))</td>
<td>(\tilde{O}(1))</td>
<td>Random [Guha, McGregor '06]</td>
</tr>
<tr>
<td>Exact</td>
<td>1</td>
<td>(\tilde{O}(m^{1/2}))</td>
<td>Random [Munro, Paterson '78]</td>
</tr>
</tbody>
</table>
Previous Work

- **t-approx median:** Any element of rank $= m/2 \pm t$

Previous Work (The Story So Far...):

<table>
<thead>
<tr>
<th>Approx.</th>
<th>Passes</th>
<th>Space</th>
<th>Order</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>m^α</td>
<td>1</td>
<td>$\tilde{O}(m^{1-\alpha})$</td>
<td>Advers.</td>
<td>[Greenwald, Khanna '01]</td>
</tr>
<tr>
<td>$\tilde{O}(m^{1/2})$</td>
<td>1</td>
<td>$\tilde{O}(1)$</td>
<td>Random</td>
<td>[Guha, McGregor '06]</td>
</tr>
<tr>
<td>Exact</td>
<td>$O(\lg m/\lg \lg m)$</td>
<td>$\tilde{O}(1)$</td>
<td>Advers.</td>
<td>[Munro, Paterson '78]</td>
</tr>
<tr>
<td>Exact</td>
<td>$O(\lg \lg m)$</td>
<td>$\tilde{O}(1)$</td>
<td>Random</td>
<td>[Guha, McGregor '06]</td>
</tr>
<tr>
<td>Exact</td>
<td>1</td>
<td>$\tilde{O}(m^{1/2})$</td>
<td>Random</td>
<td>[Munro, Paterson '78]</td>
</tr>
</tbody>
</table>

Questions: Is the exponential separation in passes “real”? Can the random order results be improved?
t-approx median: Any element of rank $= m/2 \pm t$

Previous Work (The Story So Far...):

<table>
<thead>
<tr>
<th>Approx.</th>
<th>Passes</th>
<th>Space</th>
<th>Order</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>m^α</td>
<td>1</td>
<td>$\tilde{O}(m^{1-\alpha})$</td>
<td>Advers.</td>
<td>[Greenwald, Khanna '01]</td>
</tr>
<tr>
<td>$\tilde{O}(m^{1/2})$</td>
<td>1</td>
<td>$\tilde{O}(1)$</td>
<td>Random</td>
<td>[Guha, McGregor '06]</td>
</tr>
<tr>
<td>Exact</td>
<td>$O(lg m/lg lg m)$</td>
<td>$\tilde{O}(1)$</td>
<td>Advers.</td>
<td>[Munro, Paterson '78]</td>
</tr>
<tr>
<td>Exact</td>
<td>$O(lg lg m)$</td>
<td>$\tilde{O}(1)$</td>
<td>Random</td>
<td>[Guha, McGregor '06]</td>
</tr>
<tr>
<td>Exact</td>
<td>1</td>
<td>$\tilde{O}(m^{1/2})$</td>
<td>Random</td>
<td>[Munro, Paterson '78]</td>
</tr>
</tbody>
</table>

Questions: Is the exponential separation in passes “real”? Can the random order results be improved?

Today’s Results:

| Exact | $\Omega(lg m/lg lg m)$ | $\tilde{O}(1)$ | Advers. | [Guha, McGregor '07] |
| Exact | 1 | $\Omega(m^{1/2})$ | Random | [Guha, McGregor '07] |
Random-Order LB
Random-Order LB

- **Thm:** Finding the median of a randomly ordered stream (w/ p 3/4) requires $\Omega(m^{1/2})$ space.
Random-Order LB

• **Thm:** Finding the median of a randomly ordered stream (w/ p 3/4) requires $\Omega(m^{1/2})$ space.

• **Proof:**
 Reduction from size t instance of $\text{INDEX}(x,j)$:

 - **Special Items:** $\{2i+x_i : i=1, \ldots, t\}$
 - **Small Items:** $(m+1)/2-j$ copies of “0”
 - **Large Items:** $(m-1)/2-t+j$ copies of “2t+x_t”
 - **Bias:** $j=|\# \text{ Small Items} - \# \text{ Large Items}|/2$
Random-Order LB

• **Thm:** Finding the median of a randomly ordered stream (w/ p 3/4) requires $\Omega(m^{1/2})$ space.

• **Proof:**

 Reduction from size t instance of $\text{INDEX}(x,j)$:

 - **Special Items:** $\{2i+x_i : i=1, \ldots, t\}$
 - **Small Items:** $(m+1)/2-j$ copies of “0”
 - **Large Items:** $(m-1)/2-t+j$ copies of “$2t+x_t$”
 - **Bias:** $j=|# \text{ Small Items} - # \text{ Large Items}|/2$

 Assume a t-space alg. A that finds the median of a randomly ordered stream w/p 3/4.
Random-Order LB

- **Thm:** Finding the median of a randomly ordered stream (w/p 3/4) requires $\Omega(m^{1/2})$ space.

- **Proof:**
 Reduction from size t instance of $\text{INDEX}(x,j)$:

 Special Items: $\{2i+x_i : i=1, ..., t\}$

 Small Items: $(m+1)/2-j$ copies of “0”

 Large Items: $(m-1)/2-t+j$ copies of “2t+x_t”

 Bias: $j=|\# \text{ Small Items} - \# \text{ Large Items}|/2$

 Assume a t-space alg. A that finds the median of a randomly ordered stream w/p 3/4.

 Key Challenge: Must simulate alg. on random perm.
• **Thm:** Finding the median of a randomly ordered stream (w/ p 3/4) requires $\Omega(m^{1/2})$ space.

• **Proof:**

Reduction from size t instance of $\text{INDEX}(x,j)$:

- **Special Items:** $\{2i+x_i : i=1, \ldots, t\}$
- **Small Items:** $(m+1)/2-j$ copies of “0”
- **Large Items:** $(m-1)/2-t+j$ copies of “2t+x_t”
- **Bias:** $j=|#\text{ Small Items} - #\text{ Large Items}|/2$

Assume a t-space alg. \mathcal{A} that finds the median of a randomly ordered stream w/p 3/4.

Key Challenge: Must simulate alg. on random perm.

Solution: Make perm. “almost random” by choosing t small and allow Alice to determine all but last “few” elements...
Alice

length t

binary string x

Bob

index i in range $[t]$
Alice: Randomly guess bias b in range $[t]$. Run algorithm on a random perm. of,
$$\{ 0, \ldots , 0, 2 + x_1, \ldots , 2t + x_t, 2t + 2, \ldots , 2t + 2 \}$$

\[\frac{(m+1-m_2)}{2-b} \]

Bob
index i in range $[t]$
Alice: Randomly guess bias b in range $[t]$. Run algorithm on a random perm. of,

$$\{0, \ldots, 0, 2 + x_1, \ldots, 2t + x_t, 2t + 2, \ldots, 2t + 2\}$$

\[
\left(\frac{m+1-m_2}{2}-b\right)
\]

\[
\left(\frac{m+1-m_2}{2}+b-t-1\right)
\]

Memory State of Algorithm and “b”

Alice
- length t
- binary string x

Bob
- index i in range $[t]$
Alice: Randomly guess bias b in range $[t]$. Run algorithm on a random perm. of,

$$\{ 0, \ldots, 0, 2 + x_1, \ldots, 2t + x_t, 2t + 2, \ldots, 2t + 2 \}$$

$$\frac{(m+1-m_2)}{2-b}$$

Bob: inserts a random permutation of,

$$\{ 0, \ldots, 0, 2t + 2, \ldots, 2t + 2 \}$$

$$\frac{m_2}{2+b-i}$$

MEMORY STATE OF ALGORITHM and “b”

Alice length t binary string x

Bob index i in range $[t]$
Alice: Randomly guess bias \(b \) in range \([t]\). Run algorithm on a random perm. of,

\[
\{ 0, \ldots, 0, 2 + x_1, \ldots, 2t + x_t, 2t + 2, \ldots, 2t + 2 \}
\]

\[
(m + 1 - m_2)/2 - b
\]

Bob: inserts a random permutation of,

\[
\{ 0, \ldots, 0, 2t + 2, \ldots, 2t + 2 \}
\]

\[
m_2/2 + b - i
\]

\[
m_2/2 - b + i
\]

• If \(t \ll \sqrt{m_2} \) then bias \(b \) is not apparent
Alice: Randomly guess bias b in range $[t]$. Run algorithm on a random perm. of,

$$\{0, \ldots, 0, 2 + x_1, \ldots, 2t + x_t, 2t + 2, \ldots, 2t + 2\}$$

Bob: inserts a random permutation of,

$$\{0, \ldots, 0, 2t + 2, \ldots, 2t + 2\}$$

- If $t << \sqrt{m_2}$ then bias b is not apparent
- If $t m_2 << m$ then no special elements in suffix.
Alice:

Randomly guess bias b in range $[t]$. Run algorithm on a random perm. of,

$$\{ 0, \ldots, 0, 2 + x_1, \ldots, 2t + x_t, 2t + 2, \ldots, 2t + 2 \}$$

$$\frac{(m+1-m_2)}{2-b}$$

Bob:

inserts a random permutation of,

$$\{ 0, \ldots, 0, 2t + 2, \ldots, 2t + 2 \}$$

$$\frac{m_2}{2+b-i}$$

• If $t<<\sqrt{m_2}$ then bias b is not apparent

• If $t m_2<<m$ then no special elements in suffix.

• If $t=O(m^{1/3})$ and $m_2=O(m^{2/3})$ then A succeeds w/p $2/3$ since ordering is “random enough.”
Alice

length t

binary string x

Bob

index i in range $[t]$.

Alice: Randomly guess bias b in range $[t]$. Run algorithm on a random perm. of,

\[
\{0, \ldots, 0, 2 + x_1, \ldots, 2t + x_t, 2t + 2, \ldots, 2t + 2\}
\]

(memory state of algorithm and "b")

Bob: inserts a random permutation of,

\[
\{0, \ldots, 0, 2t + 2, \ldots, 2t + 2\}
\]

- If $t<<\sqrt{m_2}$ then bias b is not apparent
- If $t \cdot m_2<<m$ then no special elements in suffix.
- If $t=\mathcal{O}(m^{1/3})$ and $m_2=\mathcal{O}(m^{2/3})$ then A succeeds w/p $2/3$ since ordering is "random enough."
- **Thm:** Space required is $\Omega(m^{1/3})$
Random-Order LB
Random-Order LB

... can be extended to:

- **Thm:** Finding the median of a randomly ordered stream (with probability at least 3/4) requires $\Omega(m^{1/2-\delta})$ space.
Random-Order LB

... can be extended to:

- **Thm:** Finding the median of a randomly ordered stream (with probability at least 3/4) requires $\Omega(m^{1/2-\delta})$ space.

- **Open Questions:**
 ? Extending to multiple passes: is $\Omega(lg lg m)$ passes required when we only have polylog(m,n) space?
Random-Order LB

... can be extended to:

• **Thm:** Finding the median of a randomly ordered stream (with probability at least 3/4) requires $\Omega(m^{1/2-\delta})$ space.

• **Open Questions:**

 ? Extending to multiple passes: is $\Omega(lg lg m)$ passes required when we only have polylog(m, n) space?

 BREAKING NEWS: See SODA ’08 [Chakrabarti, Jayram, Patrascu ’08]
Random-Order LB

... can be extended to:

• **Thm:** Finding the median of a randomly ordered stream (with probability at least 3/4) requires $\Omega(m^{1/2-\delta})$ space.

• **Open Questions:**
 ? Extending to multiple passes: is $\Omega(\lg \lg m)$ passes required when we only have polylog(m,n) space?

 BREAKING NEWS: See SODA '08 [Chakrabarti, Jayram, Patrascu '08]

 ? For exact selection, result is tight. But more generally...?
Adversarial-Order LB

- **Thm:** Find the median of an adversarially ordered stream in p passes requires $\Omega(m^{1/p})$ space.
Adversarial-Order LB

- **Thm:** Find the median of an adversarially ordered stream in p passes requires $\Omega(m^{1/p})$ space.

- **Proof Steps:**
Adversarial-Order LB

• **Thm:** Find the median of an adversarially ordered stream in \(p \) passes requires \(\Omega(m^{1/p}) \) space.

• **Proof Steps:**

 \(p \)-pass, \((p+1) \)-level, \(t \)-ary Tree Pointer Chasing needs \(\Omega(t) \) space
Adversarial-Order LB

- **Thm:** Find the median of an adversarially ordered stream in p passes requires $\Omega(m^{1/p})$ space.

- **Proof Steps:**

 - p-pass, $(p+1)$-level, t-ary Tree Pointer Chasing needs $\Omega(t)$ space

 Reduction from $(p+1)$-level, $m^{1/p}$-ary Tree Pointer Chasing.
Tree Pointer Chasing
Tree Pointer Chasing

- **Tree Pointers**: Function on nodes of \((p+1)\)-level, \(t\)-ary tree,
 \(f(v)=i\), specifies \(i^{th}\) child of \(v\) if \(v\) is an internal node
 \(f(v)\) in \(\{0,1\}\) if \(v\) is a leaf
Tree Pointer Chasing

- **Tree Pointers:** Function on nodes of \((p+1)\)-level, \(t\)-ary tree,
 \(f(v) = i\), specifies \(i^{th}\) child of \(v\) if \(v\) is an internal node
 \(f(v)\) in \(\{0, 1\}\) if \(v\) is a leaf
Tree Pointer Chasing

- **Tree Pointers**: Function on nodes of \((p+1)\)-level, \(t\)-ary tree, \(f(v) = i\), specifies \(i^{th}\) child of \(v\) if \(v\) is an internal node.
 \(f(v)\) in \{0,1\} if \(v\) is a leaf.

\[
\begin{align*}
f(v_1) &= 0 & f(v_2) &= 1 & f(v_3) &= 1 & f(v_4) &= 1 & f(v_5) &= 0 & f(v_6) &= 1 & f(v_7) &= 1 & f(v_8) &= 0 & f(v_9) &= 1
\end{align*}
\]
Tree Pointer Chasing

- **Tree Pointers**: Function on nodes of \((p+1)\)-level, \(t\)-ary tree, \(f(v)=i\), specifies \(i^{th}\) child of \(v\) if \(v\) is an internal node
- \(f(v)\) in \(\{0,1\}\) if \(v\) is a leaf

\[
\begin{align*}
 f(v_1) &= 0 & f(v_2) &= 1 & f(v_3) &= 1 & f(v_4) &= 1 & f(v_5) &= 0 & f(v_6) &= 1 & f(v_7) &= 1 & f(v_8) &= 0 & f(v_9) &= 1 \\
 f(v_{10}) &= 1 & f(v_{11}) &= 3 & f(v_{12}) &= 1
\end{align*}
\]
Tree Pointer Chasing

- **Tree Pointers**: Function on nodes of \((p+1)\)-level, \(t\)-ary tree,
 \(f(v)=i\), specifies \(i^{th}\) child of \(v\) if \(v\) is an internal node
 \(f(v)\) in \(\{0,1\}\) if \(v\) is a leaf

\[
\begin{align*}
 f(v_1) &= 0 & f(v_2) &= 1 & f(v_3) &= 1 & f(v_4) &= 1 & f(v_5) &= 0 & f(v_6) &= 1 & f(v_7) &= 1 & f(v_8) &= 0 & f(v_9) &= 1 \\
 f(v_{10}) &= 1 & f(v_{11}) &= 3 & f(v_{12}) &= 1 & f(v_{13}) &= 3
\end{align*}
\]
Tree Pointer Chasing

- **Tree Pointers**: Function on nodes of \((p+1)\)-level, \(t\)-ary tree, \(f(v)=i\), specifies \(i^{th}\) child of \(v\) if \(v\) is an internal node, \(f(v)\) in \(\{0,1\}\) if \(v\) is a leaf.

- **Level-by-level Problem**: Compute \(f(f(... f(v_{\text{root}})....))\), i.e., follow the pointer from root to leaf, when the data is level-by-level, in the wrong order: \(f(v_1), f(v_2), f(v_3), f(v_4), ..., f(v_{13})\)

\[
\begin{align*}
\text{f(v)} & \text{= value of child}
\end{align*}
\]
Tree Pointer Chasing

- **Tree Pointers**: Function on nodes of \((p+1)\)-level, \(t\)-ary tree,
 \(f(v) = i\), specifies \(i\)th child of \(v\) if \(v\) is an internal node,
 \(f(v)\) in \(\{0, 1\}\) if \(v\) is a leaf

- **Level-by-level Problem**: Compute \(f(f(\ldots f(v_{\text{root}})\ldots))\), i.e., follow the
 pointer from root to leaf, when the data is level-by-level, in
 the wrong order: \(f(v_1), f(v_2), f(v_3), f(v_4), \ldots, f(v_{13})\)

\[
\begin{align*}
f(v_1) &= 0 \\
f(v_2) &= 1 \\
f(v_3) &= 1 \\
f(v_4) &= 1 \\
f(v_5) &= 0 \\
f(v_6) &= 1 \\
f(v_7) &= 1 \\
f(v_8) &= 0 \\
f(v_9) &= 1 \\
f(v_{10}) &= 1 \\
f(v_{11}) &= 3 \\
f(v_{12}) &= 1 \\
f(v_{13}) &= 3
\end{align*}
\]
Tree Pointer Chasing

- **Tree Pointers**: Function on nodes of \((p+1)\)-level, \(t\)-ary tree, \(f(v)=i\), specifies \(i\)th child of \(v\) if \(v\) is an internal node, \(f(v)\) in \(\{0,1\}\) if \(v\) is a leaf.

- **Level-by-level Problem**: Compute \(f(f(... f(v_{\text{root}})....))\), i.e., follow the pointer from root to leaf, when the data is level-by-level, *in the wrong order*: \(f(v_1), f(v_2), f(v_3), f(v_4), ... , f(v_{13})\)

\[\begin{align*}
f(v_1) &= 0 \\
f(v_2) &= 1 \\
f(v_3) &= 1 \\
f(v_4) &= 1 \\
f(v_5) &= 0 \\
f(v_6) &= 1 \\
f(v_7) &= 1 \\
f(v_8) &= 0 \\
f(v_9) &= 1 \\
f(v_{10}) &= 1 \\
f(v_{11}) &= 3 \\
f(v_{12}) &= 1 \\
f(v_{13}) &= 3
\end{align*}\]
Tree Pointer Chasing

- **Tree Pointers:** Function on nodes of \((p+1)\)-level, \(t\)-ary tree, \(f(v)=i\), specifies \(i^{th}\) child of \(v\) if \(v\) is an internal node \(f(v)\) in \(\{0,1\}\) if \(v\) is a leaf

- **Level-by-level Problem:** Compute \(f(f(... f(v_{\text{root}})....))\), i.e., follow the pointer from root to leaf, when the data is level-by-level, in the wrong order: \(f(v_1), f(v_2), f(v_3), f(v_4), \ldots, f(v_{13})\)

- **Thm:** Any \(p\)-pass algorithm requires \(\Omega(t)\) space (\(p\) small).

![Diagram showing tree pointer chasing with node values]

- \(f(v_{13})=3\)
- \(f(v_{10})=1\)
- \(f(v_{11})=3\)
- \(f(v_{12})=1\)
- \(f(v_1)=0\)
- \(f(v_2)=1\)
- \(f(v_3)=1\)
- \(f(v_4)=1\)
- \(f(v_5)=0\)
- \(f(v_6)=1\)
- \(f(v_7)=1\)
- \(f(v_8)=0\)
- \(f(v_9)=1\)
Reduction to Selection
Reduction to Selection

- Reconsider INDEX problem as 2-level tree pointer chasing:
Reduction to Selection

- Reconsider INDEX problem as 2-level tree pointer chasing:

\[f(v_1) = 1 \quad f(v_2) = 0 \quad f(v_3) = 0 \quad f(v_4) = 1 \quad f(v_5) = 0 \]

\[f(v_6) = 2 \]

Corresponds to \(x = 10010 \) and \(j = 2 \).
Reduction to Selection

- Reconsider INDEX problem as 2-level tree pointer chasing:

\[f(v_1) = 1 \quad f(v_2) = 0 \quad f(v_3) = 0 \quad f(v_4) = 1 \quad f(v_5) = 0 \]

\[f(v_6) = 2 \]

corresponds to \(x = 10010 \) and \(j = 2 \).
Reduction to Selection

- Reconsider INDEX problem as 2-level tree pointer chasing:
 \[f(v_6) = 2 \]
 \[f(v_1) = 1 \]
 \[f(v_2) = 0 \]
 \[f(v_3) = 0 \]
 \[f(v_4) = 1 \]
 \[f(v_5) = 0 \]

 corresponds to \(x = 10010 \) and \(j = 2 \).

- \textbf{Special Items:} \(i^{th} \) leaf becomes \(i(t+2) + x_i \)
Reduction to Selection

- Reconsider INDEX problem as 2-level tree pointer chasing:

 \[f(v_6) = 2 \]

 \[
 \begin{array}{l}
 f(v_1) = 1 \\
 f(v_2) = 0 \\
 f(v_3) = 0 \\
 f(v_4) = 1 \\
 f(v_5) = 0
 \end{array}
 \]

 corresponds to \(x = 10010 \) and \(j = 2 \).

- **Special Items:** \(i^{th} \) leaf becomes \(i(t+2)+x_i \)

- **Large/Small Items:** Root becomes \((j-1)\) copies of “0” and \((t-j)\) copies of “(t+1)(t+2)”
Reduction to Selection

• Reconsider INDEX problem as 2-level tree pointer chasing:

```
Reconstruction process:
```

- **Special Items**: ith leaf becomes $i(t+2)+x_i$
- **Large/Small Items**: Root becomes $(j-1)$ copies of “0” and $(t-j)$ copies of “$(t+1)(t+2)$”

• **Example**:
 - Tree-Traversal Stream: 1,0,0,1,0,2
 - Induced Stream: 8, 14, 21, 29, 35, 0, 0, 0, 42
Reduction to Selection

• Reconsider INDEX problem as 2-level tree pointer chasing:

 \[f(v_6) = 2 \]
 \[f(v_1) = 1 \]
 \[f(v_2) = 0 \]
 \[f(v_3) = 0 \]
 \[f(v_4) = 1 \]
 \[f(v_5) = 0 \]

 corresponds to \(x = 10010 \) and \(j = 2 \).

• **Special Items**: \(i^{th} \) leaf becomes \(i(t+2) + x_i \)

• **Large/Small Items**: Root becomes \((j-1) \) copies of “0” and \((t-j) \) copies of “(t+1)(t+2)”

• **Example**:
 * Tree-Traversal Stream*: 1, 0, 0, 1, 0, 2
 * Induced Stream*: 8, 14, 21, 29, 35, 0, 0, 0, 42

• ... extend to deeper trees via “representation in base \((t+2) \)”
Reduction to Selection

\[
\begin{align*}
 f(v_1) &= 0 \\
 f(v_2) &= 1 \\
 f(v_3) &= 1 \\
 f(v_4) &= 1 \\
 f(v_5) &= 0 \\
 f(v_6) &= 1 \\
 f(v_7) &= 1 \\
 f(v_8) &= 0 \\
 f(v_9) &= 1
\end{align*}
\]
Reduction to Selection

- Let \((a_p, ..., a_0)\) denote \(a_p(t+2)^p + a_{p-1}(t+2)^{p-1} + ... + a_0(t+2)^0\)
- Let \(v[i_p,...,i_j]\) denote the \(i_j\)-th child of \(v[i_p,...,i_{j-1}]\) where \(v[]\) is \(v_{\text{root}}\)
Reduction to Selection

- Let \((a_p, \ldots, a_0)\) denote \(a_p(t+2)^p + a_{p-1}(t+2)^{p-1} + \ldots + a_0(t+2)^0\)
- Let \(v[i_p, \ldots, i_j]\) denote the \(i_j\)-th child of \(v[i_p, \ldots, i_{j-1}]\) where \(v[\cdot]\) is \(v_{\text{root}}\)
- For leaf \(v[i_p, \ldots, i_l]\), replace \(f(v)\) by \((i_p, \ldots, i_l, f(v))\)
Reduction to Selection

- Let \((a_p, ..., a_0)\) denote \(a_p(t+2)^p + a_{p-1}(t+2)^{p-1} + ... + a_0(t+2)^0\)
- Let \(v[i_p, ..., i_j]\) denote \(i_j\)-th child of \(v[i_p, ..., i_{j-1}]\) where \(v[]\) is \(v_{\text{root}}\)
- For leaf \(v[i_p, ..., i_1]\), replace \(f(v)\) by \((i_p, ..., i_1, f(v))\)
- For internal node \(v[i_p, ..., i_j]\), replace \(f(v)\) by:
 \[(f(v)-1)(2t-1)^{j-2} \text{ copies of } (i_p, ..., i_j, 0, ..., 0) \]
 \[(t-f(v))(2t-1)^{j-2} \text{ copies of } (i_p, ..., i_j, t+1, ..., 0) \]

\[
\begin{array}{c}
\text{f}(v_{10})=2 \\
\text{f}(v_{11})=3 \\
\text{f}(v_{12})=1 \\
\text{f}(v_{13})=2 \\
\text{f}(v_1)=0 \\
\text{f}(v_2)=1 \\
\text{f}(v_3)=1 \\
\text{f}(v_4)=1 \\
\text{f}(v_5)=0 \\
\text{f}(v_6)=1 \\
\text{f}(v_7)=1 \\
\text{f}(v_8)=0 \\
\text{f}(v_9)=1 \\
\end{array}
\]
• Let \((a_p, ..., a_0)\) denote \(a_p(t+2)^p + a_{p-1}(t+2)^{p-1} + ... + a_0(t+2)^0\)

• Let \(v[i_p, ..., i_j]\) denote \(i_j\)-th child of \(v[i_p, ..., i_{j-1}]\) where \(v[]\) is \(v_{\text{root}}\)

• For leaf \(v[i_p, ..., i_l]\), replace \(f(v)\) by \((i_p, ..., i_l, f(v))\)

• For internal node \(v[i_p, ..., i_j]\), replace \(f(v)\) by:
 \((f(v)-1)(2t-1)^{j-2}\) copies of \((i_p, ..., i_j, 0, ..., 0)\)
 \((t-f(v))(2t-1)^{j-2}\) copies of \((i_p, ..., i_j, t+1, ..., 0)\)
• Let \((a_p, \ldots, a_0)\) denote \(a_p(t+2)^p + a_{p-1}(t+2)^{p-1} + \cdots + a_0(t+2)^0\)

• Let \(v[i_p, \ldots, i_j]\) denote \(i_j\)-th child of \(v[i_p, \ldots, i_{j-1}]\) where \(v[]\) is \(v_{\text{root}}\)

• For leaf \(v[i_p, \ldots, i_l]\), replace \(f(v)\) by \((i_p, \ldots, i_l, f(v))\)

• For internal node \(v[i_p, \ldots, i_j]\), replace \(f(v)\) by:
 \[(f(v)-1)(2t-1)^{j-2} \text{ copies of } (i_p, \ldots, i_j, 0, \ldots, 0)\]
 \[(t-f(v))(2t-1)^{j-2} \text{ copies of } (i_p, \ldots, i_j, t+1, \ldots, 0)\]
Reduction to Selection

• Let \((a_p, \ldots, a_0)\) denote \(a_p(t+2)^p + a_{p-1}(t+2)^{p-1} + \ldots + a_0(t+2)^0\)

• Let \(v[i_p,\ldots,i_j]\) denote \(i_j\)-th child of \(v[i_p,\ldots,i_{j-1}]\) where \(v[]\) is \(v_{\text{root}}\)

• For leaf \(v[i_p, \ldots, i_l]\), replace \(f(v)\) by \((i_p, \ldots, i_l, f(v))\)

• For internal node \(v[i_p, \ldots, i_j]\), replace \(f(v)\) by:

 \[(f(v)-1)(2t-1)^{j-2} \text{ copies of } (i_p, \ldots, i_j, 0,\ldots, 0)\]

 \[5 \times (0,0,0), 5 \times (4,0,0)\]

 \[(2,4,0), (2,4,0)\]

 \[(3,0,0), (3,0,0)\]

 \[(3,3,1)\]

 \[(3,1,1)\]

 \[(3,2,0)\]

 \[(1,1,0)\]

 \[(1,2,1)\]

 \[(1,3,1)\]

 \[(2,1,1)\]

 \[(2,2,0)\]

 \[(2,3,1)\]

 \[(3,1,1)\]

 \[(3,2,0)\]

 \[(3,3,1)\]

 \[(5,0,0), 5 \times (4,0,0)\]
Summary

• **Thm:** Find an m^δ-approx median of a randomly ordered stream requires $\Omega(m^{1/2-3\delta/2})$ space.

 \therefore Algorithm for exact selection is essentially optimal.

• **Thm:** Find an m^δ-approx median of a adversarially ordered stream in p passes requires $\Omega(m^{(1-\delta)/p})$ space.
Summary

• **Thm:** Find an m^δ-approx median of a randomly ordered stream requires $\Omega(m^{1/2-3\delta/2})$ space.

 \[\therefore \] Algorithm for exact selection is essentially optimal.

• **Thm:** Find an m^δ-approx median of a adversarially ordered stream in p passes requires $\Omega(m^{(1-\delta)/p})$ space.

 \[\therefore \] Selection in $\tilde{O}(1)$ space needs $\Omega(lg m/lg \ lg m)$ passes while $O(lg \ lg m)$ passes suffices for random-order.
Summary

• **Thm:** Find an m^{δ}-approx median of a randomly ordered stream requires $\Omega(m^{1/2-3\delta/2})$ space.

 \[\therefore \text{ Algorithm for exact selection is essentially optimal.} \]

• **Thm:** Find an m^{δ}-approx median of a adversarially ordered stream in p passes requires $\Omega(m^{(1-\delta)/p})$ space.

 \[\therefore \text{ Selection in } \tilde{O}(1) \text{ space needs } \Omega(lg \frac{m}{lg lg m}) \text{ passes while } O(lg lg m) \text{ passes suffices for random-order.} \]

• **Further Directions**
 Is improvement as dramatic for other problems?
 Notions of “semi-random” order?
 Trade-offs between space and sample-complexity...
1: Selection
2: Tree Traversal
3: Applications
2: Tree Traversal

a) Post-Order Tree Traversal LB
b) Pass Elimination Lemma
Post-Order Traversal
Post-Order Traversal

- **Tree Pointers**: Function on nodes of \((p+1)\)-level, \(t\)-ary tree,
 \(f(v) = i\), specifies \(i\)th child of \(v\) if \(v\) is an internal node
 \(f(v)\) in \(\{0, 1\}\) if \(v\) is a leaf
Post-Order Traversal

- **Tree Pointers**: Function on nodes of \((p+1)\)-level, \(t\)-ary tree, \(f(v)=i\), specifies \(i\)th child of \(v\) if \(v\) is an internal node, \(f(v)\) in \(\{0, 1\}\) if \(v\) is a leaf

- **Post-Order Traversal**: Compute \(f(f(... f(v_{\text{root}})....))\), when the data is ordered as a post-order traversal:
\[f(v_1), f(v_2), f(v_3), f(v_{10}), f(v_4), f(v_5), f(v_6), f(v_{11}), f(v_7), f(v_8), f(v_9), f(v_{12}), f(v_{13}) \]
Post-Order Traversal

- **Tree Pointers:** Function on nodes of \((p+1)\)-level, t-ary tree, \(f(v) = i\), specifies \(i^{th}\) child of \(v\) if \(v\) is an internal node
 \(f(v)\) in \([0, 1]\) if \(v\) is a leaf

- **Post-Order Traversal:** Compute \(f(f(\ldots f(v_{\text{root}})\ldots))\), when the data is ordered as a post-order traversal:
 \(f(v_1), f(v_2), f(v_3), f(v_{10}), f(v_4), f(v_5), f(v_6), f(v_{11}), f(v_7), f(v_8), f(v_9), f(v_{12}), f(v_{13})\)
• **Tree Pointers:** Function on nodes of \((p+1)\)-level, \(t\)-ary tree,
 \(f(v) = i\), specifies \(i^{th}\) child of \(v\) if \(v\) is an internal node
 \(f(v)\) in \(\{0, 1\}\) if \(v\) is a leaf

\[
\begin{align*}
 f(v_1) &= 0 \\
 f(v_2) &= 1
\end{align*}
\]

• **Post-Order Traversal:** Compute \(f(f(\ldots f(v_{root}) \ldots))\), when the data is ordered as a post-order traversal:
 \(f(v_1), f(v_2), f(v_3), f(v_{10}), f(v_4), f(v_5), f(v_6), f(v_{11}), f(v_7), f(v_8), f(v_9), f(v_{12}), f(v_{13})\)
Post-Order Traversal

- **Tree Pointers:** Function on nodes of \((p+1)\)-level, t-ary tree, \(f(v)=i\), specifies \(i^{th}\) child of \(v\) if \(v\) is an internal node
- \(f(v)\) in \(\{0, 1\}\) if \(v\) is a leaf

- **Post-Order Traversal:** Compute \(f(f(\ldots f(v_{\text{root}})\ldots))\), when the data is ordered as a post-order traversal:

\(f(v_1), f(v_2), f(v_3), f(v_10), f(v_4), f(v_5), f(v_6), f(v_{11}), f(v_7), f(v_8), f(v_9), f(v_{12}), f(v_{13})\)
• **Tree Pointers:** Function on nodes of \((p+1)\)-level, t-ary tree,

 \[f(v) = i, \text{ specifies } i^{th} \text{ child of } v \text{ if } v \text{ is an internal node} \]

 \[f(v) \in \{0, 1\} \text{ if } v \text{ is a leaf} \]

- **Post-Order Traversal:** Compute \(f(f(\ldots f(v_{\text{root}})\ldots)))\), when the data is ordered as a post-order traversal:

 \[f(v_1), f(v_2), f(v_3), f(v_{10}), f(v_4), f(v_5), f(v_6), f(v_{11}), f(v_7), f(v_8), f(v_9), f(v_{12}), f(v_{13}) \]
• **Tree Pointers:** Function on nodes of \((p+1)\)-level, t-ary tree,
 \(f(v) = i\), specifies \(i^{th}\) child of \(v\) if \(v\) is an internal node
 \(f(v)\) in \(\{0,1\}\) if \(v\) is a leaf

- **Post-Order Traversal:** Compute \(f(f(\ldots f(v_{\text{root}})\ldots))\), when the data
 is ordered as a post-order traversal:
 \(f(v_1), f(v_2), f(v_3), f(v_{10}), f(v_4), f(v_5), f(v_6), f(v_{11}), f(v_7), f(v_8), f(v_9), f(v_{12}), f(v_{13})\)
• **Tree Pointers:** Function on nodes of \((p+1)\)-level, \(t\)-ary tree,
\(f(v)=i\), specifies \(i^{th}\) child of \(v\) if \(v\) is an internal node
\(f(v)\) in \(\{0, 1\}\) if \(v\) is a leaf

```
1: f(v_{10})=1
2: f(v_1)=0 f(v_2)=1 f(v_3)=1 f(v_4)=1 f(v_5)=0
```

• **Post-Order Traversal:** Compute \(f(f(... f(v_{\text{root}})....))\), when the data is ordered as a post-order traversal:

\[f(v_1), f(v_2), f(v_3), f(v_{10}), f(v_4), f(v_5), f(v_6), f(v_{11}), f(v_7), f(v_8), f(v_9), f(v_{12}), f(v_{13}) \]
Post-Order Traversal

- **Tree Pointers:** Function on nodes of \((p+1)\)-level, \(t\)-ary tree,
 \(f(v) = i\), specifies \(i^{th}\) child of \(v\) if \(v\) is an internal node
 \(f(v)\) in \(\{0,1\}\) if \(v\) is a leaf

![Tree Diagram]

- **Post-Order Traversal:** Compute \(f(f(... f(v_{root})))\), when the data
 is ordered as a post-order traversal:
 \(f(v_1), f(v_2), f(v_3), f(v_{10}), f(v_4), f(v_5), f(v_6), f(v_{11}), f(v_7), f(v_8), f(v_9), f(v_{12}), f(v_{13})\)
Post-Order Traversal

- **Tree Pointers:** Function on nodes of \((p+1)\)-level, \(t\)-ary tree,
 \(f(v) = i\), specifies \(i\)th child of \(v\) if \(v\) is an internal node
 \(f(v) \) in \(\{0, 1\}\) if \(v\) is a leaf

- **Post-Order Traversal:** Compute \(f(f(... f(v_{\text{root}})....))\), when the data is ordered as a post-order traversal:
 \(f(v_1), f(v_2), f(v_3), f(v_{10}), f(v_4), f(v_5), f(v_6), f(v_{11}), f(v_7), f(v_8), f(v_9), f(v_{12}), f(v_{13})\)
Post-Order Traversal

- **Tree Pointers:** Function on nodes of \((p+1)\)-level, \(t\)-ary tree,
 \(f(v) = i\), specifies \(i^{th}\) child of \(v\) if \(v\) is an internal node
 \(f(v)\) in \(\{0, 1\}\) if \(v\) is a leaf

- **Post-Order Traversal:** Compute \(f(f(... f(v_{\text{root}})....))\), when the data
is ordered as a post-order traversal:
 \(f(v_1), f(v_2), f(v_3), f(v_{10}), f(v_4), f(v_5), f(v_6), f(v_{11}), f(v_7), f(v_8), f(v_9), f(v_{12}), f(v_{13})\)
Post-Order Traversal

- **Tree Pointers:** Function on nodes of \((p+1)\)-level, t-ary tree, \(f(v) = i\), specifies \(i\)th child of \(v\) if \(v\) is an internal node \(f(v) \in \{0, 1\}\) if \(v\) is a leaf

- **Post-Order Traversal:** Compute \(f(f(... f(v_{\text{root}}) ...))\), when the data is ordered as a post-order traversal:
 \[f(v_1), f(v_2), f(v_3), f(v_{10}), f(v_4), f(v_5), f(v_6), f(v_{11}), f(v_7), f(v_8), f(v_9), f(v_{12}), f(v_{13}) \]
Post-Order Traversal

- **Tree Pointers**: Function on nodes of \((p+1)\)-level, t-ary tree,
 \(f(v) = i\), specifies \(i^{th}\) child of \(v\) if \(v\) is an internal node
 \(f(v)\) in \(\{0, 1\}\) if \(v\) is a leaf

- **Post-Order Traversal**: Compute
 \(f(f(... f(v_{\text{root}})....))\), when the data is ordered as a post-order traversal:

 \[f(v_1), f(v_2), f(v_3), f(v_{10}), f(v_4), f(v_5), f(v_6), f(v_{11}), f(v_7), f(v_8), f(v_9), f(v_{12}), f(v_{13})\]
Post-Order Traversal

- **Tree Pointers**: Function on nodes of \((p+1)\)-level, t-ary tree, \(f(v)=i\), specifies \(i^{th}\) child of \(v\) if \(v\) is an internal node
 \(f(v)\) in \(\{0, 1\}\) if \(v\) is a leaf

- **Post-Order Traversal**: Compute \(f(f(\ldots f(v_{\text{root}})\ldots))\), when the data is ordered as a *post-order traversal*:
 \(f(v_1), f(v_2), f(v_3), f(v_{10}), f(v_4), f(v_5), f(v_6), f(v_{11}), f(v_7), f(v_8), f(v_9), f(v_{12}), f(v_{13})\)
Post-Order Traversal

- **Tree Pointers**: Function on nodes of \((p+1)\)-level, \(t\)-ary tree, \(f(v)=i\), specifies \(i^{th}\) child of \(v\) if \(v\) is an internal node. \(f(v)\) in \(\{0, 1\}\) if \(v\) is a leaf.

- **Post-Order Traversal**: Compute \(f(f(\ldots f(v_{\text{root}})\ldots))\), when the data is ordered as a post-order traversal:
 \[f(v_1), f(v_2), f(v_3), f(v_{10}), f(v_4), f(v_5), f(v_6), f(v_{11}), f(v_7), f(v_8), f(v_9), f(v_{12}), f(v_{13})\]
Post-Order Traversal

- **Tree Pointers:** Function on nodes of \((p+1)\)-level, \(t\)-ary tree, \(f(v) = i\), specifies \(i^{th}\) child of \(v\) if \(v\) is an internal node, \(f(v)\) in \(\{0, 1\}\) if \(v\) is a leaf.

- **Post-Order Traversal:** Compute \(f(f(\ldots f(v_{\text{root}})\ldots))\), when the data is ordered as a post-order traversal:

\[
f(v_1), f(v_2), f(v_3), f(v_{10}), f(v_4), f(v_5), f(v_6), f(v_{11}), f(v_7), f(v_8), f(v_9), f(v_{12}), f(v_{13})
\]

- ... will prove space-complexity via “pass-elimination.”
Pass-Elimination Lemma

cf. Round-Elimination [Miltersen, Nisan, Safra, Wigderson ’98], [Sen ’03]
Pass-Elimination Lemma
cf. Round-Elimination [Miltersen, Nisan, Safra, Wigderson ’98], [Sen ’03]

- **Meta-Problem:** Let f be a function on $[n]^d$. For x^i from $[n]^d$, $P_{t,f} (x^1, \ldots, x^t,i) = f(x^i)$
Pass-Elimination Lemma

cf. Round-Elimination [Miltersen, Nisan, Safra, Wigderson '98], [Sen '03]

• **Meta-Problem:** Let \(f \) be a function on \([n]^d\). For \(x^i \) from \([n]^d\),

\[
P_{t,f}(x^1, ..., x^t,i) = f(x^i)
\]

• **Pass-Elimination Lemma:** If \(t/s \) is large constant:

 If there's a \(p \)-pass, \(s \)-space alg. \(A \) for \(P_{t,f} \) (w/p 1-\(\delta \)) then

 there's a \((p-1)\)-pass, \((2s \lg \delta^{-1})\)-space alg. \(A' \) for \(f \) (w/p 1-\(\delta \)).
Pass-Elimination Lemma

cf. Round-Elimination [Miltersen, Nisan, Safra, Wigderson ’98], [Sen ’03]

- **Meta-Problem:** Let f be a function on $[n]^d$. For x^i from $[n]^d$,
 $P_{t,f}(x^1, ..., x^t,i)=f(x^i)$

- **Pass-Elimination Lemma:** If t/s is large constant:
 If there’s a p-pass, s-space alg. A for $P_{t,f}$ (w/p $1-\delta$) then
 there’s a $(p-1)$-pass, $(2s \log \delta^{-1})$-space alg. A' for f (w/p $1-\delta$).

- **Thm:** A p-pass alg. for $(p+1)$-level, t-ary PO-Traversal (w/p $2/3$) requires $\Omega(t/2^{O(p)})$ space.

- **Proof:** Repeated elimination of passes implies:
Pass-Elimination Lemma
cf. Round-Elimination [Miltersen, Nisan, Safra, Wigderson ’98], [Sen ’03]

- **Meta-Problem:** Let \(f \) be a function on \([n]^d\). For \(x^i \) from \([n]^d\),
 \[P_{t,f} (x^1, \ldots, x^t,i) = f(x^i) \]

- **Pass-Elimination Lemma:** If \(t/s \) is large constant:
 If there’s a \(p \)-pass, \(s \)-space alg. \(\mathcal{A} \) for \(P_{t,f} (w/p \ 1-\delta) \) then
 there’s a \((p-1)\)-pass, \((2s \log \delta^{-1})\)-space alg. \(\mathcal{A}'\) for \(f (w/p \ 1-\delta) \).

- **Thm:** A \(p \)-pass alg. for \((p+1)\)-level, \(t \)-ary PO-Traversal \((w/p \ 2/3)\) requires \(\Omega(t/2^{O(p)}) \) space.

- **Proof:** Repeated elimination of passes implies:
 \((p-1)\)-pass alg. for \(p \)-level in \(O(s \ 2^{O(1)}) \) space
Pass-Elimination Lemma
cf. Round-Elimination [Miltersen, Nisan, Safra, Wigderson ’98], [Sen ’03]

- **Meta-Problem:** Let f be a function on $[n]^d$. For x^i from $[n]^d$, $P_{t,f}(x^1, ..., x^t,i) = f(x^i)$

- **Pass-Elimination Lemma:** If t/s is large constant:

 If there’s a p-pass, s-space alg. A for $P_{t,f}(w/p 1-\delta)$ then
 there’s a $(p-1)$-pass, $(2s \log \delta^{-1})$-space alg. A' for $f (w/p 1-\delta)$.

- **Thm:** A p-pass alg. for $(p+1)$-level, t-ary PO-Traversal (w/p 2/3) requires $\Omega(t/2^O(p))$ space.

- **Proof:** Repeated elimination of passes implies:

 $(p-1)$-pass alg. for p-level in $O(s 2^O(1))$ space
 1-pass alg. for 2-level PO-Traversal in $O(s 2^O(p))$
Pass-Elimination Lemma
cf. Round-Elimination [Miltersen, Nisan, Safra, Wigderson ’98], [Sen ’03]

- **Meta-Problem:** Let \(f \) be a function on \([n]^d\). For \(x^i \) from \([n]^d\),
 \[P_{t,f}(x^1, \ldots, x^t,i) = f(x^i) \]

- **Pass-Elimination Lemma:** If \(t/s \) is large constant:
 If there’s a \(p \)-pass, \(s \)-space alg. \(\mathcal{A} \) for \(P_{t,f}(w/p 1-\delta) \) then
 there’s a \((p-1)\)-pass, \((2s \log \delta^{-1})\)-space alg. \(\mathcal{A}' \) for \(f\) \((w/p 1-\delta)\).

- **Thm:** A \(p \)-pass alg. for \((p+1)\)-level, \(t \)-ary PO-Traversal \((w/p 2/3)\) requires \(\Omega(t/2^{O(p)}) \) space.

- **Proof:** Repeated elimination of passes implies:
 (\(p-1\))-pass alg. for \(p \)-level in \(O(s \, 2^{O(1)}) \) space
 1-pass alg. for 2-level PO-Traversal in \(O(s \, 2^{O(p)}) \)
 But 2-level is INDEX and 1-pass alg. requires \(\Omega(t) \) space
Pass-Elimination Lemma
cf. Round-Elimination [Miltersen, Nisan, Safra, Wigderson ’98], [Sen ’03]

• Meta-Problem: Let f be a function on $[n]^d$. For x^i from $[n]^d$,
 $P_{t,f}(x^1,\ldots,x^t,i)=f(x^i)$

• Pass-Elimination Lemma: If t/s is large constant:
 If there’s a p-pass, s-space alg. A for $P_{t,f}(w/p\ 1-\delta)$ then
 there’s a $(p-1)$-pass, $(2s \ lg \ \delta^{-1})$-space alg. A' for f $(w/p\ 1-\delta)$.

• Thm: A p-pass alg. for $(p+1)$-level, t-ary PO-Traversal $(w/p\ 2/3)$ requires $\Omega(t/2^{O(p)})$ space.

• Proof: Repeated elimination of passes implies:
 $(p-1)$-pass alg. for p-level in $O(s\ 2^{O(1)})$ space
 1-pass alg. for 2-level PO-Traversal in $O(s\ 2^{O(p)})$
 But 2-level is INDEX and 1-pass alg. requires $\Omega(t)$ space
 Hence, $\Omega(t/2^{O(p)})$ space is required.
Pass-Elimination Proof
Pass-Elimination Proof

- **Pass-Elimination Lemma**: If t/s is large constant:
 If there's a p-pass, s-space alg. \mathcal{A} for $P_{t,f}(w/p 1-\delta)$ then there's a $(p-1)$-pass, $(2s \lg \delta^{-1})$-space alg. \mathcal{A}' for f (w/p $1-\delta$).
Pass-Elimination Proof

• **Pass-Elimination Lemma:** If t/s is large constant:

 If there's a p-pass, s-space alg. \mathcal{A} for $P_{t,f}(w/p \ 1-\delta)$ then there's a $(p-1)$-pass, $(2s \ lg \ \delta^{-1})$-space alg. \mathcal{A}' for f $(w/p \ 1-\delta)$.

• **Proof Idea:**

 To solve $f(x)$, emulate \mathcal{A} on $(x^1, \ldots, x^{r-1}, x, x^{r+1}, \ldots, x^t, r)$ for some r, x^i
Pass-Elimination Proof

- **Pass-Elimination Lemma:** If t/s is large constant:
 If there’s a p-pass, s-space alg. A for $P_{t,f}(w/p \ 1-\delta)$ then there’s a $(p-1)$-pass, $(2s \ lg \ \delta^{-1})$-space alg. A' for f (w/p 1-\delta).

- **Proof Idea:**
 To solve $f(x)$, emulate A on $(x^1, \ldots, x^{r-1}, x, x^{r+1}, \ldots, x^t, r)$ for some r, x^i
 Choose x^{r+1}, \ldots, x^t such that state of A at the end of the first pass is always the same.
Pass-Elimination Proof

- **Pass-Elimination Lemma:** If t/s is a large constant:

 If there's a p-pass, s-space alg. \mathcal{A} for $P_{t,f}(w/p, 1-\delta)$ then there's a $(p-1)$-pass, $(2s \log \delta^{-1})$-space alg. \mathcal{A}' for f (w/p $1-\delta$).

- **Proof Idea:**

 To solve $f(x)$, emulate \mathcal{A} on $(x^1, \ldots, x^{r-1}, x, x^{r+1}, \ldots, x^t, r)$ for some r, x^i.

 Choose x^{r+1}, \ldots, x^t such that state of \mathcal{A} at the end of the first pass is always the same.

Key Idea “Average Encoding Thm”:

Consider deterministic alg. and random input (Yao’s Lemma)

Let M^i be memory state after (X^1, \ldots, X^i)

Exists r with M^r and M^t almost indept., i.e., $I(M^r, M^t)$ is small
Pass-Elimination Proof

- **Pass-Elimination Lemma:** If t/s is large constant:
 If there’s a p-pass, s-space alg. \(A \) for \(P_{t,f} \) (w/p \(1-\delta \)) then there’s a \((p-1)\)-pass, \((2s \lg \delta^{-1})\)-space alg. \(A' \) for \(f \) (w/p \(1-\delta \)).

- **Proof Idea:**
 To solve \(f(x) \), emulate \(A \) on \((x^1, ..., x^r, x, x^{r+1}, ..., x^t, r)\) for some \(r, x^i \)
 Choose \(x^{r+1}, ..., x^t \) such that state of \(A \) at the end of the first pass is always the same.

Key Idea “Average Encoding Thm”:
Consider deterministic alg. and random input (Yao’s Lemma)
Let \(M^i \) be memory state after \((X^1, ..., X^i)\)
Exists \(r \) with \(M^r \) and \(M^t \) almost indept., i.e., \(I(M^r, M^t) \) is small

\(A' \) pass 1: Emulate first two passes of \(A \).
Pass-Elimination Proof

- **Pass-Elimination Lemma**: If \(t/s \) is large constant:
 - If there’s a \(p \)-pass, \(s \)-space alg. \(A \) for \(P_{t,f} \) (w/p 1-\(\delta \)) then
 - there’s a \((p-1) \)-pass, \((2s \lg \delta^{-1})\)-space alg. \(A' \) for \(f \) (w/p 1-\(\delta \)).

- **Proof Idea**:
 - To solve \(f(x) \), emulate \(A \) on \((x^1, \ldots, x^{r-1}, x, x^{r+1}, \ldots, x^t,r)\) for some \(r, x^i \)
 - Choose \(x^{r+1}, \ldots, x^t \) such that state of \(A \) at the end of the first pass is always the same.

 Key Idea “Average Encoding Thm”:
 - Consider deterministic alg. and random input (Yao’s Lemma)
 - Let \(M^i \) be memory state after \((X^1, \ldots, X^i)\)
 - Exists \(r \) with \(M^r \) and \(M^t \) almost indept., i.e., \(I(M^r, M^t) \) is small

 \(A' \) pass 1: Emulate first two passes of \(A \).
 \(A' \) pass \(i \): Emulate pass \(i-1 \) of \(A \).
Pass-Elimination Proof

- **Pass-Elimination Lemma:** If t/s is large constant:

 If there's a p-pass, s-space alg. A for $P(t,f)$ (w/p $1-\delta$) then there's a $(p-1)$-pass, $(2s \log_\delta - 1)$-space alg. A' for f (w/p $1-\delta$).

 Proof Idea: To solve $f(x)$, emulate A on $(x_1, \ldots, x_{r-1}, x, x_{r+1}, \ldots, x_t)$ for some r, x_i.

 Choose x_{r+1}, \ldots, x_t such that state of A at the end of the first pass is always the same.

- **Key Idea “Average Encoding Thm”:**

 Consider deterministic alg. and random input (Yao’s Lemma)

 Let M_i be memory state after (X_1, \ldots, X_i)

 Exists r with M_r and M_t almost indept., i.e., $I(M_r, M_t)$ is small

 A' pass 1: Emulate first two passes of A.

 A' pass i: Emulate pass $i-1$ of A.

 Why is this different from round-elimination?

 Our approach adapts ideas directly for streams rather than proving lower bounds via communication.

 Gives *tighter* results and *avoids order-dependency issues*.

 E.g., consider a stream formed by concatenating two length m binary strings x and y. Given p passes, is $x < y$?

 Round-elimination implies $\Omega(m^{1/(2p-1)})$ space

 Pass-elimination implies $\Omega(m^{1/p})$
Summary

• **Lemma (Pass-Elimination):** If t/s is large constant:

 If there’s a p-pass, s-space alg. A for $P_{t,f}(w/p 1-\delta)$ then there’s a (p-1)-pass, $(2s \log \delta^{-1})$-space alg. A' for f (w/p 1-\delta).

• **Thm (Post-Order Traversal):** A p-pass algorithm for (p+1)-level, t-ary PO-Traversal (w/p 2/3) requires $\Omega(t/2^{O(p)})$ space.

∴ **Consequences:** Multi-pass space lower-bound for median finding, and ...
3: Applications

a) Summary of Applications

b) Longest Increasing Subsequences
Applications

- **Fixed-Dimensional Linear Programming:**
 Generalizes 3D LP requires $\Omega(n^{1/p})$
 [Chan, Chen '05]

- **Histogram Learning and “Minimum Missing Element”:**
 Improves: $\Omega(n^{1/(2p-1)})$ becomes $\Omega(n^{1/p})$
 [Chang, Kannan '06]

- **Selection and Quantile Estimation:**
 Simplifies (small loss of optimality)
 [Guha, McGregor '07]

- **Longest Increasing Subsequence (LIS):**
 Extends to multiple passes
 [Sun, Woodruff '07]
Increasing Subsequences

- **Find length of LIS:**

 1-pass $O(LIS)$ space
 [Liben-Nowell et al. ’06]

 1-pass $(1+\varepsilon)$-approx. $O(\sqrt{m/\varepsilon})$ space
 [Gopalan et al. ’06]

 $O(1)$-pass deterministic $(1+\varepsilon)$-approx. requires $\Omega(\sqrt{m})$
 [Gal, Gopalan ’07], [Ergun, Jowhari ’08]
Increasing Subsequences

- **Find length of LIS:**
 - 1-pass $O(LIS)$ space [Liben-Nowell et al. '06]
 - 1-pass $(1+\epsilon)$-approx. $O(\sqrt{m/\epsilon})$ space [Gopalan et al. '06]
 - $O(1)$-pass deterministic $(1+\epsilon)$-approx. requires $\Omega(\sqrt{m})$ [Gal, Gopalan '07], [Ergun, Jowhari '08]

- **Find elements of LIS (given LIS$<k$):**
 - p-pass in $O(k^{1+1/(2^p-1)})$ space [Liben-Nowell et al. '06]
 - 1-pass in $\Omega(k^2)$ space [Sun, Woodruff '07]
Increasing Subsequences

- **Find length of LIS:**
 - 1-pass $O(LIS)$ space \([\text{Liben-Nowell et al. '06}]\)
 - 1-pass \((1+\varepsilon)\)-approx. $O(\sqrt{m/\varepsilon})$ space \([\text{Gopalan et al. '06}]\)
 - $O(1)$-pass deterministic \((1+\varepsilon)\)-approx. requires $\Omega(\sqrt{m})$ \([\text{Gal, Gopalan '07}, \text{Ergun, Jowhari '08}]\)

- **Find elements of LIS (given LIS}k):**
 - p-pass in $O(k^{1+1/(2^p-1)})$ space \([\text{Liben-Nowell et al. '06}]\)
 - 1-pass in $\Omega(k^2)$ space \([\text{Sun, Woodruff '07}]\)

- **Today's Result (Lower-Bounds):** Finding the elements of LIS in p passes requires $\Omega(k^{1+1/(2^p-1)})$ space.
LIS Lower-Bound
LIS Lower-Bound

- **Single pass**: Reduction from $\text{INDEX}(x,j)$ [Sun, Woodruff '07]

Stream consist of $t+1$ blocks: S_0, \ldots, S_{t-1}, T

- $S_i = \{ 2(t-i)t+2j+x_j : j=\text{“a”}, \ldots, \text{“b”} \}$ of length
- $T = \{ 2(t-j)t+t+1, 2(t-j)t+t+2, \ldots, 2(t-j)t+t+j \}$
LIS Lower-Bound

- **Single pass:** Reduction from \(\text{INDEX}(x,j) \) [Sun, Woodruff ’07]

Stream consist of \(t+1 \) blocks: \(S_0, \ldots, S_{t-1}, T \)

\[
S_i = \{ 2(t-i)t+2j+x_j : j=“a”, \ldots, “b” \} \text{ of length } T = \{ 2(t-j)t+t+1, 2(t-j)t+t+2, \ldots, 2(t-j)t+t+j \}
\]

LIS length is \(t \) and is realized by \(S_j \cup T \)
LIS Lower-Bound

• **Single pass:** Reduction from $\text{INDEX}(x,j)$ [Sun, Woodruff ’07]
 Stream consist of $t+1$ blocks: $S_0, ..., S_{t-1}, T$

 $S_i = \{ 2(t-i)t+2j+x_j : j = \text{“}a\text{”}, ..., \text{“}b\text{”} \}$ of length
 $T = \{ 2(t-j)t+t+1, 2(t-j)t+t+2, ..., 2(t-j)t+t+j \}$

 LIS length is t and is realized by $S_j \cup T$

• **p-pass:** Embed the above single pass instance into PO-traversal, set parameters carefully, and voila!
LIS Lower-Bound

- **Single pass:** Reduction from $\text{INDEX}(x,j)$ [Sun, Woodruff '07]
 Stream consist of $t+1$ blocks: $S_0, ..., S_{t-1}, T$

 \[S_i = \{ 2(t-i)t+2j+x_j : j = \text{"a"}, \ldots, \text{"b"} \} \text{ of length} \]
 \[T = \{ 2(t-j)t+t+1, 2(t-j)t+t+2, \ldots, 2(t-j)t+t+j \} \]

 LIS length is t and is realized by $S_j \cup T$

- **p-pass:** Embed the above single pass instance into PO-traversal, set parameters carefully, and voila!
Thanks.

Highlights

- First general random-order lower-bound and it’s tight!
- Exponential separation between passes for selection in random-order and adversarial-order.
- First doubly-exponential pass/space trade-off.
- ... many open problems.

Thanks.
A Bit More Detail
A Bit More Detail

- Suffices to consider a deterministic alg. A on $[X^1, \ldots, X^t, i]$ where each $X^i \sim D$ and $i \sim \text{Uni}\{1, \ldots, t\}$ for arbitrary D.
A Bit More Detail

- Suffices to consider a deterministic alg. \mathcal{A} on $[X^1, \ldots, X^t, i]$ where each $X^i \sim D$ and $i \sim \text{Uni}\{1, \ldots, t\}$ for arbitrary D.

Stream: $X^1 \mid X^2 \mid X^3 \mid X^4 \mid X^5 \mid X^6 \mid i$
A Bit More Detail

- Suffices to consider a deterministic alg. \mathcal{A} on $[X^1, \ldots, X^t, i]$ where each $X^i \sim D$ and $i \sim \text{Uni}\{1, \ldots, t\}$ for arbitrary D.

Memory State: $M^1 \quad M^2 \quad M^3 \quad M^4 \quad M^5 \quad M^6$

Stream: $X^1 \quad X^2 \quad X^3 \quad X^4 \quad X^5 \quad X^6 \quad i$
A Bit More Detail

- Suffices to consider a deterministic alg. \mathcal{A} on $[X^1, \ldots X^t,i]$ where each $X^i \sim D$ and $i \sim \text{Uni}\{1, \ldots, t\}$ for arbitrary D.

- **Lemma:** Exists r and x^1, \ldots, x^{r-1} s.t. if $X^1 = x^1, \ldots, X^{r-1} = x^{r-1}$, $i = r$: M^r and M^t are “almost independent”
 - \mathcal{A} solves $f(X^r)$ w/p $1 - 9\delta$

\[
\begin{array}{cccccccc}
\text{Stream:} & X^1 & X^2 & X^3 & X^4 & X^5 & X^6 & i \\
\text{Memory State:} & M^1 & M^2 & M^3 & M^4 & M^5 & M^6 &
\end{array}
\]
A Bit More Detail

• Suffices to consider a deterministic alg. \mathcal{A} on $[X^i, \ldots, X^t, i]$ where each $X^i \sim D$ and $i \sim \text{Uni}\{1, \ldots, t\}$ for arbitrary D.

• **Lemma:** Exists r and x^1, \ldots, x^{r-1} s.t. if $X^1 = x^1, \ldots, X^{r-1} = x^{r-1}, i = r$: M^r and M^t are “almost independent”

 \mathcal{A} solves $f(X^r)$ w/p $1 - 9\delta$

Memory State:

\[M^1 \quad M^2 \quad M^3 \quad M^4 \quad M^5 \quad M^6 \]

Stream:

\[x^1 \quad x^2 \quad X^3 \quad X^4 \quad X^5 \quad X^6 \quad i = r \]
A Bit More Detail

- Suffices to consider a deterministic alg. A on $[X^1, \ldots X^t,i]$ where each $X^i \sim D$ and $i \sim \text{Uni}\{1, \ldots, t\}$ for arbitrary D.

- **Lemma**: Exists r and x^1, \ldots, x^{r-1} s.t. if $X^1 = x^1, \ldots, X^{r-1} = x^{r-1}, i = r$: M^r and M^t are “almost independent”
 A solves $f(X^r)$ w/p 1-9δ

Memory State:

```
M1  M2  M3  M4  M5  M6
```

Stream:

```
x1  x2  x3  x4  x5  x6
```

almost indep. $i = r$
A Bit More Detail

• Suffices to consider a deterministic alg. \(\mathcal{A} \) on \([X^1, \ldots, X^t, i]\)
 where each \(X^i \sim D \) and \(i \sim \text{Uni}\{1, \ldots, t\} \) for arbitrary \(D \).

• **Lemma:**Exists \(r \) and \(x^1, \ldots, x^{r-1} \) s.t. if \(X^i = x^i, \ldots, X^{r-1} = x^{r-1}, i = r \):
 \(M^r \) and \(M^t \) are “almost independent”
 \(\mathcal{A} \) solves \(f(X^r) \) w/p \(1 - 9\delta \)

• **Lemma:** \(L_1(M^r, M^r \text{ given } M^t = v) = O(\sqrt{s/t}) \) w/p \(\frac{2}{3} \) if \(v \sim M^t \).
A Bit More Detail

• Suffices to consider a deterministic alg. \mathcal{A} on $[X^i, ... X^t, i]$ where each $X^i \sim D$ and $i \sim \text{Uni}\{1, ..., t\}$ for arbitrary D.

• **Lemma:** Exists r and $x^1, ..., x^{r-1}$ s.t. if $X^i = x^i$, ..., $X^{r-1} = x^{r-1}, i = r$: M^r and M^t are “almost independent”
 \mathcal{A} solves $f(X^r)$ w/p $1 - 9\delta$

• **Lemma:** $L_1(M^r, M^r \text{ given } M^t = v) = O(\sqrt{s/t})$ w/p $2/3$ if $v \sim M^t$.

• **Lemma:** Exists $v, x^{r+1}(.), ..., x^t(.)$ s.t., if $M^r = u$ then
 $M^t = v$ on stream $[x^i, ..., x^{r-1}, X^r, x^{r+1}(u), ..., x^m(u)]$
 \mathcal{A} solves $f(X^r)$ w/p $9/10$ on $[x^i, ..., x^{r-1}, X^r, x^{r+1}(u), ..., x^t(u), r]$

Memory State: $M^1 \rightarrow M^2 \rightarrow M^3 \rightarrow M^4 \rightarrow M^5 \rightarrow M^6$
Stream: $x^1, x^2, ..., x^6$
A Bit More Detail

- Suffices to consider a deterministic alg. \mathcal{A} on $[X^1, \ldots, X^t, i]$ where each $X^i \sim D$ and $i \sim \text{Uni}\{1, \ldots, t\}$ for arbitrary D.

- **Lemma:** Exists r and x^1, \ldots, x^{r-1} s.t. if $X^i = x^i, \ldots, X^{r-1} = x^{r-1}, i = r$:
 - M^r and M^t are "almost independent"
 - \mathcal{A} solves $f(X^r)$ w/p $1 - 9\delta$

- **Lemma:** $L_1(M^r, M^r \mid M^t = v) = O(\sqrt{s/t})$ w/p $2/3$ if $v \sim M^t$.

- **Lemma:** Exists $v, x^{r+1}(\cdot), \ldots, x^t(\cdot)$ s.t., if $M^r = u$ then $M^t = v$ on stream $[x^1, \ldots, x^{r-1}, X^r, x^{r+1}(u), \ldots, x^m(u)]$
 - \mathcal{A} solves $f(X^r)$ w/p $9/10$ on $[x^1, \ldots, x^{r-1}, X^r, x^{r+1}(u), \ldots, x^t(u), r]$

Memory State:

- M^1
- M^2
- $M^3 = u$
- M^4
- M^5
- $M^6 = v$

Stream:

- x^1
- x^2
- x^3
- $x^4(u)$
- $x^5(u)$
- $x^6(u)$
- $i = r$
A Bit More Detail

- Suffices to consider a deterministic alg. A on $[X_1, \ldots, X_t, i]$ where each $X_i \sim D$ and $i \in \{1, \ldots, t\}$.

- **Lemma:** Exists r and x^l, \ldots, x^{r-1} s.t. if $X^l = x^l, \ldots, X^{r-1} = x^{r-1}$, $i = r$:
 - M^r and M^t are “almost independent”
 - A solves $f(X^r)$ w/p $1-9\delta$

- **Lemma:** $L_1(M^r, M^r \text{ given } M^t=v) = O(\sqrt{s/t})$ w/p $2/3$ if $v \sim M^t$.

- **Lemma:** Exists v, x^{r+1}, \ldots, x^t s.t., if $M^r = u$ then
 - $M^t = v$ on stream $[x^l, \ldots, x^{r-1}, X^r, x^{r+1}(u), \ldots, x^m(u)]$
 - A solves $f(X^r)$ w/p $9/10$ on $[x^l, \ldots, x^{r-1}, X^r, x^{r+1}(u), \ldots, x^t(u), r]$

Memory State:
$M^1, M^2, M^3 = u, M^4, M^5, M^6 = v$

Stream:
$x^l, x^2, \ldots, x^3, x^4(u), x^5(u), x^6(u), i = r$

- a) Chain Rule of Mutual Information
- b) Expect to Satisfy Both Conditions
- c) Markov’s Inequality, Union Bound
A Bit More Detail

• Suffices to consider a deterministic algorithm \(A \) on \([X_1, ..., X_t, i] \) where each \(X_i \sim D \) and

 \[i \in \{1, ..., t\} \]

• **Lemma:** Exists \(r \) and \(x_1, ..., x_{r-1} \) s.t. if \(X_1 = x_1, ..., X_{r-1} = x_{r-1}, i = r \):
 \(A \) solves \(f(X_r) \) w/p \(1 - \delta \)

• **Lemma:** Exists \(v \), \(x_{r+1} \), ..., \(x_t \) s.t., if \(M_r = u \) then
 \(M_t = v \) on stream \([x^1, ..., x^{r-1}, X_r, x^{r+1}(u), ..., x^t(u)] \)
 \(A \) solves \(f(X_r) \) w/p \(9/10 \) on \([x^1, ..., x^{r-1}, X_r, x^{r+1}(u), ..., x^t(u), r] \)

AverageEncodingTheorem

 a) Mutual Information = \(E[KL-\text{divergence}] \)
 b) Relate KL-divergence to \(L_1 \)-distance

| Memory State: | \(M^1 \) | \(M^2 \) | \(M^3 = u \) | \(M^4 \) | \(M^5 \) | \(M^6 = v \) |
| Stream: | \(x^1 \) | \(x^2 \) | \(x^3 \) | \(x^4(u) \) | \(x^5(u) \) | \(x^6(u) \) |
A Bit More Detail

- Suffices to consider a deterministic alg. \mathcal{A} on $[X^i, \ldots X^t, i]$ where each $X^i \sim D$ and $i \sim \text{Uni}\{1, \ldots, t\}$ for arbitrary D.

- **Lemma:** Exists r and x^1, \ldots, x^{r-1} s.t. if $X^1 = x^1, \ldots, X^{r-1} = x^{r-1}, i=r$: M^r and M^t are “almost independent.”
 - \mathcal{A} solves $f(X^r)$ w/p $1-\delta$.

- **Lemma:** $L_1(M^r, M^r \text{ given } M^t = v) = O(\sqrt{s/t})$ w/p $2/3$ if $v \neq M^t$.

- **Lemma:** Exists $v, x^{r+1}(.), \ldots, x^t(.)$ s.t., if $M^r = u$ then $M^t = v$ on stream $[x^1, \ldots, x^{r-1}, X^r, x^{r+1}(u), \ldots, x^m(u)]$
 - \mathcal{A} solves $f(X^r)$ w/p $9/10$ on $[x^1, \ldots, x^{r-1}, X^r, x^{r+1}(u), \ldots, x^t(u), r]$

Memory State:

- M^1
- M^2
- $M^3 = u$
- M^4
- M^5
- $M^6 = v$

Stream:

- x^1
- x^2
- X^3
- $x^4(u)$
- $x^5(u)$
- $x^6(u)$

Almost indep.