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and a little expensive reliable memory.

• Your challenge: Can you make use of the cheap 
memory? Want to identify (but not correct) any 
errors introduced by a malicious adversary.

• Related Work:
Program Checking
 [Blum, Kannan ’95]

Memory Checking
 [Blum et al. ’94]

Checking linked Data Structures
 [Amato, Loui ’94]
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Priority Queues
• Priority Queue: 

Supports a sequence of inserts and extract-min’s. 

Is “correct” if each extract-min returns the 
smallest value inserted and not extracted.

• Interaction Sequence: c1, c2, ..., c2n where ct is either

(u,t) if the user inserts u at step t

(u,t’) if the user extract-min’s at step t and PQ 
claims u, inserted at time t’, is the min.

• Example: Insert 5, Insert 4, Extract-min, Insert 7,... 
would correspond to the sequence (5,1), (4,2), 
(4,2), (7,4), ... if the PQ was correct.
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The Checking Problem

• Input: A sequence c1, c2, ... , c2n with n inserts and n 
extract-mins.

• Goal: Fail the stream with high probability if it is 
not correct and pass otherwise. 

• Constraints: The interaction sequence is observed 
as a stream and has limited space.

• We are interested in offline checkers that identify 
errors by the end of the interaction sequence.
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checker that identifies errors with prob. 1-1/n. 

Any randomized, offline checker of a “certain 
type” requires Ω(√n) space.

Online or deterministic requires Ω(n) space.

• Spot-Checker:

A randomized, offline, O(ε-1 log2 n)-space spot-
checker that identifies a priority queue that is 
“ε-far” from correct with prob. 1-1/n. 
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Hashing

• Thm (Naor & Naor): Can construct a hash function h 
on length n strings such that 

It uses O(lg n) random bits and can be constructed 
in O(lg n) space even if the characters of each string 
are revealed in an arbitrary order.

• What it means for us:
Let xt be (u,t) if u was inserted at time t  
Let yt be (u,t) if an extract returns (u,t)
Hence can easily check C1: {(u,t)}={(u,t)}

Pr[h(x) = h(y)] ≤ δ if x "= y .
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Checking Results

• Thm: A randomized, offline, O(√n lg n)-space 
checker that identifies errors with prob. 1-1/n. 

• Thm: Any randomized online checker that is 
correct with prob. 3/4 requires Ω(n/lg n) space.

• Thm: Any deterministic offline checker requires 
Ω(n) space.

• Outline why Ω(√n) space looks necessary for 
randomized, offline checkers...
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• Split sequence into √n-length Epochs

• Identify errors within present epoch immediately

• Maintain lower-bound on contents of past epochs.

Algorithm Outline

Value

t
Epoch-1 Epoch-2 Epoch-3 Epoch-4 Epoch-5 Epoch-6

???



Algorithm Detail
For k in [2√n], let f(k)=0  

For i=1 to 2√n:

Let Buffer be empty

For j in Epoch-i={(i-1)√n+1,...,i√n}:

If ci=(u,t), add ci to B

If ci=(u,t): 

If t in Epoch-k (k<i) and f(k)>ci then FAIL!

If t in Epoch-i and ci > min Buffer then FAIL!

Remove ci from Buffer (if present)

For k<i, let f(k)=max(f(k),ci)

Let f(i)=min Buffer
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Proof of Correctness
• We may assume C1 and C2 are satisfied.

• Consider error: ctb=(u,ta) and csb=(v,sa) such that 
(u,ta)<(v,sa) and ta<sb<tb:

• Let ta and sb be in Epoch-i and Epoch-j resp.

• Case 1: If i=j then v>min Buffer and hence we fail 
at time sb (or before.)

• Case 2: If i<j then f(i)≥(v,sb) and hence we fail at 
time tb (or before.) 

v
u

ta  sb  tb



Online or Deterministic?

• Thm: Any online checker that is correct with 
prob. 3/4 requires Ω(n/lg n) space.

• Thm: Any offline deterministic checker requires 
Ω(n) space.
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“Is the length i prefix of x and y equal?”

Lemma: Needs Ω(n/lg n) bits transmitted.

[Chakrabarti, Cormode, McGregor ’07]

Alice
length n

binary string x

Bob
length n

binary string y 
& index i in [n]• Assume there exists a S-space online 

checker that works with prob. 3/4.

• Checker fails after (4+yj,j) iff prefixes equal.  

• Thm: S=Ω(n/lg n)


MEMORY STATE OF ALGORITHM
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• Consider interaction sequence c1, ... , c2n and 
perm. π of [2n]. Define new interaction sequence 
d1, ... , d2n where 

dπ(i) = (u,π(i)) if ci= (u,i)

dπ(i) = (u,π(j)) if ci= (u,j)

• Say interaction sequence c1, ... , c2n is ε-far if no 
permutation with less than εn rearrangements 
results in a correct interaction sequence.
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Revealing Tuples
• Say (u,ta) is a revealing if there exists 

csb=(v,sa)>(u,ta) and ctb=(u,ta) such that ta<sb<tb:

• Thm: An interaction sequence that is ε-far from 
being correct has at least εn revealing tuples.

• Proof: 

Find first incorrect extract-min, say csb=(v,sa). 

Since this isn’t minimum element, there exists 
(u,ta) and ctb=(u,ta) such that ta<sb<tb.

Moving tb to sb reduces # of revealing tuples.

Continue until sequence is correct.

v
u

ta  sb  tb
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Correctness
• Thm: A randomized, offline, O(ε-1 lg2 n)-space 

spot-checker that fails a PQ queue that is “ε-far” 
from correct w.h.p.

• Proof:

Samples O(ε-1 lg2 n) insertions. Call these S.

W.h.p. there exists a revealing tuple (u,ta) in S.

Monitor elements between the insertion and 
extraction of each element in S.

Will identify csb=(v,sa)>(u,ta) and ctb=(u,ta) such 
that ta<sb<tb. 



Summary
• Checkers:

A randomized, offline, O(√n log n)-space 
checker that identifies errors with prob. 1-1/n. 

Any randomized, offline checker of a “certain 
type” requires Ω(√n) space.

Online or deterministic requires Ω(n) space.

• Spot-Checker:

A randomized, offline, O(ε-1 lg2 n)-space spot-
checker that identifies a priority queue that is 
“ε-far” from correct with prob. 1-1/n. 

• ... and that’s how you mind you P.Q.’s!


