
Checking & Spot-Checking the
Correctness of Priority Queues

Matthew Chu & Sampath Kannan (UPenn) Andrew McGregor (UCSD)

Memory Checking

Memory Checking

• Your resources: A lot of cheap unreliable memory
and a little expensive reliable memory.

Memory Checking

• Your resources: A lot of cheap unreliable memory
and a little expensive reliable memory.

• Your challenge: Can you make use of the cheap
memory? Want to identify (but not correct) any
errors introduced by a malicious adversary.

Memory Checking

• Your resources: A lot of cheap unreliable memory
and a little expensive reliable memory.

• Your challenge: Can you make use of the cheap
memory? Want to identify (but not correct) any
errors introduced by a malicious adversary.

• Related Work:
Program Checking
 [Blum, Kannan ’95]

Memory Checking
 [Blum et al. ’94]

Checking linked Data Structures
 [Amato, Loui ’94]

Priority Queues

Priority Queues
• Priority Queue:

Supports a sequence of inserts and extract-min’s.

Is “correct” if each extract-min returns the
smallest value inserted and not extracted.

Priority Queues
• Priority Queue:

Supports a sequence of inserts and extract-min’s.

Is “correct” if each extract-min returns the
smallest value inserted and not extracted.

• Interaction Sequence: c1, c2, ..., c2n where ct is either

(u,t) if the user inserts u at step t

(u,t’) if the user extract-min’s at step t and PQ
claims u, inserted at time t’, is the min.

Priority Queues
• Priority Queue:

Supports a sequence of inserts and extract-min’s.

Is “correct” if each extract-min returns the
smallest value inserted and not extracted.

• Interaction Sequence: c1, c2, ..., c2n where ct is either

(u,t) if the user inserts u at step t

(u,t’) if the user extract-min’s at step t and PQ
claims u, inserted at time t’, is the min.

• Example: Insert 5, Insert 4, Extract-min, Insert 7,...
would correspond to the sequence (5,1), (4,2),
(4,2), (7,4), ... if the PQ was correct.

The Checking Problem

The Checking Problem

• Input: A sequence c1, c2, ... , c2n with n inserts and n
extract-mins.

The Checking Problem

• Input: A sequence c1, c2, ... , c2n with n inserts and n
extract-mins.

• Goal: Fail the stream with high probability if it is
not correct and pass otherwise.

The Checking Problem

• Input: A sequence c1, c2, ... , c2n with n inserts and n
extract-mins.

• Goal: Fail the stream with high probability if it is
not correct and pass otherwise.

• Constraints: The interaction sequence is observed
as a stream and has limited space.

The Checking Problem

• Input: A sequence c1, c2, ... , c2n with n inserts and n
extract-mins.

• Goal: Fail the stream with high probability if it is
not correct and pass otherwise.

• Constraints: The interaction sequence is observed
as a stream and has limited space.

• We are interested in offline checkers that identify
errors by the end of the interaction sequence.

Results

Results
• Checkers:

A randomized, offline, O(√n log n)-space
checker that identifies errors with prob. 1-1/n.

Any randomized, offline checker of a “certain
type” requires Ω(√n) space.

Online or deterministic requires Ω(n) space.

Results
• Checkers:

A randomized, offline, O(√n log n)-space
checker that identifies errors with prob. 1-1/n.

Any randomized, offline checker of a “certain
type” requires Ω(√n) space.

Online or deterministic requires Ω(n) space.

• Spot-Checker:

A randomized, offline, O(ε-1 log2 n)-space spot-
checker that identifies a priority queue that is
“ε-far” from correct with prob. 1-1/n.

1: Preliminaries
2: Checking
3: Spot-Checking

1: Preliminaries
2: Checking
3: Spot-Checking

Correctness

Correctness
• Thm: An interaction sequence is correct iff it

satisfies:

C1: {(u,t)}={(u,t)}

C2: For all cs=(u,t): t<s

C3: For all ctb =(u,ta) and csb =(v,sa):

((u,ta) < (v,sa)) then (sb<ta or tb<sa)

• Proof Idea: If correct then clearly C1, C2, & C3. For
other direction consider first incorrect extract-
min...

Correctness
• Thm: An interaction sequence is correct iff it

satisfies:

C1: {(u,t)}={(u,t)}

C2: For all cs=(u,t): t<s

C3: For all ctb =(u,ta) and csb =(v,sa):

((u,ta) < (v,sa)) then (sb<ta or tb<sa)

• Proof Idea: If correct then clearly C1, C2, & C3. For
other direction consider first incorrect extract-
min...

Hashing

Hashing

• Thm (Naor & Naor): Can construct a hash function h
on length n strings such that

It uses O(lg n) random bits and can be constructed
in O(lg n) space even if the characters of each string
are revealed in an arbitrary order.

Pr[h(x) = h(y)] ≤ δ if x "= y .

Hashing

• Thm (Naor & Naor): Can construct a hash function h
on length n strings such that

It uses O(lg n) random bits and can be constructed
in O(lg n) space even if the characters of each string
are revealed in an arbitrary order.

• What it means for us:
Let xt be (u,t) if u was inserted at time t
Let yt be (u,t) if an extract returns (u,t)
Hence can easily check C1: {(u,t)}={(u,t)}

Pr[h(x) = h(y)] ≤ δ if x "= y .

1: Preliminaries
2: Checking
3: Spot-Checking

Checking Results

• Thm: A randomized, offline, O(√n lg n)-space
checker that identifies errors with prob. 1-1/n.

• Thm: Any randomized online checker that is
correct with prob. 3/4 requires Ω(n/lg n) space.

• Thm: Any deterministic offline checker requires
Ω(n) space.

• Outline why Ω(√n) space looks necessary for
randomized, offline checkers...

• Key Idea: cta=(u,t) should imply that all elements
inserted before ta and not extracted are greater
than cta

Algorithm Intuition

• Key Idea: cta=(u,t) should imply that all elements
inserted before ta and not extracted are greater
than cta

Algorithm Intuition

Value

t

• Key Idea: cta=(u,t) should imply that all elements
inserted before ta and not extracted are greater
than cta

Algorithm Intuition

Value

t

• Split sequence into √n-length Epochs

• Identify errors within present epoch immediately

• Maintain lower-bound on contents of past epochs.

Algorithm Outline

Value

t

• Split sequence into √n-length Epochs

• Identify errors within present epoch immediately

• Maintain lower-bound on contents of past epochs.

Algorithm Outline

Value

t
Epoch-1 Epoch-2 Epoch-3 Epoch-4 Epoch-5 Epoch-6

• Split sequence into √n-length Epochs

• Identify errors within present epoch immediately

• Maintain lower-bound on contents of past epochs.

Algorithm Outline

Value

t
Epoch-1 Epoch-2 Epoch-3 Epoch-4 Epoch-5 Epoch-6

• Split sequence into √n-length Epochs

• Identify errors within present epoch immediately

• Maintain lower-bound on contents of past epochs.

Algorithm Outline

Value

t
Epoch-1 Epoch-2 Epoch-3 Epoch-4 Epoch-5 Epoch-6

• Split sequence into √n-length Epochs

• Identify errors within present epoch immediately

• Maintain lower-bound on contents of past epochs.

Algorithm Outline

Value

t
Epoch-1 Epoch-2 Epoch-3 Epoch-4 Epoch-5 Epoch-6

• Split sequence into √n-length Epochs

• Identify errors within present epoch immediately

• Maintain lower-bound on contents of past epochs.

Algorithm Outline

Value

t
Epoch-1 Epoch-2 Epoch-3 Epoch-4 Epoch-5 Epoch-6

• Split sequence into √n-length Epochs

• Identify errors within present epoch immediately

• Maintain lower-bound on contents of past epochs.

Algorithm Outline

Value

t
Epoch-1 Epoch-2 Epoch-3 Epoch-4 Epoch-5 Epoch-6

???

Algorithm Detail
For k in [2√n], let f(k)=0

For i=1 to 2√n:

Let Buffer be empty

For j in Epoch-i={(i-1)√n+1,...,i√n}:

If ci=(u,t), add ci to B

If ci=(u,t):

If t in Epoch-k (k<i) and f(k)>ci then FAIL!

If t in Epoch-i and ci > min Buffer then FAIL!

Remove ci from Buffer (if present)

For k<i, let f(k)=max(f(k),ci)

Let f(i)=min Buffer

Proof of Correctness

Proof of Correctness
• We may assume C1 and C2 are satisfied.

Proof of Correctness
• We may assume C1 and C2 are satisfied.

• Consider error: ctb=(u,ta) and csb=(v,sa) such that
(u,ta)<(v,sa) and ta<sb<tb:

v
u

ta sb tb

Proof of Correctness
• We may assume C1 and C2 are satisfied.

• Consider error: ctb=(u,ta) and csb=(v,sa) such that
(u,ta)<(v,sa) and ta<sb<tb:

• Let ta and sb be in Epoch-i and Epoch-j resp.

v
u

ta sb tb

Proof of Correctness
• We may assume C1 and C2 are satisfied.

• Consider error: ctb=(u,ta) and csb=(v,sa) such that
(u,ta)<(v,sa) and ta<sb<tb:

• Let ta and sb be in Epoch-i and Epoch-j resp.

• Case 1: If i=j then v>min Buffer and hence we fail
at time sb (or before.)

v
u

ta sb tb

Proof of Correctness
• We may assume C1 and C2 are satisfied.

• Consider error: ctb=(u,ta) and csb=(v,sa) such that
(u,ta)<(v,sa) and ta<sb<tb:

• Let ta and sb be in Epoch-i and Epoch-j resp.

• Case 1: If i=j then v>min Buffer and hence we fail
at time sb (or before.)

• Case 2: If i<j then f(i)≥(v,sb) and hence we fail at
time tb (or before.)

v
u

ta sb tb

Online or Deterministic?

• Thm: Any online checker that is correct with
prob. 3/4 requires Ω(n/lg n) space.

• Thm: Any offline deterministic checker requires
Ω(n) space.

Alice
length n

binary string x

Bob
length n

binary string y
& index i in [n]

“Is the length i prefix of x and y equal?”

Lemma: Needs Ω(n/lg n) bits transmitted.

[Chakrabarti, Cormode, McGregor ’07]

Alice
length n

binary string x

Bob
length n

binary string y
& index i in [n]

“Is the length i prefix of x and y equal?”

Lemma: Needs Ω(n/lg n) bits transmitted.

[Chakrabarti, Cormode, McGregor ’07]

Alice
length n

binary string x

Bob
length n

binary string y
& index i in [n]• Assume there exists a S-space online

checker that works with prob. 3/4.

“Is the length i prefix of x and y equal?”

Lemma: Needs Ω(n/lg n) bits transmitted.

[Chakrabarti, Cormode, McGregor ’07]

Alice
length n

binary string x

Bob
length n

binary string y
& index i in [n]• Assume there exists a S-space online

checker that works with prob. 3/4.

(2+x1,1), (4+x2,2), ... ,(2n+xn,n)

“Is the length i prefix of x and y equal?”

Lemma: Needs Ω(n/lg n) bits transmitted.

[Chakrabarti, Cormode, McGregor ’07]

Alice
length n

binary string x

Bob
length n

binary string y
& index i in [n]• Assume there exists a S-space online

checker that works with prob. 3/4.

(2+x1,1), (4+x2,2), ... ,(2n+xn,n)(2+y1,1), (4+y2,2), ... ,(2n+yn,n)

“Is the length i prefix of x and y equal?”

Lemma: Needs Ω(n/lg n) bits transmitted.

[Chakrabarti, Cormode, McGregor ’07]

Alice
length n

binary string x

Bob
length n

binary string y
& index i in [n]• Assume there exists a S-space online

checker that works with prob. 3/4.

• Checker fails after (4+yj,j) iff prefixes equal.

(2+x1,1), (4+x2,2), ... ,(2n+xn,n)(2+y1,1), (4+y2,2), ... ,(2n+yn,n)

“Is the length i prefix of x and y equal?”

Lemma: Needs Ω(n/lg n) bits transmitted.

[Chakrabarti, Cormode, McGregor ’07]

Alice
length n

binary string x

Bob
length n

binary string y
& index i in [n]• Assume there exists a S-space online

checker that works with prob. 3/4.

• Checker fails after (4+yj,j) iff prefixes equal.

MEMORY STATE OF ALGORITHM

(2+x1,1), (4+x2,2), ... ,(2n+xn,n)(2+y1,1), (4+y2,2), ... ,(2n+yn,n)

“Is the length i prefix of x and y equal?”

Lemma: Needs Ω(n/lg n) bits transmitted.

[Chakrabarti, Cormode, McGregor ’07]

Alice
length n

binary string x

Bob
length n

binary string y
& index i in [n]• Assume there exists a S-space online

checker that works with prob. 3/4.

• Checker fails after (4+yj,j) iff prefixes equal.

• Thm: S=Ω(n/lg n)

MEMORY STATE OF ALGORITHM

(2+x1,1), (4+x2,2), ... ,(2n+xn,n)(2+y1,1), (4+y2,2), ... ,(2n+yn,n)

1: Preliminaries
2: Checking
3: Spot-Checking

Spot-Checking

Spot-Checking
• Thm: A randomized, offline, O(ε-1 lg2 n)-space

spot-checker that fails a PQ queue that is “ε-far”
from correct w.h.p.

Spot-Checking
• Thm: A randomized, offline, O(ε-1 lg2 n)-space

spot-checker that fails a PQ queue that is “ε-far”
from correct w.h.p.

• Consider interaction sequence c1, ... , c2n and
perm. π of [2n]. Define new interaction sequence
d1, ... , d2n where

dπ(i) = (u,π(i)) if ci= (u,i)

dπ(i) = (u,π(j)) if ci= (u,j)

Spot-Checking
• Thm: A randomized, offline, O(ε-1 lg2 n)-space

spot-checker that fails a PQ queue that is “ε-far”
from correct w.h.p.

• Consider interaction sequence c1, ... , c2n and
perm. π of [2n]. Define new interaction sequence
d1, ... , d2n where

dπ(i) = (u,π(i)) if ci= (u,i)

dπ(i) = (u,π(j)) if ci= (u,j)

• Say interaction sequence c1, ... , c2n is ε-far if no
permutation with less than εn rearrangements
results in a correct interaction sequence.

Revealing Tuples

Revealing Tuples
• Say (u,ta) is a revealing if there exists

csb=(v,sa)>(u,ta) and ctb=(u,ta) such that ta<sb<tb:
v
u

ta sb tb

Revealing Tuples
• Say (u,ta) is a revealing if there exists

csb=(v,sa)>(u,ta) and ctb=(u,ta) such that ta<sb<tb:

• Thm: An interaction sequence that is ε-far from
being correct has at least εn revealing tuples.

v
u

ta sb tb

Revealing Tuples
• Say (u,ta) is a revealing if there exists

csb=(v,sa)>(u,ta) and ctb=(u,ta) such that ta<sb<tb:

• Thm: An interaction sequence that is ε-far from
being correct has at least εn revealing tuples.

• Proof:

Find first incorrect extract-min, say csb=(v,sa).

Since this isn’t minimum element, there exists
(u,ta) and ctb=(u,ta) such that ta<sb<tb.

Moving tb to sb reduces # of revealing tuples.

Continue until sequence is correct.

v
u

ta sb tb

Correctness

Correctness
• Thm: A randomized, offline, O(ε-1 lg2 n)-space

spot-checker that fails a PQ queue that is “ε-far”
from correct w.h.p.

Correctness
• Thm: A randomized, offline, O(ε-1 lg2 n)-space

spot-checker that fails a PQ queue that is “ε-far”
from correct w.h.p.

• Proof:

Correctness
• Thm: A randomized, offline, O(ε-1 lg2 n)-space

spot-checker that fails a PQ queue that is “ε-far”
from correct w.h.p.

• Proof:

Samples O(ε-1 lg2 n) insertions. Call these S.

Correctness
• Thm: A randomized, offline, O(ε-1 lg2 n)-space

spot-checker that fails a PQ queue that is “ε-far”
from correct w.h.p.

• Proof:

Samples O(ε-1 lg2 n) insertions. Call these S.

W.h.p. there exists a revealing tuple (u,ta) in S.

Correctness
• Thm: A randomized, offline, O(ε-1 lg2 n)-space

spot-checker that fails a PQ queue that is “ε-far”
from correct w.h.p.

• Proof:

Samples O(ε-1 lg2 n) insertions. Call these S.

W.h.p. there exists a revealing tuple (u,ta) in S.

Monitor elements between the insertion and
extraction of each element in S.

Correctness
• Thm: A randomized, offline, O(ε-1 lg2 n)-space

spot-checker that fails a PQ queue that is “ε-far”
from correct w.h.p.

• Proof:

Samples O(ε-1 lg2 n) insertions. Call these S.

W.h.p. there exists a revealing tuple (u,ta) in S.

Monitor elements between the insertion and
extraction of each element in S.

Will identify csb=(v,sa)>(u,ta) and ctb=(u,ta) such
that ta<sb<tb.

Summary
• Checkers:

A randomized, offline, O(√n log n)-space
checker that identifies errors with prob. 1-1/n.

Any randomized, offline checker of a “certain
type” requires Ω(√n) space.

Online or deterministic requires Ω(n) space.

• Spot-Checker:

A randomized, offline, O(ε-1 lg2 n)-space spot-
checker that identifies a priority queue that is
“ε-far” from correct with prob. 1-1/n.

• ... and that’s how you mind you P.Q.’s!

