Checking & Spot-Checking the

Correctness of Priority Queues
Matthew Chu & Sampath Kannan (UPenn) Andrew McGregor (UCSD)

>~

.'~‘ ’ , -‘< ™ - - ~J o >
).\-\ N RS ASALAS - SSL z _—
R P NN SR e, S RS S

o
I S




Memory Checking




Memory Checking

® Your resources: A lot of cheap unreliable memory
and a little expensive reliable memory.




Memory Checking

® Your resources: A lot of cheap unreliable memory
and a little expensive reliable memory.

® Your challenge: Can you make use of the cheap
memory?! Want to identify (but not correct) any
errors introduced by a malicious adversary.




Memory Checking

® Your resources: A lot of cheap unreliable memory
and a little expensive reliable memory.

® Your challenge: Can you make use of the cheap
memory?! Want to identify (but not correct) any
errors introduced by a malicious adversary.

® Related Work:

Program Checking [Blum, Kannan ’95]

Memory Checking [Blum et al.’94]
Checking linked Data Structures [Amato, Loui *94]




Priority Queues




Priority Queues

® Priority Queue:
Supports a sequence of and extract-min’s.

Is “correct” if each extract-min returns the
smallest value inserted and not extracted.




Priority Queues

® Priority Queue:
Supports a sequence of and extract-min’s.

Is “correct” if each extract-min returns the
smallest value inserted and not extracted.

® |nteraction Sequence:Cy, C, ..., C2n Where ¢; is either

if the user inserts u at step t

(u,t’) if the user extract-min’s at step t and PQ
claims u, inserted at time t’, is the min.




Priority Queues

® Priority Queue:
Supports a sequence of and extract-min’s.

Is “correct” if each extract-min returns the
smallest value inserted and not extracted.

® |nteraction Sequence:Cy, C, ..., C2n Where ¢; is either

if the user inserts u at step t

(u,t’) if the user extract-min’s at step t and PQ
claims u, inserted at time t’, is the min.

® fxample:Insert 5, Insert 4, Extract-min, Insert 7/,...
would correspond to the sequence , ,
(4,2), , ... if the PQ was correct.




The Checking Problem




The Checking Problem

® |nput: A sequence cJ, Cy, ..., C2n With n and n
extract-mins.




The Checking Problem

® |nput: A sequence cJ, Cy, ..., C2n With n and n
extract-mins.

® Goal: Fail the stream with high probability if it is
not correct and pass otherwise.




The Checking Problem

® |nput: A sequence cJ, Cy, ..., C2n With n and n
extract-mins.

® Goal: Fail the stream with high probability if it is
not correct and pass otherwise.

® (Constraints: The interaction sequence is observed
as a stream and has limited space.




The Checking Problem

Input: A sequence ¢y, C2, ..., C2n With n and n
extract-mins.

Goal: Fail the stream with high probability if it is
not correct and pass otherwise.

Constraints: The interaction sequence is observed
as a stream and has limited space.

WVe are interested in offline checkers that identify
errors by the end of the interaction sequence.




Results




Results

® (Checkers:

A randomized, offline, O(+/n log n)-space
checker that identifies errors with prob. I-1/n.

Any randomized, offline checker of a “certain
type” requires Q(+/n) space.

Online or deterministic requires ()(n) space.




Results

® (Checkers:

A randomized, offline, O(+/n log n)-space
checker that identifies errors with prob. I-1/n.

Any randomized, offline checker of a “certain

type” requires Q(+/n) space.

Online or deterministic requires ()(n) space.
® Spot-Checker:

A randomized, offline, O(¢! log? n)-space spot-
checker that identifies a priority queue that is
“e-far” from correct with prob. |-1/n.




Preliminaries
Checking

Spot-Checking




INaries

=

Prel,




Correctness




Correctness

® Thm:An interaction sequence is correct iff it
satisfies:

Cl:{(un)}={(ut)}
C2: For all ¢;=(u,t): t<s
C3: For all cw» =(u,ta) and csp =(v,s0):
((u,ta) < (v,sa)) then (sb<ta or tb<sa)

Proof Idea: If correct then clearly CI, C2, & C3. For
other direction consider first incorrect extract-
min...




Correctness

® Thm:An interaction sequence is correct iff it
satisfies:

Cl:{(un)}={(ut)}
C2: For all ¢;=(u,t): t<s
C3: For all cw» =(u,ta) and csp =(v,s0):
((u,ta) < (v,sa)) then (sb<ta or tb<sa)

Proof Idea: If correct then clearly CI, C2, & C3. For
other direction consider first incorrect extract-
min...




Hashing




Hashing

® [hm (Naor & Naor): Can construct a hash function h
on length n strings such that

Prih(x) = h(y)] <6 ifx £y
It uses O(lg n) random bits and can be constructed

in O(lg n) space even if the characters of each string
are revealed in an arbitrary order.




Hashing

® [hm (Naor & Naor): Can construct a hash function h
on length n strings such that

Prih(x) = h(y)] <6 ifx £y
It uses O(lg n) random bits and can be constructed

in O(lg n) space even if the characters of each string
are revealed in an arbitrary order.

® What it means for us:

Let x; be (u,t) if u was inserted at time t
Let y; be (u,t) if an extract returns (u,t)
Hence can easily check C/:{(u,1)}={(u,t)}




ing

/
J
)
i -
@,

2




Checking Results

Thm: A randomized, offline, O(+/n g n)-space
checker that identifies errors with prob. |-1/n.

Thm: Any randomized online checker that is
correct with prob. 3/4 requires ()(n/lg n) space.

Thm: Any deterministic offline checker requires
()(n) space.

Outline why Q(+/n) space looks necessary for
randomized, offline checkers...




Algorithm Intuition

® Key ldea: ¢ia=(u,t) should imply that all elements
inserted before ta and not extracted are greater
than ¢




Algorithm Intuition

® Key ldea: ¢ia=(u,t) should imply that all elements
inserted before ta and not extracted are greater
than ¢

A




Algorithm Intuition

® Key ldea: ¢ia=(u,t) should imply that all elements
inserted before ta and not extracted are greater
than ¢

A




Algorithm Outline

® Split sequence into +/n-length Epochs

® |dentify errors within present epoch immediately

® Maintain lower-bound on contents of past epochs.

A

Value




Algorithm Outline

® Split sequence into +/n-length Epochs

® |dentify errors within present epoch immediately

® Maintain lower-bound on contents of past epochs.

A

Value

Epoch-1 Epoch-2 Epoch-3 Epoch-4 Epoch-5 Epoch-6



Algorithm Outline

® Split sequence into +/n-length Epochs

® |dentify errors within present epoch immediately

® Maintain lower-bound on contents of past epochs.

A

Value

Epoch-1 Epoch-2 Epoch-3 Epoch-4 Epoch-5 Epoch-6



Algorithm Outline

® Split sequence into +/n-length Epochs

® |dentify errors within present epoch immediately

® Maintain lower-bound on contents of past epochs.

A

Value

Epoch-1 Epoch-2 Epoch-3 Epoch-4 Epoch-5 Epoch-6



Algorithm Outline

® Split sequence into +/n-length Epochs

® |dentify errors within present epoch immediately

® Maintain lower-bound on contents of past epochs.

A

Value

Epoch-1 Epoch-2 Epoch-3 Epoch-4 Epoch-5 Epoch-6



Algorithm Outline

® Split sequence into +/n-length Epochs

® |dentify errors within present epoch immediately

® Maintain lower-bound on contents of past epochs.

A

Value

Epoch-1 Epoch-2 Epoch-3 Epoch-4 Epoch-5 Epoch-6



Algorithm Outline

® Split sequence into +/n-length Epochs

® |dentify errors within present epoch immediately

® Maintain lower-bound on contents of past epochs.

A

Value

77

Epoch-1 Epoch-2 Epoch-3 Epoch-4 Epoch-5 Epoch-6



Algorithm Detail

k in [2Vn], let £f(k)=0
i=1 to 2vn:
Let Buffer be empty

For j in Epoch-i={(i-1)Vn+1,...,iVn}:

If ci= , add ci to B

If ci=(u,t):
If t in Epoch-k (k<i) and f(k)>ci then FAIL!
If t in Epoch-1i and c;i > min Buffer then FAIL!

Remove c; from Buffer (if present)

For k<i, let f(k)=max(f(k),ci)

Let f(1i)=min Buffer




Proof of Correctness




Proof of Correctness

® We may assume C/ and C2 are satisfied.




Proof of Correctness

® We may assume C/ and C2 are satisfied.

® Consider error: cwn=(u,ta) and cs»=(v,sa) such that
(u,ta)<(v,sa) and ta<sb<tb:

")
ou e
ta sb tb




Proof of Correctness

® We may assume C/ and C2 are satisfied.

® Consider error: cwn=(u,ta) and cs»=(v,sa) such that
(u,ta)<(v,sa) and ta<sb<tb:
@

ou e
ta sb tb

® |etta and sb be in Epoch-i and Epoch-j resp.




Proof of Correctness

We may assume C/ and C2 are satisfied.

Consider error: ci=(u,ta) and cs»=(v,sa) such that
(u,ta)<(v,sa) and ta<sb<tb:
@

ou e
ta sb tb

Let ta and sb be in Epoch-i and Epoch-j resp.

Case [:If i=j then v>min Buffer and hence we fail
at time sb (or before.)




Proof of Correctness

We may assume C/ and C2 are satisfied.

Consider error: ci=(u,ta) and cs»=(v,sa) such that

(u,ta)<(v,sa) and ta<sb<tb:
®

ou e
ta sb tb

Let ta and sb be in Epoch-i and Epoch-j resp.

Case [:If i=j then v>min Buffer and hence we fail
at time sb (or before.)

Case 2: If i<j then f(i)=(v,sb) and hence we fail at
time tb (or before.)




Online or Deterministic?

® Thm: Any online checker that is correct with
prob. 3/4 requires C)(n/lg n) space.

® Thm: Any offline deterministic checker requires
()(n) space.




length n length n
binary string x binary string y
& index i in [n]




length n
binary string x

p

“Is the length i prefix of x and y equal?”

Lemma: Needs €)(n/lg n) bits transmitted.

[Chakrabarti, Cormode, McGregor ’07]

length n
binary string y
& index i in [n]




length n
binary string x

p

“Is the length i prefix of x and y equal?”

Lemma: Needs €)(n/lg n) bits transmitted.

[Chakrabarti, Cormode, McGregor ’07]

® Assume there exists a S-space online

checker that works with prob. 3/4.

Bob

length n
binary string y
& index i in [n]




length n
binary string x

p

“Is the length i prefix of x and y equal?”

Lemma: Needs €)(n/lg n) bits transmitted.

[Chakrabarti, Cormode, McGregor ’07]

® Assume there exists a S-space online

checker that works with prob. 3/4.

Bob

length n
binary string y
& index i in [n]




length n
binary string x

(2+y, 1), (4+y2,2), ... ,(2n+yn,n)

p

“Is the length i prefix of x and y equal?”

Lemma: Needs €)(n/lg n) bits transmitted.

[Chakrabarti, Cormode, McGregor ’07]

® Assume there exists a S-space online

checker that works with prob. 3/4.

Bob

length n
binary string y
& index i in [n]




(2+y, 1), (4+y2,2), ... ,(2n+yn,n)

-
“Is the length i prefix of x and y equal?”

Lemma: Needs €)(n/lg n) bits transmitted.

[Chakrabarti, Cormode, McGregor ’07]

length n length n
binary string x binary string y
® Assume there exists a S-space online & index i in [n]
checker that works with prob. 3/4.

® Checker fails after (4+y;,)) iff prefixes equal.




(2+y, 1), (4+y2,2), ... ,(2n+yn,n)

-
“Is the length i prefix of x and y equal?”

Lemma: Needs €)(n/lg n) bits transmitted.

[Chakrabarti, Cormode, McGregor ’07]

&

Alice ™ ~__—— Bob

length n MEMORY STATE OF ALGORITHM length n
binary string x binary string y
® Assume there exists a S-space online & index iin [n]

checker that works with prob. 3/4.

® Checker fails after (4+y;,)) iff prefixes equal.




(2+y, 1), (4+y2,2), ... ,(2n+yn,n)

p

“Is the length i prefix of x and y equal?”

Lemma: Needs €)(n/lg n) bits transmitted.

[Chakrabarti, Cormode, McGregor ’07]
N\

Alice ™ "

length n MEMORY STATE OF ALGORITHM length n
binary string x binary string y
® Assume there exists a S-space online & index iin [n]

checker that works with prob. 3/4.

® Checker fails after (4+y;,)) iff prefixes equal.

® Thm: S=Q(n/lg n)




ing

"/
O
o)
C
Y
=
O
al
)

3

S

AL AT R i o

S o




Spot-Checking




Spot-Checking

® Thm: A randomized, offline, O(g"! Ig? n)-space
spot-checker that fails a PQ queue that is “e-far”
from correct w.h.p.




Spot-Checking

® Thm: A randomized, offline, O(g"! Ig? n)-space
spot-checker that fails a PQ queue that is “e-far”
from correct w.h.p.

Consider interaction sequence ¢y, ..., C2n and
perm. TT of [2n]. Define new interaction sequence
di, ..., d2n Where

drm() = if ci=
drg) = (u,T1())) if = (u,))




Spot-Checking

® Thm: A randomized, offline, O(g"! Ig? n)-space
spot-checker that fails a PQ queue that is “e-far”
from correct w.h.p.

Consider interaction sequence ¢y, ..., C2n and
perm. TT of [2n]. Define new interaction sequence
di, ..., d2n Where

drm() = if ci=
drg) = (u,T1())) if = (u,))

Say interaction sequence ¢y, ..., C2nis €-far if no
permutation with less than en rearrangements
results in a correct interaction sequence.




Revealing Tuples




Revealing Tuples

® Say is a revealing if there exists
Csb=(v,sa)>(u,ta) and cw=(u,ta) such that ta<sb<tb:

@
ouU e
ta sb tb




Revealing Tuples

® Say is a revealing if there exists
Csb=(v,sa)>(u,ta) and cw=(u,ta) such that ta<sb<tb:

@
ouU e
ta sb tb

® Thm:An interaction sequence that is e-far from
being correct has at least €n revealing tuples.




Revealing Tuples

Say is a revealing if there exists
Csb=(v,sa)>(u,ta) and cw=(u,ta) such that ta<sb<tb:

@
ouU e
ta sb tb

Thm: An interaction sequence that is e-far from
being correct has at least €n revealing tuples.

Proof:

Find first incorrect extract-min, say c¢s»=(v,sa).

Since this isn’t minimum element, there exists
and c¢»=(u,ta) such that ta<sb<tb.

Moving tb to sb reduces # of revealing tuples.

Continue until sequence is correct.



Correctness




Correctness

® Thm: A randomized, offline, O(g"! Ig? n)-space
spot-checker that fails a PQ queue that is “e-far”
from correct w.h.p.




Correctness

® Thm: A randomized, offline, O(g"! Ig? n)-space
spot-checker that fails a PQ queue that is “e-far”
from correct w.h.p.

Proof.




Correctness

® Thm: A randomized, offline, O(g"! Ig? n)-space
spot-checker that fails a PQ queue that is “e-far
from correct w.h.p.

’

® Proof:

Samples O(e’! Ig? n) insertions. Call these S.




Correctness

® Thm: A randomized, offline, O(g"! Ig? n)-space
spot-checker that fails a PQ queue that is “e-far
from correct w.h.p.

’

® Proof:
Samples O(e’! Ig? n) insertions. Call these S.

W.h.p. there exists a revealing tuple in S.




Correctness

® Thm: A randomized, offline, O(g"! Ig? n)-space
spot-checker that fails a PQ queue that is “e-far”
from correct w.h.p.

Proof:
Samples O(e’! Ig? n) insertions. Call these S.
W.h.p. there exists a revealing tuple in S.

Monitor elements between the insertion and
extraction of each element in S.




Correctness

® Thm: A randomized, offline, O(g"! Ig? n)-space
spot-checker that fails a PQ queue that is “e-far
from correct w.h.p.

Proof.

Samples O(e’! Ig? n) insertions. Call these S.

’

W.h.p. there exists a revealing tuple in S.

Monitor elements between the insertion and
extraction of each element in S.

Will identify ¢s»=(v,sa)>(u,ta) and ci»=(u,ta) such
that ta<sb<tb.




Summary

® (Checkers:

A randomized, offline, O(+/n log n)-space
checker that identifies errors with prob. |-1/n.

Any randomized, offline checker of a “certain
type” requires Q(+/n) space.

Online or deterministic requires ()(n) space.
® Spot-Checker:

A randomized, offline, O(s"! Ig? n)-space spot-
checker that identifies a priority queue that is
“e-far” from correct with prob. |-1/n.

® .. and that’s how you mind you P.Q.’s!




